SlideShare a Scribd company logo
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 1
CHAPTER 1- FUNCTIONS
1.1 RELATIONS
1.1.1 Representing Relations
1- By Arrow Diagram
One to one relation
x x + 2
Many to one relation
x x2
2- By Ordered Pair
(1, 3), (2, 4), (3, 5)
(1, 4), ( −2, 4), (3, 9), ( −3, 9)
3. By Graph
y (Image)
4 X
3 X
0 1 2 x (object)
One to many relation
x x
Many to many relation
360 min
3600 sec
60 sec
0.25 day
6 hours
1 min
2160 sec
1 hour
−2
2
3
−3
4
9
1
2
3
3
4
5
2
−2
3
−3
4
9
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 2
domain
codomain
A B
Set A is called domain of the relation and set B is the codomain.
Each of the elements in the domain (Set A) is an object. So 1, 2 and 3 are called object.
Each of the elements in the codomain (Set B) is an image. So 3, 4, 5 and 6 are called image.
The set that contains all the images that are matched is the range.
A B
Domain={ 1,2,3 } codomain= {3,4,5,6}
Object = 1, 2, 3 image = 3, 4, 5, 6
Range= {3, 4, 5}
Object image
1.2 FUNCTIONS
1. Function is a special relation where every object in a domain has only one image. A function is also
known as a mapping.
2. From the types of relation we have learned, only one to one relation and many to one relation are
function.
Function notation
Small letter: f, g, h or something else…
xxf 2: →
Read as function f map x onto 2x
Example:
f : x 2x
f(x) = 2x
x = 1,
f(1) = 2(1)
= 2
1
2
3
3
4
5
6
object
image
Concept:
xxf 2: →
xxf 2)( =
Look at the difference between
these two.
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 3
Example 1:
1. Given function 23: −→ xxf . Find
(a) the image of –1
f(x)= 3x – 2
f(-1) = 3(– 1) – 2
= – 3 – 2
= – 5
(b) object which has the image 4
f(x) = 3x – 2
Given that the image is 4,
So f(x) = 4
Compare and ,
Hence,
3x – 2 = 4
3x = 6
x = 2
2. Given that f(x) = px + 3 and f(4)= 5. Find the value of p.
f(x) = px + 3
If x=4,
f(4)= 4p + 3
f(4)= 5
Compare and ,
Hence,
534 =+p
24 =p
2
1
=p
If the given is object, so we are going to
find the value of image. -1 is the object
because we have to find the value of its
image.
If the given is image, so we are going to find
the value of object. 4 is the image because we
have to find the value of its object.
1
2
1 2
1
2
1 2
From the information given, we know
that 4 is the object and 5 is the image.
The both function is compared because
they are under the same function or in
other way there are having the same
object which is 4. So the value of p can be
calculated.
Remember the concept:
f : x 3x – 2 then
f(x)= 3x – 2 and when x= –1,
f(-1) = 3(– 1) – 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 4
Example 2:
The function g is defined by
mx
x
xg
+
=
2
)( If g(5) = 3g(2), find the value of m. Hence, find:
(a) image of 4.
(b) the value of x such that the function g is undefined.
Answer:
g(5) = 3g(2)
60 + 12m = 20 + 10m
2m = - 40
m = -20
(a)
204
)4(2
)4(
−
=g
=
2
1
−
(b) 020 =−x
20=x
EXERCISE 1.2
1. Given function f is defined by 45)( −= xxf . Find the value of x if 14)( −=xf .
2. Given that 32)( −= xxf . Find the image of 5.
3. Given that function f such that
4
32
)(
−
−
=
x
x
xf .
(i) The image of 5.
(ii ) the value of x such that the function f is undefined
4. Given the function h such that 132)( 2
++= kxxxh and 9)1( =h . Find the value of k.
5. Given the function 13: +→ xxf , find
(a) the image of 2,
(b) the value of x if f(x) = x.
6. Given the function 34: +→ xxw , find the value of p such that 23)( =pw .
7. Given the function 52: −→ xxn . Find the value of k at which kkn =)( .
mm ++
= 2
)2(2
5
)5(2
.3
m
g
+
=
5
)5(2
)5( and
m
g
+
=
5
)2(2
)2( . Replace
g(5) with
m+5
)5(2
and g(2) with
m+5
)2(2
.
Any number that is divided by zero will result
undefined or infinity. The value of denominator
cannot equal to zero because it would cause
the solution becomes undefined or infinity. To
find the value of x to make the function
undefined, the denominator must be equal to
zero.
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 5
1.3 COMPOSITE FUNCTIONS
A f:x 3x B g:x x2
C
gf(x) = g[f(x)] gf
= g(3x)
= (3x)2
Example 1:
Given function 1: +→ xxf and xxg 3: → . Find the composite function gf.
f(x) = x + 1
g(x) = 3x
gf(x) = g[f(x)]
= g(x +1)
= 3(x +1)
Hence, gf: x 3(x +1)
Example 2:
The following information refers to the functions f and g.
Find
(a) the value of k,
(b) fg(x).
x
1
2
3x
3
6
(3x)2
9
36
The figure shows Set A, B and C.
The combined effect of two
functions can be represented by
the function gf(x) and not fg(x).
This is because the range of f has
become the domain of function g
or f(x) becomes the domain of
function g.
This is f(x) which has become the object of
function g
The concept is:
f(x) = 3x
f(k) = 3(k)
f(3) = 3(3)
f[g(x) ]= 3g(x)
(x +1) has become the object of function g which is
replacing x. [g(x)=3x and g(x+1)=3(x+1)]. When x in the
object is replaced by (x+1) so x in the image is also
replaced by (x+1) and become 3(x+1). We can also
expand the expression and becomes 3x + 3.
Replace f(x) with its image which is (x +1)
kx
x
xg
xxf
≠
−
→
−→
,
1
4
:
32:
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 6
Solution:
In Form One we have learned that any number that divided by zero will result infinity or undefined.
For part (a), if there is given an expression which is a fraction there must be given an information that
the value of unknown in the denominator that it cannot be. For example, 2,
2
: ≠
−
→ x
x
h
xg . The
part of denominator is 2−x . If 2=x , the denominator would be 0 and the solution will be undefined
or infinity. So x cannot equal to 2. For the question above, we know that x cannot equal to 1 because if
1=x ,the denominator would be 0 and the solution will be undefined or infinity. It is given that kx ≠ .
We already know that 1≠x . So compare these two equations and it would result 1=k . So 1 is the
answer for part (a)
For part (b),
f(x)=2x – 3 and) 1,
1
4
)( ≠
−
= x
x
xg
fg(x) = f[g(x)]
= )
1
4
(
−x
f
= 2 )
1
4
(
−x
- 3
=
1
8
−x
- 3
=
1
)1(3
1
8
−
−
−
− x
x
x
=
1
)1(38
−
−−
x
x
=
1
338
−
+−
x
x
=
1
311
−
−
x
x
, 1≠x
Example 3:
The following information refers to the functions f and g.
2,
2
3
:
34:
≠
−
→
−→
x
x
xg
xxf
Replace g(x) with
1
4
−x
f(x)=2x – 3 ,
)
1
4
(
−x
f = 2 )
1
4
(
−x
- 3
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 7
Find
(a) the value of gf(1)
(b) f2
Solution:
For part (a), at first we have to find gf(x).
Given xxf 34)( −= and 2,
2
3
)( ≠
−
= x
x
xg
gf(x)= g[f(x)]
= g(4 – 3x)
=
2)34(
3
−− x
=
x32
3
−
gf(x)=
3
2
,
32
3
≠
−
x
x
gf(1)=
)1(32
3
−
=
32
3
−
=
1
3
−
= 3−
For part (b), f2
means ff.
Given xxf 34)( −=
ff(x)= f[f(x)]
= f ]34[ x−
= )34(34 x−−
= x9124 +−
= 89 −x
89)(2
−= xxf
Replace f(x) with x34 −
2
3
)(
−
=
x
xg
2)34(
3
)34(
−−
=−
x
xg
Replace f(x) with x34 −
xxf 34)( −= ,
f ]34[ x− = )34(34 x−−
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 8
1.3.1 Determining one of the function in a given composite function
(1)The following information refers to the functions f and fg.
Find function g.
Solution:
Given 32)( −= xxf and 1,
1
311
)( ≠
−
−
= x
x
x
xfg
If 32)( −= xxf ,
If 32)( −= yyf
So 3)]([2)]([ −= xgxgf
3)]([2)( −= xgxfg
Given 1,
1
311
)( ≠
−
−
= x
x
x
xfg .
Compare the two equations.
Hence,
1
311
3)]([2
−
−
=−
x
x
xg
3
1
311
)]([2 +
−
−
=
x
x
xg
1
)1(3
1
311
)]([2
−
−
+
−
−
=
x
x
x
x
xg
1
)1(3311
)]([2
−
−+−
=
x
xx
xg
1
33311
)]([2
−
−+−
=
x
xx
xg
1
8
)]([2
−
=
x
xg
)1(2
8
)]([
−
=
x
xg
1,
1
311
:
32:
≠
−
−
→
−→
x
x
x
xfg
xxf
Remember the concept…
f(x) = 2x – 3
f(k) = 2k – 3
f(3) = 2(3) – 3
f[g(x)]= 2g(x) – 3
Simplify 8 and 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 9
1
4
)(
−
=
x
xg
Hence 1,
1
4
: ≠
−
→ x
x
xg
(2) The following information refers to the functions f and fg.
Find function f.
Solution:
1
311
1
4
1
311
)]([
−
−
=





