FULLY WORKED SOLUTIONS
2
CHAPTER
Focus STPM 2
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
1
SEQUENCES
AND SERIES
	 1	 u13 = 3,	 S13 = 234
		a + 12d = 3	 13
2
 (a + u13
) = 234
	a = 3 – 12d	... 1 	 13
2
 (a + 3) = 234	 ... 2
		From 2 , a = 33
		When a = 33, 33 = 3 – 12d ⇒ d = – 5
2
		S25 =
25
2 3(2)(33) + (24)1– 5
224
	 =
25
2
 (66 – 60) = 75
	 2	(a)	a = 1, r =
5
4
			 Sn =
a(rn
– 1)
r – 1
=
15
42
n
– 1
15
4
– 12
= 4315
42
n
– 14
		(b)	 Sn
> 20
			 4315
42
n
– 14 > 20
15
42
n
– 1 > 5
15
42
n
> 6
n lg 5
4
> lg 6
n > 8.03
			 The least number of terms is 9.
	 3	 312
– 22
4 + 332
– 42
4 + … + 3(2n – 1)2
– (2n)2
4
		= –3 – 7 – 11…
		a = –3, d = – 4
		Sn =
n
2
3–6 + (n – 1)(– 4)4
=
n
2
(–6 – 4n + 4) =
n
2
(– 4n – 2)
= –n(2n + 1) [Shown]
		(a)	12
– 22
+ 32
– 42
+ … + (2n – 1)2
– (2n)2
			 + (2n + 1)2
			 = –n(2n + 1) + (2n + 1)2
			 = (2n + 1)(–n + 2n + 1)
			 = (2n + 1)(n + 1)
		(b)	212
– 222
+ 232
– 242
+ … + 392
– 402
			 = (12
– 22
+ 32
– 42
+ … + 392
– 402
)
– (12
– 22
+ 32
– 42
+ … + 192
– 202
)
= S20
– S10
= –20(2(20) + 1) – [–10(2(10) + 1)]
= –820 – (–210) = –610
	 4	 d = 2
		un = a + (n – 1)(2) = a + 2n – 2
		When n = 20, u20 = a + 2(20) – 2 = a + 38
S20 = 1120
20
2
(a + u20
) = 1120
10(a + a + 38) = 1120
2a = 74
a = 37
u20 = a + 38 = 37 + 38 = 75
	 5	(a)	 a = 3, d = 4, Sn = 820
Sn =
n
2
[2a + (n – 1)d ]
820 =
n
2
 (6 + 4n – 4)
1640 = n(2 + 4n)
n(1 + 2n) = 820
n + 2n2
– 820 = 0
(2n + 41)(n – 20) = 0
			 n = 20 since n = – 41
2
is not a solution.
			 T20 = 3 + 19(4) = 79
Chapter 2.indd 1 6/24/2015 5:36:59 PM
2 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
		 (b)	 Since they form an A.P.,
			 (p2
+ q2
)2
– (p2
– 2pq – q2
)2
			 = (p2
+ 2pq – q2
)2
– (p2
+ q2
)2
			 (p2
+ q2
– p2
– 2pq – q2
)(p2
+ q2
– p2
			 + 2pq + q2
)
			 = (p2
+ 2pq + q2
+ p2
+ q2
)(p2
+ 2pq
– q2
– p2
– q2
)
			(2p2
– 2pq)(2q2
+ 2pq) = (2p2
+ 2pq)
(2pq – 2q2
)
			 4pq(p – q)(q + p) = 4pq(p + q)(p – q)
LHS = RHS [Shown]
	 6	(a)	Sn = pn + qn2
, S8 = 20, S13 = 39
(i)	 S8 = 8p + 64q
8p = 20 – 64q
p =
5
2
– 8q	 … 1
S13 = 39
13p + 169q = 39	 … 2
Substitute 1 into 2 ,
1315
2
– 8q2 + 169q = 39
65
2
– 104q + 169q = 39
65q =
13
2
q =
1
10
p =
5
2
– 811
102 =
17
10
(ii)	 un = Sn
– Sn – 1
= pn + qn2
– [p(n – 1) + q(n – 1)2
]
= p(n – n + 1) + q[n2
– (n – 1)2
]
= p + q[(n + n – 1)(n – n + 1)]
= p + q(2n – 1)(1)
=
17
10
+
1
10
 (2n – 1)
=
17
10
+
n
5
– 1
10
=
8 + n
5
(iii)	To show that it is an A.P.,
un =
1
5
(8 + n)
un – 1 =
1
5
[8 + (n – 1)]
=
1
5
(7 + n)
un
– un – 1 =
1
5
⇒ Series is an A.P. with d =
1
5
= 0.2.
	 7	If J, K, M is a G.P., then
K
J
=
M
K
K 2
= MJ	… 1
(ar k – 1
)2
= (ar m – 1
) (ar j – 1
)
r2k – 2
= rm – 1 + j – 1
2k – 2 = m + j – 2
k + k = m + j
k – m = j – k	… 2
and
2k = m + j	… 3
(k – m)lg J + (m – j)lg K + ( j – k)lg M
= lg J k – m
+ lg Km – j
+ lg M j – k
= lg J j – k
+ lg Km – j
+ lg M j – k
[from 2 ]
= ( j – k)(lg J + lg M) + lg K m – j
= ( j – k)lg JM + lg K m – j
= ( j – k)lg K2
+ (m – j)lg K
= 2( j – k)lg K + (m – j)lg K
= (2j – 2k + m – j)lg K
= ( j + m – 2k)lg K
= (2k – 2k)lg K [from 3 ]
= 0 [Proven]
	 8	 (a) A.P., a = 200, d = 400
			
