The document outlines research on developing optimal finite difference grids for solving elliptic and parabolic partial differential equations (PDEs). It introduces the motivation to accurately compute Neumann-to-Dirichlet (NtD) maps. It then summarizes the formulation and discretization of model elliptic and parabolic PDE problems, including deriving the discrete NtD map. It presents results on optimal grid design and the spectral accuracy achieved. Future work is proposed on extending the NtD map approach to non-uniformly spaced boundary data.