−
−
−
=
x
x
x
f
x
x
xgf
Let
y
x
=
−1
4
yxy −=4
yxy += 4
y
y
x
+
=
4
Substitute and into ,
1
4
)
4
(311
)(
−
+
+
−
=
y
y
y
y
yf
=
y
y
y
y
y
y
−
+
+
−
4
)
312
(11
1,
1
311
:
1
4
:
≠
−
−
→
−
→
x
x
x
xfg
x
xg
1,
1
311
:
1
4
:
≠
−
−
→
−
→
x
x
x
xfg
x
xg
2
3
1
2 3 1
Convert 1 to a fraction
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 10
=
y
yy
y
y
y
y
−+
−
−
4
31211
=
y
y
yy
4
31211 −−
=
y
y
y
4
128 −
=
4
128 y
y
y
×
−
= 32 −y
32)( −= yyf
32)( −= xxf
EXERCISE 1.3
1. Function f and gf are given as
2
1
)(
+
=
x
xf and 23)( += xxgf respectively. Find function g.
2. Given xxf 35)( −= and xxg 4)( = . Find function fg.
3. Given 6)( −= xxgf and 34)( −= xxg . Find
(i) function f
(ii) function fg
4. Given the function xxw 23)( −= and 1)( 2
−= xxv , find the functions
(a) wv
(b) vw
5. Given the function 2: +→ xxw and kx
x
x
xv ≠
−
−
→ ,
1
12
)( ,
(a) state the value of k
(b) find
(i) wv(x)
(ii) vw(x)
Simplify
It means
y
y 128 −
divided by
y
4
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 11
1.4 INVERSE FUNCTIONS
If yxf =)( then xyf =−
)(1
A B
Example 1 x 3x + 1
Given 13: +→ xxf
If x=1,
1)1(3)1( +=f
= 13 +
= 4
Hence,
4)1( =f x 3x +1
So,
3
1−y
y
f-1
(4) = 1
3
1−x
x
let
yx =+13
13 −= yx
3
1−
=
y
x
f-1
(y)
3
1−
=
y
f-1
(x)
3
1−
=
x
f-1
(4)
3
14 −
=
= 1
41
X Y
Inverse function
1−
f
f
1
≠
Tips…
1−
f
f
1−
f
f
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 12
1.4.1 Determining the inverse function
Example 1:
Given 2,
2
5
: ≠
−
→ x
x
xg . Determine the inverse function 1−
g .
Solution:
let
y
x
=
− 2
5
52 =− yxy
yxy 25 +=
y
y
x
25 +
=
y
y
yg
25
)(1 +
=−
0,
25
)(1
≠
+
=−
x
x
x
xg
Example 2:
The function f is defined by xxf 43: −→ . Find f-1
(-5)
Method 1
Let
yx =− 43
yx −= 34
4
3 y
x
−
=
4
3
)(1 y
yf
−
=−
4
3
)(1 x
xf
−
=−
4
)5(3
)5(1 −−
=−−
f
4
8
=
1
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 13
2)5(1
=−−
f
Method 2
We know that
And
x 3 - 4x
Hence,
543 −=− x
534 +=x
84 =x
2=x
So,
2)5(1
=−−
f
EXERCISE 1.4
1. Given xxf 35)( −= and xxg 4)( = . Find
(i) the value of )4(1
−−
f
(ii) the value of )4()( 1
−−
gf
2. Given xxg 35)( −= and xxgf 4)(1
=−
. Find function f.
3. Given 6)( −= xxgf and 34)( −= xxg . Find
(i) 1
)( −
gf
(ii ) the value of )2(fg
4. Given 1,
1
2
: ≠
−
→ x
x
x
xf ,
(a) find the function 1−
f
(b) state the value of x such that 1−
f does not exist.
5. Show that the function 1,
1
: ≠
−
→ x
x
x
xf , has an inverse function that maps onto its self.
6. If 2: −→ xxh , find the value of p given that 8)(1
=−
ph .
2
image
xxf 43)( −=
yf =−−
)5(1
image
y -5
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 14
1.5 ABSOLUTE FUNCTION
Absolute function means the value of image is always positive because of the modulus sign.
Given xxg −→ 2: and y= ( )g x .Find the value of y if 3=x
y= ( )g x
= |)3(| g
= |32| −
= |1| −
= 1
1.5.1 Graph of absolute function
Example:
Given xxf −= 2)( and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 6. Hence
state the corresponding range of y.
|)(| xfy =
|2| x−=
Minimum value of y=0
When 2-x = 0 (2, 0)
X=2
i) x = 0
y |02| −=
|2|= (0, 2)
2=
ii) ) x = 6
y |62| −=
|4| −= (6 , 4)
4=
Then, sketch the graph using the points.
This is called modulus. Any value in the
modulus would be positive. If the number
is positive, it remains positive but it is
negative it would change to positive
when remove the modulus sign.
Minimum value of y must be zero
because of absolute value cannot be
negative so the minimum it could be is
zero.
Replace g(x) with is x−2
Replace f(x) with its image which is x−2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 15
Y
5
4
3 |)(| xfy =
2
1
0 x
1 2 3 4 5 6
Hence, the corresponding range of y is 0≤ y ≤ 4
:: Some important information to be understood ::
1. Concept Of Solving Quadratic Equation by factorization
0432
=−− xx
0)4)(1( =−+ xx
01 =+x or 04 =−x
1−=x or 4=x
Example:
Given xxxf 52)( 2
−= . Find the possible values of k such that kf =−
)3(1
x 2x2
– 5x
Solution:
kf =−
)3(1
Hence,
352 2
=− xx
0352 2
=−− xx
0)3)(12( =−+ xx
Range of x
Range of y
3
To make a product equal to zero, one of
them or both must be equal to zero. We
do not know either x-1 is equal to zero or
x-4 equal to zero so that is why we use
the word ‘or’ not ‘and.’
The general form of quadratic equation is
02
=++ cbxax . To factorize and use the
concept, the equation must be equal to zero.
k
image
object
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 16
012 =+x or 03 =−x
2
1
−=x or 3=x
2
1
)3(1
−=−
f or 3)3(1
=−
f
Given that kf =−
)3(1
2
1
−=k or 3=k
2. Concept of Square root and any root which is multiple of 2
In lower secondary we have learned that if x2
= 4 then x = 2. Actually the right answer for it is not 2 but
2± ( 2± is +2 and -2). This is because if (2)2,
the answer is 4 and if (-2)2
, the answer is also 4. So the
square root of 4 is 2± . It is also the same for fourth root, sixth root and so on. But in certain situation,
the answer will be only one.
Example:
Solve the equation 644 2
=x .
Solution:
4
16
644
2
2
±=
=
=
x
x
x
3. Comparison method
Example:
Given the functions 2,
2
: ≠
−
→ x
x
h
xg and 0,
12
:1
≠
+
→−
x
x
kx
xg where h and k are constants,
find the value of h and of k.
Solution:
From the information given, we know that the method that we have to use to solve the question is
comparison method.
To make a product equal to zero, one of
them or both must be equal to zero. We
do not know either 2x+1 is equal to zero
or x-3 equal to zero so that is why we use
the word ‘or’ not ‘and.’
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 17
First, we have to find the inverse function of g.
Let
y
x
h
=
− 2
hyyx =− 2
yhyx 2+=
y
yh
x
2+
=
y
yh
yg
2
:1 +
→−
0,
2
:1
≠
+
→−
x
x
xh
xg
Given that
0,
12
:1
≠
+
→−
x
x
kx
xg
Both of them are inverse function of g.
So compare and ,
0,
)(
)2()(
:1
≠
+
→−
x
x
xh
xg
0,
)(
)()12(
:1
≠
+
→−
x
x
xk
xg
Hence ,
12=h and 2=k
1
2
1 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 18
CHAPTER REVIEW EXERCISE
1. Diagram 1 shows the relation between set J and set K.
DIAGRAM 1
State
(a) the codomain of the relation,
(b) the type of the relation.
2. Diagram 2 shows the graph of the function y = f(x).
It is given that f(x)= ax + b.
Find
(a) the value of a and of b,
(b) the value of m if m is mapped onto itself under the function f,
(c) the value of x if f -1
(x) = f 2
(x).
3. Function h is given as .,
1
4
)( kx
x
kx
xh ≠
−
−
= Find the value of k.
4. Given function 5)( += hxxg and ,
2
)(1 kx
xg
+
=−
find the values of h and k.
5. Given 2,
2
3
: ≠
−
→ x
x
xg . Find the values of x if xxg =)( .
1•
2•
•2
•4
•6
•8
•10
Set J
Set K
1 3
11
23
x
y
y= f(x)
O
DIAGRAM 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 19
6. Functions f and g are defined by hxxf −→ 3: and 0,: ≠→ x
x
k
xg , where h and k are
constants. It is given that f −1
(10) = 4 and fg(2) = 16. Find the value of h and of k.
7. Given that 23)( −= xxf and 1)( 2
−= xxfg , find
(i) the function g
(ii) the value of gf(3)
8 Given 22)( += xxf and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 4. Hence
state the corresponding range of y.
9. Given that function h is defined as 12: +→ pxxh . Given that the value of 3 maps onto itself under
the function h, find
(a) the value of p
(b) the value of )2(1
−−
hh
10. Given that the functions 12)( −= xxh and qpxxhh +=)( , where p and q are constants, calculate
(a) the value of p and q
(b) the value of m for which mh 2)1( =−
11. Function g and composite function fg are defined by 3: +→ xxg and 76: 2
++→ xxxfg .
(a) Sketch the graph of y = ( )g x for the domain −5≤ x ≤ 3.
(b) Find f(x).
12. Given quadratic function 2
( ) 2 3 2g x x x= − + . find
(a) g(3),
(b) the possible values of x if 22)( =xg
13. Functions f and g are given as 2
: xxf → and qpxxg +→: , where p and q are constants.
(a) Given that )1()1( gf = and )5()3( gf = , find the value of p and of q.
(b) By using the values of p and q obtained in (a), find the functions
(i) gg
(ii) 1−
g
14. If 63)( −= xxw and 16)( −= xxv , find
(a) )(xwv
(b) the value of x such that xxwv =− )2( .
15. Given 63)( −= xxf . Find the values of x if 3)( =xf .