T a n d n
n
n = + −( ) = + −
= +
1 2000 1 400
400 1600
( )( )
= +400( 4)n
		(b)	S
n
a l
n
n
n
n
n = + = + +[ ]
= +
2 2
2000 400 1600
2
400 3600
( )
( )
= +200 ( 9)n n
		(c)		 Sn
 200 000
			 200n(n + 9)  200 000
			 n2
+ 9n – 1000  0
			 n  –36.44135, n  27.44135
			 ∴ n = 28
Chapter 2.indd 2 6/24/2015 5:37:02 PM
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
3
	 9	 S5 = 44,
a(1 – r5
)
1 – r
= 44	 … 1
S10
– S5 = – 11
8
a(1 – r10
)
1 – r
– a(1 – r5
)
1 – r
= – 11
8
a(1 + r5
)(1 – r5
)
1 – r
– a(1 – r5
)
1 – r
= – 11
8
	… 2
a(1 – r5
)
1 – r
 (1 + r5
– 1) = – 11
8
Substitute 1 into 2 ,
44(r5
) = – 11
8
r5
= – 1
32
r = – 1
2
[Shown]
a31 – 1– 1
22
5
4
1 – 1– 1
22
= 44
a11 +
1
322 = 66
a = 64
Sn =
a
1 – r
=
64
1 – 1– 1
22
= 422
3
	10	(a)	 r =
3 – 1
3 + 1
×
3 – 1
3 – 1
 =
3 – 2 3 + 1
3 – 1
= 2 – 3
u3 = u2
r
= ( 3 – 1)(2 – 3)
= 2 3 – 3 – 2 + 3
= 3 3 – 5
u4 = u3
r
= (3 3 – 5)(2 – 3)
= 6 3 – 3(3) – 10 + 5 3
= 11 3 – 19
		(b)	 r = 2 – 3  [ 1]
			 S∞ =
a
1 – r
=
3 + 1
1 – (2 – 3 )
=
3 + 1
3 – 1
×
3 + 1
3 + 1
=
3 + 2 3 + 1
2
= 2 + 3
	11	(a)	
S6
S3
=
7
8
, u2 = – 4
			 8S6 = 7S3
	