More Related Content

What's hot

Chapter 2 sequencess and series
Chapter 2 sequencess and seriesChapter 2 sequencess and series
Chapter 2 sequencess and series
SMK Tengku Intan Zaharah
 
Ungkapan algebra ppt_1
Ungkapan algebra ppt_1Ungkapan algebra ppt_1
Ungkapan algebra ppt_1
nawiyah
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPM
yw t
 
Modul Latihan Topikal Reka Cipta SPM
Modul Latihan Topikal Reka Cipta SPMModul Latihan Topikal Reka Cipta SPM
Modul Latihan Topikal Reka Cipta SPM
Mohd Nazri Awang
 
Mathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 MathematicsMathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 Mathematicssue sha
 
88074018 panduan-peka-sains-1511 (3)
88074018 panduan-peka-sains-1511 (3)88074018 panduan-peka-sains-1511 (3)
88074018 panduan-peka-sains-1511 (3)ISMALIZA ISHAK
 
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
Wan Aznie Fatihah
 
Rph geografi ting.1
Rph geografi ting.1Rph geografi ting.1
Rph geografi ting.1
Jeyem Jeyem
 
Mathematics Mid Year Form 2 Paper 2 2010
Mathematics Mid Year Form 2 Paper 2 2010Mathematics Mid Year Form 2 Paper 2 2010
Mathematics Mid Year Form 2 Paper 2 2010sue sha
 
Unit1.kurikulum ptv
Unit1.kurikulum ptvUnit1.kurikulum ptv
Unit1.kurikulum ptvmietoss
 
Ungkapan kuadratik
Ungkapan kuadratikUngkapan kuadratik
Ungkapan kuadratik
azmah1971
 
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
UNIVERSITY FOR TEACHERS XD
 
KAEDAH PENGAJARAN PEMBELAJARAN SAINS
KAEDAH PENGAJARAN PEMBELAJARAN SAINSKAEDAH PENGAJARAN PEMBELAJARAN SAINS
KAEDAH PENGAJARAN PEMBELAJARAN SAINS
Shahrizzat Md Sukor
 
Modul 2 : Persamaan linear
Modul 2 : Persamaan linearModul 2 : Persamaan linear
Modul 2 : Persamaan linear
Fatimah Abdul Khalid
 
SKEMA P1 PERCUBAAN MELAKA.pdf
SKEMA P1 PERCUBAAN MELAKA.pdfSKEMA P1 PERCUBAAN MELAKA.pdf
SKEMA P1 PERCUBAAN MELAKA.pdf
Nurul Fadhilah
 
NOTA SAINS TAHUN 4 PDF.pdf
NOTA SAINS TAHUN 4 PDF.pdfNOTA SAINS TAHUN 4 PDF.pdf
NOTA SAINS TAHUN 4 PDF.pdf
lilishuhadah
 
Statisitk inferens
Statisitk inferensStatisitk inferens
Statisitk inferensmohdkhamdani
 
Modul mtsm2103 : MAJOR MATEMATIK
Modul mtsm2103 : MAJOR MATEMATIKModul mtsm2103 : MAJOR MATEMATIK
Modul mtsm2103 : MAJOR MATEMATIK
fadhielahya
 

What's hot (20)

1. functions
1. functions1. functions
1. functions
 
Chapter 2 sequencess and series
Chapter 2 sequencess and seriesChapter 2 sequencess and series
Chapter 2 sequencess and series
 
Ungkapan algebra ppt_1
Ungkapan algebra ppt_1Ungkapan algebra ppt_1
Ungkapan algebra ppt_1
 
Hukum linear
Hukum linearHukum linear
Hukum linear
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPM
 
Modul Latihan Topikal Reka Cipta SPM
Modul Latihan Topikal Reka Cipta SPMModul Latihan Topikal Reka Cipta SPM
Modul Latihan Topikal Reka Cipta SPM
 
Mathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 MathematicsMathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 Mathematics
 
88074018 panduan-peka-sains-1511 (3)
88074018 panduan-peka-sains-1511 (3)88074018 panduan-peka-sains-1511 (3)
88074018 panduan-peka-sains-1511 (3)
 
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
 
Rph geografi ting.1
Rph geografi ting.1Rph geografi ting.1
Rph geografi ting.1
 
Mathematics Mid Year Form 2 Paper 2 2010
Mathematics Mid Year Form 2 Paper 2 2010Mathematics Mid Year Form 2 Paper 2 2010
Mathematics Mid Year Form 2 Paper 2 2010
 
Unit1.kurikulum ptv
Unit1.kurikulum ptvUnit1.kurikulum ptv
Unit1.kurikulum ptv
 
Ungkapan kuadratik
Ungkapan kuadratikUngkapan kuadratik
Ungkapan kuadratik
 
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
PEMBENTANGAN KAJIAN RESPON PELAJAR TERHADAP PENGGUNAAN GRAFIK (KAD BERGAMBAR)...
 
KAEDAH PENGAJARAN PEMBELAJARAN SAINS
KAEDAH PENGAJARAN PEMBELAJARAN SAINSKAEDAH PENGAJARAN PEMBELAJARAN SAINS
KAEDAH PENGAJARAN PEMBELAJARAN SAINS
 
Modul 2 : Persamaan linear
Modul 2 : Persamaan linearModul 2 : Persamaan linear
Modul 2 : Persamaan linear
 
SKEMA P1 PERCUBAAN MELAKA.pdf
SKEMA P1 PERCUBAAN MELAKA.pdfSKEMA P1 PERCUBAAN MELAKA.pdf
SKEMA P1 PERCUBAAN MELAKA.pdf
 
NOTA SAINS TAHUN 4 PDF.pdf
NOTA SAINS TAHUN 4 PDF.pdfNOTA SAINS TAHUN 4 PDF.pdf
NOTA SAINS TAHUN 4 PDF.pdf
 
Statisitk inferens
Statisitk inferensStatisitk inferens
Statisitk inferens
 
Modul mtsm2103 : MAJOR MATEMATIK
Modul mtsm2103 : MAJOR MATEMATIKModul mtsm2103 : MAJOR MATEMATIK
Modul mtsm2103 : MAJOR MATEMATIK
 

Viewers also liked

Concept map function
Concept map functionConcept map function
Concept map functionzabidah awang
 
Вкусное печенье с корицей за 15 минут
Вкусное печенье с корицей за 15 минутВкусное печенье с корицей за 15 минут
Вкусное печенье с корицей за 15 минут
Larixko
 
서울시 미세먼지 데이터 분석
서울시 미세먼지 데이터 분석서울시 미세먼지 데이터 분석
서울시 미세먼지 데이터 분석
SKKU
 
Biografi
BiografiBiografi
Biografi
ratu15
 
Article on Online news
Article  on Online newsArticle  on Online news
Article on Online news
rapperscooby
 
Передовые производственные технологии в строительстве формируют новые стандар...
Передовые производственные технологии в строительстве формируют новые стандар...Передовые производственные технологии в строительстве формируют новые стандар...
Передовые производственные технологии в строительстве формируют новые стандар...
SAPR-Peterburg
 
Determining the effects of novel benzodiazepine compounds on the ileum of a r...
Determining the effects of novel benzodiazepine compounds on the ileum of a r...Determining the effects of novel benzodiazepine compounds on the ileum of a r...
Determining the effects of novel benzodiazepine compounds on the ileum of a r...Ethan Lowe
 