… 1
ar = – 4
a = – 4
r
	… 2
83a(1 – r6
)
1 – r 4 = 73a(1 – r3
)
1 – r 4
8(1 – r6
) = 7(1 – r3
)
8 – 8r6
= 7 – 7r3
8r6
– 7r3
– 1 = 0
(r3
– 1)(8r3
+ 1) = 0
r3
= 1 or – 1
8
r = – 1
2
since r = 1 is
	 not a solution.
a = – 4
1– 1
22
= 8
		(b)	r =
8
5
×
1
2
=
4
5
, a = 2
Sn
 9.9
a(1 – rn
)
1 – r
 9.9
		
231 – 14
52
n
4
11
52
 9.9
1 – 14
52
n
 0.99
14
52
n
 0.01
n lg 4
5
 lg (0.01)
n  20.64
		 The least number of terms is 21.
	12	 u3 = S2
ar2
=
a(1 – r2
)
1 – r
ar2
(1 – r) = a(1 + r)(1 – r)
ar2
= a(1 + r)
r2
– r – 1 = 0
r =
–(–1) ± (–1)2
– 4(1)(–1)
2
=
1 ± 5
2
a = 2
When r =
1 + 5
2
[|r|  1], S∞
doesn’t exist
When r =
1 – 5
2
[|r|  1],
Chapter 2.indd 3 6/24/2015 5:37:04 PM
4 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
S∞ =
a
1 – r
=
2
1 –
1 – 5
2
=
2
12 – 1 + 5
2 2
=
4
1 + 5
×
1 – 5
1 – 5
=
4 – 4 5
1 – 5
= 5 – 1
	13	 a = 3, r = 0.4
		(a)	 un  0.02
ar n – 1
 0.02
3(0.4)n – 1
 0.02
(0.4)n – 1

1
150
			 (n – 1)lg 0.4  lg
1
150
n – 1  5.47
n  6.47
	 The least number of terms is 7.
		(b)	 S∞
– Sn
 0.01
a
1 – r
–
a(1 – rn
)
1 – r
 0.01
			
a
1 – r
 (1 – 1 + r n
)  0.01
3
0.6
 (r n
)  0.01
0.4n
 2 × 10–3
n lg 0.4  lg (2 × 10–3
)
n  6.78
	 The least number of terms is 7.
	14	 Sn = a + ar + ar 2
+ … + ar n – 2
+ ar n – 1
 … 1
		rSn = ar + ar 2
+ … + ar n – 2
+
ar n – 1
+ ar n
… 2
		1 – 2 ,
Sn
– rSn = a – ar n
		Sn
(1 – r) = a(1 – r n
)
Sn =
a(1 – r n
)
1 – r
[Shown]
For S∞
to exist, |r|  1,
lim Sn
= S∞
=
a(1 – r ∞)
1 – r
=
a
1 – rn → ∞
S∞
– Sn
S∞
=
a
1 – r
–
a(1 – rn
)
1 – r
a
1 – r
=
a
1 – r
[1 – (1 – rn
)]
a
1 – r
= rn
[Shown]
		(a)	 u4 = 18,	 u7 =
16
3
			 ar3
= 18 … 1 	 ar6
=
16
3
… 2
			
2
1
, r3
= 116
3 2 ×
1
18
r3
= 18
272
r = 12
32
			 a12
32
3
= 18
			 a =
243
4
	S∞
=
1243
4 2
1 – 2
3
=
729
4
		(b)	
S∞
– Sn
S∞
 0.001
rn
 0.001
12
32
n
 0.001
n lg
2
3
 lg 0.001
n  17.04
	 The least value of n is 18.
	15	
2r – 1
r(r – 1)
–
2r + 1
r(r + 1)
		=
(r + 1)(2r – 1) – (2r + 1)(r – 1)
r(r – 1)(r + 1)
		=
2r2
– r + 2r – 1 – 2r2
+ 2r – r + 1
r(r – 1)(r + 1)
		=
2r
r(r – 1)(r + 1)
=
2
(r – 1)(r + 1)
[Verified]
		Σr = 2
n 2
(r – 1)(r + 1)
		= Σr = 2
n
3 2r – 1
r(r – 1)
–
2r + 1
r(r + 1)4
Chapter 2.indd 4 6/24/2015 5:37:06 PM
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
5
		= Σr = 2
n
[  f (r) – f (r + 1)] 	 3f (r) =
2r – 1
r(r – 1)4
		= f (2) – f (n + 1)
=
3
2
– 2n + 1
n(n + 1)
[Proven]
		