Thalassemia
ThalassemiaThalassemia
Thalassemia
Ali MHasani
 
Resume Ashish Shah
Resume Ashish ShahResume Ashish Shah
Resume Ashish ShahAshish Shah
 
Dissataion - Ranga Perera (CB002688)
Dissataion - Ranga Perera (CB002688)Dissataion - Ranga Perera (CB002688)
Dissataion - Ranga Perera (CB002688)Ranga Perera
 
builders logo
builders logobuilders logo
builders logo
Keyshia Rebel
 
E commerce
E commerce E commerce
E commerce
Diishajain14
 
RESUME of Engineer Ahmed R . Aziz _EEE 2016
RESUME of Engineer Ahmed R . Aziz _EEE 2016RESUME of Engineer Ahmed R . Aziz _EEE 2016
RESUME of Engineer Ahmed R . Aziz _EEE 2016Ahmed Aziz
 
Рецепт яблоки с корицей под штрейзелем
Рецепт яблоки с корицей под штрейзелемРецепт яблоки с корицей под штрейзелем
Рецепт яблоки с корицей под штрейзелем
Larixko
 

Viewers also liked (17)

Concept map function
Concept map functionConcept map function
Concept map function
 
Вкусное печенье с корицей за 15 минут
Вкусное печенье с корицей за 15 минутВкусное печенье с корицей за 15 минут
Вкусное печенье с корицей за 15 минут
 
GLOVER_NFFP_04_Tech_Rpt
GLOVER_NFFP_04_Tech_RptGLOVER_NFFP_04_Tech_Rpt
GLOVER_NFFP_04_Tech_Rpt
 
서울시 미세먼지 데이터 분석
서울시 미세먼지 데이터 분석서울시 미세먼지 데이터 분석
서울시 미세먼지 데이터 분석
 
Biografi
BiografiBiografi
Biografi
 
Article on Online news
Article  on Online newsArticle  on Online news
Article on Online news
 
Передовые производственные технологии в строительстве формируют новые стандар...
Передовые производственные технологии в строительстве формируют новые стандар...Передовые производственные технологии в строительстве формируют новые стандар...
Передовые производственные технологии в строительстве формируют новые стандар...
 
Determining the effects of novel benzodiazepine compounds on the ileum of a r...
Determining the effects of novel benzodiazepine compounds on the ileum of a r...Determining the effects of novel benzodiazepine compounds on the ileum of a r...
Determining the effects of novel benzodiazepine compounds on the ileum of a r...
 
Thalassemia
ThalassemiaThalassemia
Thalassemia
 
Resume Ashish Shah
Resume Ashish ShahResume Ashish Shah
Resume Ashish Shah
 
Dissataion - Ranga Perera (CB002688)
Dissataion - Ranga Perera (CB002688)Dissataion - Ranga Perera (CB002688)
Dissataion - Ranga Perera (CB002688)
 
True tech
True techTrue tech
True tech
 
1MALD-Ltg Cessation-draft-b
1MALD-Ltg Cessation-draft-b1MALD-Ltg Cessation-draft-b
1MALD-Ltg Cessation-draft-b
 
builders logo
builders logobuilders logo
builders logo
 
E commerce
E commerce E commerce
E commerce
 
RESUME of Engineer Ahmed R . Aziz _EEE 2016
RESUME of Engineer Ahmed R . Aziz _EEE 2016RESUME of Engineer Ahmed R . Aziz _EEE 2016
RESUME of Engineer Ahmed R . Aziz _EEE 2016
 
Рецепт яблоки с корицей под штрейзелем
Рецепт яблоки с корицей под штрейзелемРецепт яблоки с корицей под штрейзелем
Рецепт яблоки с корицей под штрейзелем
 

Similar to Chapter1 functions

AnsChap1.pdf
AnsChap1.pdfAnsChap1.pdf
AnsChap1.pdf
SANTHIYAAPKALITHASAN
 
Modul 1 functions
Modul 1 functionsModul 1 functions
Modul 1 functions
Norelyana Ali
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
jacey tan
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 official
Evert Sandye Taasiringan
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Cleophas Rwemera
 
Chapter 2 - Functions and Graphs
Chapter 2 - Functions and GraphsChapter 2 - Functions and Graphs
Chapter 2 - Functions and Graphs
Muhammad Bilal Khairuddin
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptx
KenCubero
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
dionesioable
 
Test 1 f4 add maths
Test 1 f4 add mathsTest 1 f4 add maths
Test 1 f4 add maths
Sazlin A Ghani
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manual
rochidavander
 
Functions
FunctionsFunctions
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVELFUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
MohanSonawane
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
Sazlin A Ghani
 
Lesson 3 Operation on Functions
Lesson 3 Operation on FunctionsLesson 3 Operation on Functions
Lesson 3 Operation on Functions
Shann Ashequielle Blasurca
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
dionesioable
 
Logarithms
LogarithmsLogarithms
Logarithmssupoteta
 
Operation on functions
Operation on functionsOperation on functions
Operation on functions
Jeralyn Obsina
 
FUNCIONES.pptx
FUNCIONES.pptxFUNCIONES.pptx
FUNCIONES.pptx
JOSEIVANANTEQUERACOL
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
AlfredoLabador
 

Similar to Chapter1 functions (20)

AnsChap1.pdf
AnsChap1.pdfAnsChap1.pdf
AnsChap1.pdf
 
Modul 1 functions
Modul 1 functionsModul 1 functions
Modul 1 functions
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 official
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891
 
Chapter 2 - Functions and Graphs
Chapter 2 - Functions and GraphsChapter 2 - Functions and Graphs
Chapter 2 - Functions and Graphs
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptx
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
Test 1 f4 add maths
Test 1 f4 add mathsTest 1 f4 add maths
Test 1 f4 add maths
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manual
 
Functions
FunctionsFunctions
Functions
 
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVELFUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Lesson 3 Operation on Functions
Lesson 3 Operation on FunctionsLesson 3 Operation on Functions
Lesson 3 Operation on Functions
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Operation on functions
Operation on functionsOperation on functions
Operation on functions
 
FUNCIONES.pptx
FUNCIONES.pptxFUNCIONES.pptx
FUNCIONES.pptx
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
 

More from Monie Joey

Bba 2001 coursework
Bba 2001 courseworkBba 2001 coursework
Bba 2001 coursework
Monie Joey
 
46584071 exercise-chapter-1-form-4 (1)
46584071 exercise-chapter-1-form-4 (1)46584071 exercise-chapter-1-form-4 (1)
46584071 exercise-chapter-1-form-4 (1)
Monie Joey
 
Coursework bba 3001
Coursework bba 3001Coursework bba 3001
Coursework bba 3001
Monie Joey
 
Docslide.us form 4-physics-exercises
Docslide.us form 4-physics-exercisesDocslide.us form 4-physics-exercises
Docslide.us form 4-physics-exercises
Monie Joey
 