1
2
Σr = 2
∞ 2
(r – 1)(r + 1)
		=
1
2
lim 33
2
– 2n + 1
n(n + 1)4n → ∞
		=
1
2
lim
33
2
–
2
n
+
1
n2
1 +
1
n
4n → ∞
		=
1
2
 13
2
– 02 =
3
4
	16	
1
r(r + 1)
–
1
(r + 1)(r + 2)
=
r + 2 – r
r(r + 1)(r + 2)
=
2
r(r + 1)(r + 2)
[Shown]
		Σr = 1
n 1
r(r + 1)(r + 2)
		=
1
2
Σr = 1
n 2
r(r + 1)(r + 2)
		=
1
2
Σr = 1
n
3 1
r(r + 1)
– 1
(r + 1)(r + 2)4
	 	  3f (r) =
1
r(r + 1)4
		=
1
2
Σr = 1
n
[  f (r) – f (r + 1)]
		=
1
2
[  f (1) – f (n + 1)]
		=
1
2 3
1
2
–
1
(n + 1)(n + 2)4
		=
1
2 3
n2
+ 3n + 2 – 2
2(n + 1)(n + 2)4
		=
n2
+ 3n
4(n + 1)(n + 2)
	17	(a)	
1
(2r – 1)(2r + 1)
≡
A
2r – 1
+
B
2r – 1
1 ≡ A(2r + 1) + B(2r – 1)
		 Let r = –
1
2
,	Let r = –
1
2
,
		 l = B(–2)	1 = A(2)
		 B = –
1
2
	 A =
1
2
		
1
(2r – 1)(2r + 1)
=
1
2(2r – 1)
–
1
2(2r + 1)
=
1
21
1
2r – 1
–
1
2r + 12
	 	(b)	 Σr = n
2n 1
(2r – 1)(2r + 1)
		 = Σr = n
2n
3
1
2(2r – 1)
–
1
2(2r + 1)4
	 	 =
1
2
Σr = n
2n
[  f (r) – f (r + 1)] 3f (r) =
1
2r – 14,
		 =
1
2
[  f (n) – f (2n + 1)]
		 =
1
2 3
1
2n – 1
–
1
4n + 14
		 =
1
2 1
4n + 1 – 2n + 1
(2n – 1)(4n + 1)2
	 	 =
n + 1
(2n – 1)(4n + 1)
=
an + b
(2n – 1)(4n + 1)
		 [Shown]
		 a = 1, b = 1
	 	(c)	lim 3
n + 1
(2n – 1)(4n + 1)4n → ∞
			 = lim
3
1
n
+
1
n2
8 – 2
n
– 1
n2
4= 0n → ∞
	18	Let
1
(2r + 1)(2r + 3)
≡
A
2r + 1
+
B
2r + 3
		l ≡ A(2r + 3) + B(2r + 1)
		Let r = – 
3
2
	Let r = – 
1
2
1 = B(–2)	1 = A(2)
B = – 
1
2
	 A =
1
2
		