Bba 2001
Bba 2001Bba 2001
Bba 2001
Monie Joey
 
Docslide.us add math-mid-year-exam-form-4-paper-1
Docslide.us add math-mid-year-exam-form-4-paper-1Docslide.us add math-mid-year-exam-form-4-paper-1
Docslide.us add math-mid-year-exam-form-4-paper-1
Monie Joey
 

More from Monie Joey (6)

Bba 2001 coursework
Bba 2001 courseworkBba 2001 coursework
Bba 2001 coursework
 
46584071 exercise-chapter-1-form-4 (1)
46584071 exercise-chapter-1-form-4 (1)46584071 exercise-chapter-1-form-4 (1)
46584071 exercise-chapter-1-form-4 (1)
 
Coursework bba 3001
Coursework bba 3001Coursework bba 3001
Coursework bba 3001
 
Docslide.us form 4-physics-exercises
Docslide.us form 4-physics-exercisesDocslide.us form 4-physics-exercises
Docslide.us form 4-physics-exercises
 
Bba 2001
Bba 2001Bba 2001
Bba 2001
 
Docslide.us add math-mid-year-exam-form-4-paper-1
Docslide.us add math-mid-year-exam-form-4-paper-1Docslide.us add math-mid-year-exam-form-4-paper-1
Docslide.us add math-mid-year-exam-form-4-paper-1
 

Recently uploaded

ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docxÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ngochaavk33a
 
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptxEthical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
TANMAYJAIN511570
 
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINTSOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
ssuser8d5e2d1
 
Program Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdfProgram Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdf
Michael Herlache, MBA
 
UNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the NatureUNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the Nature
Chandrakant Divate
 
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdfCollocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
ngochaavk33a
 
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docxCHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
ngochaavk33a
 

Recently uploaded (7)

ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docxÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
 
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptxEthical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
 
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINTSOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
 
Program Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdfProgram Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdf
 
UNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the NatureUNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the Nature
 
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdfCollocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
 
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docxCHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
 