1
(2r + 1)(2r + 3)
=
1
2(2r + 1)
–
1
2(2r + 3)
		Σr = 1
n 1
(2r + 1)(2r + 3)
		=
1
2
Σr = 1
n
3 1
2r + 1
–
1
2r + 34
		=
1
2
Σr = 1
n
[  f (r) – f (r + 1)]  3f (r) =
1
2r + 14
		=
1
2
[  f (1) – f (n + 1)]
		=
1
2 31
3
–
1
2n + 34
		=
1
6
–
1
2(2n + 3)
Chapter 2.indd 5 6/24/2015 5:37:07 PM
6 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
		 To test for the convergence,
		lim 31
6
– 1
2(2n + 3)4 =
1
6n → ∞
		 The series converges to 1
6
.
		S` =
1
6
	19	 Σn = 25
N
1 1
2n – 1
–
1
2n + 1
2
		= Σn = 25
N
[  f (n) – f (n + 1)]  3f (n) =
1
2n – 1
4
		= f (25) – f (N + 1)
		=
1
50 – 1
–
1
2N + 1
		=
1
7
–
1
2N + 1
		Σn = 25
∞
un
= lim 11
7
– 1
2n + 1
2 =
1
7n → ∞
	20	 1
r!
– 1
(r + 1)!
=
(r + 1)! – r!
r!(r + 1)!
=
(r + 1)r! – r!
r!(r + 1)!
=
r
(r + 1)!
[Shown]
Σr = 1
n r
(r + 1)!
= Σr = 1
n
31
r!
– 1
(r + 1)!4
= Σr = 1
n
[  f (r) – f (r + 1)], 
3f (r) =
1
r!4
= f (1) – f (n + 1)
= 1 – 1
(n + 1)!
	21	
r + 1
r + 2
–
r
r + 1
		=
(r + 1)2
– r(r + 2)
(r + 1)(r + 2)
		=
r2
+ 2r + 1 – r2
– 2r
(r + 1)(r + 2)
		=
1
(r + 1)(r + 2)
	[Shown]
		Σr = 1
n 1
(r + 1)(r + 2)
= Σr = 1
n
3r + 1
r + 2
–
r
r + 14
= Σr = 1
n
[  f (r) – f (r – 1)],
3f (r) =
r + 1
r + 24
= f (n) – f (0)
=
n + 1
n + 2
– 1
2
=
2(n + 1) – (n + 2)
2(n + 2)
=
2n + 2 – n – 2
2(n + 2)
=
n
2(n + 2)
	22	f (r) – f (r – 1)
		=
1
(2r + 1)(2r + 3)
–
1
(2r – 1)(2r + 1)
		=
2r – 1 – 2r – 3
(2r – 1)(2r + 1)(2r + 3)
		=
– 4
(2r – 1)(2r + 1)(2r + 3)
[Shown]
		Σr = 1
n 1
(2r – 1)(2r + 1)(2r + 3)
		= – 1
4 Σr = 1
n – 4
(2r – 1)(2r + 1)(2r + 3)
		= – 1
4 Σr = 1
n
[  f (r) – f (r – 1)]
	 	3f (r) =
1
(2r + 1)(2r + 3)4
		= – 1
4
[  f (n) – f (0)]
		= – 1
43 1
(2n + 1)(2n + 3)
– 1
34
		=
1
12
–
1
4(2n + 1)(2n + 3)
		=
4n2
+ 6n + 2n + 3 – 3
12(2n + 1)(2n + 3)
		=
4n2
+ 8n
12(2n + 1)(2n + 3)
		=
n2
+ 2n
3(2n + 1)(2n + 3)
	23	Let
1
(4n – 1)(4n + 3)
≡
A
4n – 1
+
B
4n + 3
		l ≡ A(4n + 3) + B(4n – 1)
		Let n = – 
3
4
	Let n =
1
4
1 = B(– 4)	 1 = A(4)
B = – 
1
4
	 A =
1
4
		
1
(4n – 1)(4n + 3)
=
1
41 1
4n – 1
–
1
4n + 32
Chapter 2.indd 6 6/24/2015 5:37:09 PM
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
7
		 Let f (r) =
1
4r + 3
		1
4 Σr = 1
n
1 1
4r – 1
–
1
4r + 32
		=
1
4 Σr = 1
n
[  f (r – 1) – f (r)]
		=
1
4
[  f (0) – f (n)]
		=
1
4 31
3
– 1
4n + 34
		=
1
4 34n + 3 – 3
3(4n + 3)4 =
n
3(4n + 3)
	24	f (x) = x + x + 1
		1
f (x)
=
1
x + x + 1
×
x – x + 1
x – x + 1
=
x – x + 1
x – (x + 1)
= x + 1 – x
		Σx = 1
24 1
f (x)
= – Σx = 1
24
1 x – x + 12
= – ( 1 – 2 + 2 – 3 + … +
24 – 25)
= – (1 – 5) = 4
	25	 Using long division,
1
x2
+ 6x + 8 2 x2
+ 6x + 0
x2
+ 6x + 8
–8
		
x(x + 6)
(x + 2)(x + 4)
≡ 1 –
8
(x + 2)(x + 4)
		Let
8
(x + 2)(x + 4)
≡
A
(x + 2)
+
B
(x + 4)
,
		8 ≡ A(x + 4) + B(x + 2)
		Let x = – 4,	 Let x = –2,
8 = B(–2)	8 = A(2)
B = – 4	 A = 4
		
x(x + 6)
(x + 2)(x + 4)
= 1 –
4
x + 2
+
4
x + 4
	 	 Σx = 1
n
31 –
4
x + 2
+
4
x + 44
	 	= Σx = 1
n
 1 – 4 Σx = 1
n
3 1
x + 2
–
1
x + 44
		= n – 431
3
–
1
5
+
1
4
–
1
6
+
1
5
–
1
7
+ …
+
1
n + 1
–
1
n + 3
+
1
n + 2
–
1
n + 44
		= n – 431
3
+
1
4
–
1
n + 3
–
1
n + 44
		= n – 437
12
–
2n + 7
(n + 3)(n + 4)4
		= n – 437(n2
+ 7n + 12) – 12(2n + 7)
12(n + 3)(n + 4) 4
		= n –
7n2
+ 49n + 84 – 24n – 84
3(n + 3)(n + 4)
		= n –
7n2
+ 25n
3(n + 3)(n + 4)
		=
3n(n + 3)(n + 4) – n(7n + 25)
3(n + 3)(n + 4)
		=
n[3n2
+ 7n + 12) – 7n – 25]
3(n + 3)(n + 4)
		=
n[3n2
+ 21n + 36 – 7n – 25]
3(n + 3)(n + 4)
		=
n(3n2
+ 14n + 11)
3(n + 3)(n + 4)
		=
n(n + 1)(3n + 11)
3(n + 3)(n + 4)
[Shown]
	26	 ( ) ( )( ) ( )( )
( )( ) ( )
2 3 2 4 2 3 6 2 3
4 2 3 3
16 96 216
4 4 3 2 2
3 4
+ = + + +
+
= + +
x x x
x x
x xx x
x
x x x
2 3
4
4 4 3 2 2
216
81
2 3 2 4 2 3 6 2 3
4 2 3
+ +
+ -[ ] = + - + -
+ -
( ) ( )( ) ( )( )
( )( xx x
x x x
x
x x x
) ( )
( ) ( )
3 4
2 3
4
4 4
3
16 96 216 216
81
2 3 2 3 192 43
+ -
= - + - +
+ - + = + 22
2
2 3 2 2 3 2
192 2 432 2
1056 2
3
4 4
3
x
xLet =
+ - +
= +
=
,
( ) ( )
( )
	27	(a)      
     
x
x
x x
x
x
x
x
x
x
x x
x x
+ = + + +
+ +
= +
1
5
1
10
1
10
1
5
1 1
5
5
5 4 3
2
2
3 4 5
5 33
3 5
3
3 2
10 10
1
5
1 1
1
3
1
3
1
1
+ + +
+
− = + − + − +
−
x
x
x x
x
x
x x
x
x
x
x
 
   
     
 3
Chapter 2.indd 7 6/24/2015 5:37:11 PM
8 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
x x= + 55 33
3 5
3
3 2
10 10
1
5
1 1
1
3
1
3
1
1
+ + +
+
− = + − + − +
−
x
x
x x
x
x
x x
x
x
x
x
 
   
     
 
 
   
  
3
3
3
5 3
5 3
3
3 3
1 1
1 1
5 10
10
1
5
1
= − + −
+ − = + + +
+
x x
x x
x
x
x
x
x x x
x x 
 