Chapter1 functions

  • 1. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 1 CHAPTER 1- FUNCTIONS 1.1 RELATIONS 1.1.1 Representing Relations 1- By Arrow Diagram One to one relation x x + 2 Many to one relation x x2 2- By Ordered Pair (1, 3), (2, 4), (3, 5) (1, 4), ( −2, 4), (3, 9), ( −3, 9) 3. By Graph y (Image) 4 X 3 X 0 1 2 x (object) One to many relation x x Many to many relation 360 min 3600 sec 60 sec 0.25 day 6 hours 1 min 2160 sec 1 hour −2 2 3 −3 4 9 1 2 3 3 4 5 2 −2 3 −3 4 9
  • 2. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 2 domain codomain A B Set A is called domain of the relation and set B is the codomain. Each of the elements in the domain (Set A) is an object. So 1, 2 and 3 are called object. Each of the elements in the codomain (Set B) is an image. So 3, 4, 5 and 6 are called image. The set that contains all the images that are matched is the range. A B Domain={ 1,2,3 } codomain= {3,4,5,6} Object = 1, 2, 3 image = 3, 4, 5, 6 Range= {3, 4, 5} Object image 1.2 FUNCTIONS 1. Function is a special relation where every object in a domain has only one image. A function is also known as a mapping. 2. From the types of relation we have learned, only one to one relation and many to one relation are function. Function notation Small letter: f, g, h or something else… xxf 2: → Read as function f map x onto 2x Example: f : x 2x f(x) = 2x x = 1, f(1) = 2(1) = 2 1 2 3 3 4 5 6 object image Concept: xxf 2: → xxf 2)( = Look at the difference between these two.
  • 3. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 3 Example 1: 1. Given function 23: −→ xxf . Find (a) the image of –1 f(x)= 3x – 2 f(-1) = 3(– 1) – 2 = – 3 – 2 = – 5 (b) object which has the image 4 f(x) = 3x – 2 Given that the image is 4, So f(x) = 4 Compare and , Hence, 3x – 2 = 4 3x = 6 x = 2 2. Given that f(x) = px + 3 and f(4)= 5. Find the value of p. f(x) = px + 3 If x=4, f(4)= 4p + 3 f(4)= 5 Compare and , Hence, 534 =+p 24 =p 2 1 =p If the given is object, so we are going to find the value of image. -1 is the object because we have to find the value of its image. If the given is image, so we are going to find the value of object. 4 is the image because we have to find the value of its object. 1 2 1 2 1 2 1 2 From the information given, we know that 4 is the object and 5 is the image. The both function is compared because they are under the same function or in other way there are having the same object which is 4. So the value of p can be calculated. Remember the concept: f : x 3x – 2 then f(x)= 3x – 2 and when x= –1, f(-1) = 3(– 1) – 2
  • 4. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 4 Example 2: The function g is defined by mx x xg + = 2 )( If g(5) = 3g(2), find the value of m. Hence, find: (a) image of 4. (b) the value of x such that the function g is undefined. Answer: g(5) = 3g(2) 60 + 12m = 20 + 10m 2m = - 40 m = -20 (a) 204 )4(2 )4( − =g = 2 1 − (b) 020 =−x 20=x EXERCISE 1.2 1. Given function f is defined by 45)( −= xxf . Find the value of x if 14)( −=xf . 2. Given that 32)( −= xxf . Find the image of 5. 3. Given that function f such that 4 32 )( − − = x x xf . (i) The image of 5. (ii ) the value of x such that the function f is undefined 4. Given the function h such that 132)( 2 ++= kxxxh and 9)1( =h . Find the value of k. 5. Given the function 13: +→ xxf , find (a) the image of 2, (b) the value of x if f(x) = x. 6. Given the function 34: +→ xxw , find the value of p such that 23)( =pw . 7. Given the function 52: −→ xxn . Find the value of k at which kkn =)( . mm ++ = 2 )2(2 5 )5(2 .3 m g + = 5 )5(2 )5( and m g + = 5 )2(2 )2( . Replace g(5) with m+5 )5(2 and g(2) with m+5 )2(2 . Any number that is divided by zero will result undefined or infinity. The value of denominator cannot equal to zero because it would cause the solution becomes undefined or infinity. To find the value of x to make the function undefined, the denominator must be equal to zero.
  • 5. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 5 1.3 COMPOSITE FUNCTIONS A f:x 3x B g:x x2 C gf(x) = g[f(x)] gf = g(3x) = (3x)2 Example 1: Given function 1: +→ xxf and xxg 3: → . Find the composite function gf. f(x) = x + 1 g(x) = 3x gf(x) = g[f(x)] = g(x +1) = 3(x +1) Hence, gf: x 3(x +1) Example 2: The following information refers to the functions f and g. Find (a) the value of k, (b) fg(x). x 1 2 3x 3 6 (3x)2 9 36 The figure shows Set A, B and C. The combined effect of two functions can be represented by the function gf(x) and not fg(x). This is because the range of f has become the domain of function g or f(x) becomes the domain of function g. This is f(x) which has become the object of function g The concept is: f(x) = 3x f(k) = 3(k) f(3) = 3(3) f[g(x) ]= 3g(x) (x +1) has become the object of function g which is replacing x. [g(x)=3x and g(x+1)=3(x+1)]. When x in the object is replaced by (x+1) so x in the image is also replaced by (x+1) and become 3(x+1). We can also expand the expression and becomes 3x + 3. Replace f(x) with its image which is (x +1) kx x xg xxf ≠ − → −→ , 1 4 : 32:
  • 6. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 6 Solution: In Form One we have learned that any number that divided by zero will result infinity or undefined. For part (a), if there is given an expression which is a fraction there must be given an information that the value of unknown in the denominator that it cannot be. For example, 2, 2 : ≠ − → x x h xg . The part of denominator is 2−x . If 2=x , the denominator would be 0 and the solution will be undefined or infinity. So x cannot equal to 2. For the question above, we know that x cannot equal to 1 because if 1=x ,the denominator would be 0 and the solution will be undefined or infinity. It is given that kx ≠ . We already know that 1≠x . So compare these two equations and it would result 1=k . So 1 is the answer for part (a) For part (b), f(x)=2x – 3 and) 1, 1 4 )( ≠ − = x x xg fg(x) = f[g(x)] = ) 1 4 ( −x f = 2 ) 1 4 ( −x - 3 = 1 8 −x - 3 = 1 )1(3 1 8 − − − − x x x = 1 )1(38 − −− x x = 1 338 − +− x x = 1 311 − − x x , 1≠x Example 3: The following information refers to the functions f and g. 2, 2 3 : 34: ≠ − → −→ x x xg xxf Replace g(x) with 1 4 −x f(x)=2x – 3 , ) 1 4 ( −x f = 2 ) 1 4 ( −x - 3
  • 7. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 7 Find (a) the value of gf(1) (b) f2 Solution: For part (a), at first we have to find gf(x). Given xxf 34)( −= and 2, 2 3 )( ≠ − = x x xg gf(x)= g[f(x)] = g(4 – 3x) = 2)34( 3 −− x = x32 3 − gf(x)= 3 2 , 32 3 ≠ − x x gf(1)= )1(32 3 − = 32 3 − = 1 3 − = 3− For part (b), f2 means ff. Given xxf 34)( −= ff(x)= f[f(x)] = f ]34[ x− = )34(34 x−− = x9124 +− = 89 −x 89)(2 −= xxf Replace f(x) with x34 − 2 3 )( − = x xg 2)34( 3 )34( −− =− x xg Replace f(x) with x34 − xxf 34)( −= , f ]34[ x− = )34(34 x−−
  • 8. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 8 1.3.1 Determining one of the function in a given composite function (1)The following information refers to the functions f and fg. Find function g. Solution: Given 32)( −= xxf and 1, 1 311 )( ≠ − − = x x x xfg If 32)( −= xxf , If 32)( −= yyf So 3)]([2)]([ −= xgxgf 3)]([2)( −= xgxfg Given 1, 1 311 )( ≠ − − = x x x xfg . Compare the two equations. Hence, 1 311 3)]([2 − − =− x x xg 3 1 311 )]([2 + − − = x x xg 1 )1(3 1 311 )]([2 − − + − − = x x x x xg 1 )1(3311 )]([2 − −+− = x xx xg 1 33311 )]([2 − −+− = x xx xg 1 8 )]([2 − = x xg )1(2 8 )]([ − = x xg 1, 1 311 : 32: ≠ − − → −→ x x x xfg xxf Remember the concept… f(x) = 2x – 3 f(k) = 2k – 3 f(3) = 2(3) – 3 f[g(x)]= 2g(x) – 3 Simplify 8 and 2
  • 9. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 9 1 4 )( − = x xg Hence 1, 1 4 : ≠ − → x x xg (2) The following information refers to the functions f and fg. Find function f. Solution: 1 311 1 4 1 311 )]([ − − =      − − − = x x x f x x xgf Let y x = −1 4 yxy −=4 yxy += 4 y y x + = 4 Substitute and into , 1 4 ) 4 (311 )( − + + − = y y y y yf = y y y y y y − + + − 4 ) 312 (11 1, 1 311 : 1 4 : ≠ − − → − → x x x xfg x xg 1, 1 311 : 1 4 : ≠ − − → − → x x x xfg x xg 2 3 1 2 3 1 Convert 1 to a fraction
  • 10. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 10 = y yy y y y y −+ − − 4 31211 = y y yy 4 31211 −− = y y y 4 128 − = 4 128 y y y × − = 32 −y 32)( −= yyf 32)( −= xxf EXERCISE 1.3 1. Function f and gf are given as 2 1 )( + = x xf and 23)( += xxgf respectively. Find function g. 2. Given xxf 35)( −= and xxg 4)( = . Find function fg. 3. Given 6)( −= xxgf and 34)( −= xxg . Find (i) function f (ii) function fg 4. Given the function xxw 23)( −= and 1)( 2 −= xxv , find the functions (a) wv (b) vw 5. Given the function 2: +→ xxw and kx x x xv ≠ − − → , 1 12 )( , (a) state the value of k (b) find (i) wv(x) (ii) vw(x) Simplify It means y y 128 − divided by y 4
  • 11. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 11 1.4 INVERSE FUNCTIONS If yxf =)( then xyf =− )(1 A B Example 1 x 3x + 1 Given 13: +→ xxf If x=1, 1)1(3)1( +=f = 13 + = 4 Hence, 4)1( =f x 3x +1 So, 3 1−y y f-1 (4) = 1 3 1−x x let yx =+13 13 −= yx 3 1− = y x f-1 (y) 3 1− = y f-1 (x) 3 1− = x f-1 (4) 3 14 − = = 1 41 X Y Inverse function 1− f f 1 ≠ Tips… 1− f f 1− f f
  • 12. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 12 1.4.1 Determining the inverse function Example 1: Given 2, 2 5 : ≠ − → x x xg . Determine the inverse function 1− g . Solution: let y x = − 2 5 52 =− yxy yxy 25 += y y x 25 + = y y yg 25 )(1 + =− 0, 25 )(1 ≠ + =− x x x xg Example 2: The function f is defined by xxf 43: −→ . Find f-1 (-5) Method 1 Let yx =− 43 yx −= 34 4 3 y x − = 4 3 )(1 y yf − =− 4 3 )(1 x xf − =− 4 )5(3 )5(1 −− =−− f 4 8 = 1
  • 13. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 13 2)5(1 =−− f Method 2 We know that And x 3 - 4x Hence, 543 −=− x 534 +=x 84 =x 2=x So, 2)5(1 =−− f EXERCISE 1.4 1. Given xxf 35)( −= and xxg 4)( = . Find (i) the value of )4(1 −− f (ii) the value of )4()( 1 −− gf 2. Given xxg 35)( −= and xxgf 4)(1 =− . Find function f. 3. Given 6)( −= xxgf and 34)( −= xxg . Find (i) 1 )( − gf (ii ) the value of )2(fg 4. Given 1, 1 2 : ≠ − → x x x xf , (a) find the function 1− f (b) state the value of x such that 1− f does not exist. 5. Show that the function 1, 1 : ≠ − → x x x xf , has an inverse function that maps onto its self. 6. If 2: −→ xxh , find the value of p given that 8)(1 =− ph . 2 image xxf 43)( −= yf =−− )5(1 image y -5
  • 14. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 14 1.5 ABSOLUTE FUNCTION Absolute function means the value of image is always positive because of the modulus sign. Given xxg −→ 2: and y= ( )g x .Find the value of y if 3=x y= ( )g x = |)3(| g = |32| − = |1| − = 1 1.5.1 Graph of absolute function Example: Given xxf −= 2)( and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 6. Hence state the corresponding range of y. |)(| xfy = |2| x−= Minimum value of y=0 When 2-x = 0 (2, 0) X=2 i) x = 0 y |02| −= |2|= (0, 2) 2= ii) ) x = 6 y |62| −= |4| −= (6 , 4) 4= Then, sketch the graph using the points. This is called modulus. Any value in the modulus would be positive. If the number is positive, it remains positive but it is negative it would change to positive when remove the modulus sign. Minimum value of y must be zero because of absolute value cannot be negative so the minimum it could be is zero. Replace g(x) with is x−2 Replace f(x) with its image which is x−2
  • 15. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 15 Y 5 4 3 |)(| xfy = 2 1 0 x 1 2 3 4 5 6 Hence, the corresponding range of y is 0≤ y ≤ 4 :: Some important information to be understood :: 1. Concept Of Solving Quadratic Equation by factorization 0432 =−− xx 0)4)(1( =−+ xx 01 =+x or 04 =−x 1−=x or 4=x Example: Given xxxf 52)( 2 −= . Find the possible values of k such that kf =− )3(1 x 2x2 – 5x Solution: kf =− )3(1 Hence, 352 2 =− xx 0352 2 =−− xx 0)3)(12( =−+ xx Range of x Range of y 3 To make a product equal to zero, one of them or both must be equal to zero. We do not know either x-1 is equal to zero or x-4 equal to zero so that is why we use the word ‘or’ not ‘and.’ The general form of quadratic equation is 02 =++ cbxax . To factorize and use the concept, the equation must be equal to zero. k image object
  • 16. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 16 012 =+x or 03 =−x 2 1 −=x or 3=x 2 1 )3(1 −=− f or 3)3(1 =− f Given that kf =− )3(1 2 1 −=k or 3=k 2. Concept of Square root and any root which is multiple of 2 In lower secondary we have learned that if x2 = 4 then x = 2. Actually the right answer for it is not 2 but 2± ( 2± is +2 and -2). This is because if (2)2, the answer is 4 and if (-2)2 , the answer is also 4. So the square root of 4 is 2± . It is also the same for fourth root, sixth root and so on. But in certain situation, the answer will be only one. Example: Solve the equation 644 2 =x . Solution: 4 16 644 2 2 ±= = = x x x 3. Comparison method Example: Given the functions 2, 2 : ≠ − → x x h xg and 0, 12 :1 ≠ + →− x x kx xg where h and k are constants, find the value of h and of k. Solution: From the information given, we know that the method that we have to use to solve the question is comparison method. To make a product equal to zero, one of them or both must be equal to zero. We do not know either 2x+1 is equal to zero or x-3 equal to zero so that is why we use the word ‘or’ not ‘and.’
  • 17. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 17 First, we have to find the inverse function of g. Let y x h = − 2 hyyx =− 2 yhyx 2+= y yh x 2+ = y yh yg 2 :1 + →− 0, 2 :1 ≠ + →− x x xh xg Given that 0, 12 :1 ≠ + →− x x kx xg Both of them are inverse function of g. So compare and , 0, )( )2()( :1 ≠ + →− x x xh xg 0, )( )()12( :1 ≠ + →− x x xk xg Hence , 12=h and 2=k 1 2 1 2
  • 18. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 18 CHAPTER REVIEW EXERCISE 1. Diagram 1 shows the relation between set J and set K. DIAGRAM 1 State (a) the codomain of the relation, (b) the type of the relation. 2. Diagram 2 shows the graph of the function y = f(x). It is given that f(x)= ax + b. Find (a) the value of a and of b, (b) the value of m if m is mapped onto itself under the function f, (c) the value of x if f -1 (x) = f 2 (x). 3. Function h is given as ., 1 4 )( kx x kx xh ≠ − − = Find the value of k. 4. Given function 5)( += hxxg and , 2 )(1 kx xg + =− find the values of h and k. 5. Given 2, 2 3 : ≠ − → x x xg . Find the values of x if xxg =)( . 1• 2• •2 •4 •6 •8 •10 Set J Set K 1 3 11 23 x y y= f(x) O DIAGRAM 2
  • 19. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 19 6. Functions f and g are defined by hxxf −→ 3: and 0,: ≠→ x x k xg , where h and k are constants. It is given that f −1 (10) = 4 and fg(2) = 16. Find the value of h and of k. 7. Given that 23)( −= xxf and 1)( 2 −= xxfg , find (i) the function g (ii) the value of gf(3) 8 Given 22)( += xxf and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 4. Hence state the corresponding range of y. 9. Given that function h is defined as 12: +→ pxxh . Given that the value of 3 maps onto itself under the function h, find (a) the value of p (b) the value of )2(1 −− hh 10. Given that the functions 12)( −= xxh and qpxxhh +=)( , where p and q are constants, calculate (a) the value of p and q (b) the value of m for which mh 2)1( =− 11. Function g and composite function fg are defined by 3: +→ xxg and 76: 2 ++→ xxxfg . (a) Sketch the graph of y = ( )g x for the domain −5≤ x ≤ 3. (b) Find f(x). 12. Given quadratic function 2 ( ) 2 3 2g x x x= − + . find (a) g(3), (b) the possible values of x if 22)( =xg 13. Functions f and g are given as 2 : xxf → and qpxxg +→: , where p and q are constants. (a) Given that )1()1( gf = and )5()3( gf = , find the value of p and of q. (b) By using the values of p and q obtained in (a), find the functions (i) gg (ii) 1− g 14. If 63)( −= xxw and 16)( −= xxv , find (a) )(xwv (b) the value of x such that xxwv =− )2( . 15. Given 63)( −= xxf . Find the values of x if 3)( =xf .