  
+
× − +
−
1
3
3
1 1
5
3
3
x
x x
x x
			 Terms containing x4
			
= + −( )+ ( )
= − +
= −
x
x
x x x x
x x x
x
5 3 3
4 4 4
4
3
5 3 10
3 15 10
2
 
			 Coefficient of x4
= –2
		(b)	T
n
r
a b
r
x x
r
x x
r
r
n r r
r r
r r r
+
−
−
−
− −
=
= ( ) ( )
= ( )
=
1
2
6
1
12 2
6
2
6
2
6
2
 
 
 
 (( ) −r r
x12 3
			The term independent of x is the term
where 12 – 3r = 0
				 r = 4
	28	(a)	11 –
3
2
x2
5
(2 + 3x)6
			 = 31 + 5
C11–
3
2
x2 + 5
C21–
3
2
x2
2
+ …4
			 [26
+ 6
C1
(2)5
(3x) + 6
C2
(2)4
(3x)2
+ … ]
			 = 11 –
15
2
x +
45
2
x2
2(64 + 576x + 2160x2
)
			 = 64 + 576x + 2160x2
– 480x – 4320x2
				 + 1440x2
			 = –720x2
+ 96x + 64 [Shown]
		(b)	
	29	(a)	1 + 10(3x + 2x2
) +
10(9)
2
 (3x + 2x2
)2
			 +
10(9)(8)
3!
 (3x + 2x2
)3
			 = 1 + 30x + 20x2
+ 45(9x2
+ 12x3
)
				 + 120(27x3
)
			 = 1 + 30x + 425x2
+ 3780x3
			 Coefficient of x3
= 3780
		(b)	(1 + x)–1
(4 + x2
)
– 
1
2
			 = 31 +
–1
1!
(x) +
–1(–2)
2!
 (x)2
+
–1(–2)(–3)
3!
 (x)3
+ …4 14
– 
1
2
2 31 +
x2
4 4
–
 
1
2
				 =
1
2
 (1 – x + x2
– x3
+ …)1 +
– 1
2
1! 1x2
4 2
+
– 1
21– 3
22
2! 1x2
4 2
2
+ …
				 =
1
2
 (1 – x + x2
– x3
+ …) 11 –
x2
8
+ …2
   
   
1
3
2
1
3
2
1 5
3
2
10
3
2
10
2
5
5
2
2
3
− − = − +








= − + + + −
x x x x
x x x x
x    
 

3
2
5
3
2
1
15
2
5 10
9
4
3
10
27
8
27
4
3
4
4
2 2 2
3
+ + +
= − − + + + −
+
x x x
x x x x x
x xx x x x
x x x x x
x
  + + + +
= − − + + + −
−
5
81
16
6
1
15
2
5
45
2
30 10
135
4
13
4 4
2 2 3 4
3
…
55
2
405
16
4 4
x x+ +
=
…
1
15
2
35
5
15
4
515
16
2 3 4
- + - -x x x x
Chapter 2.indd 8 6/24/2015 5:37:13 PM
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
9
				 =
1
2
 11 –
x2
8
– x +
x3
8
+ x2
– x3
2
				 =
1
2
 11 – x +
7
8
x2
–
7
8
x3
+ …2
where |x|  1
	30	 Let f (x) ≡
A
1 – x
+
Bx + C
1 + x2
		1 + 2x + 3x2
≡ A(1 + x2
) + (Bx + C)(1 – x)
		Let	 x = 1,
		1 + 2 + 3 = A(2)
A = 3
		Let	 x = 0,
1 = 3(1) + (0 + C)(1)
C = –2
		Let	 x = –1,
		 1 – 2 + 3 = 3(2) + [–B + (–2)](2)
2 = 6 – 4 – 2B
B = 0
		 Hence, f (x) =
3
1 – x
– 2
1 + x2
		f (x) = 3(1 – x)–1
– 2(1 + x2
)–1
= 331 +
–1
1!
 (–x) +
–1(–2)
2!
 (–x)2
+
–1(–2)(–3)
3!
 (–x)3
+ …4
– 231 +
–1
1!
 (x)2
+ …4
= 3(1 + x + x2
+ x3
+ …) – 2(1 – x2
+ …)
= 3 + 3x + 3x2
+ 3x3
– 2 + 2x2
= 1 + 3x + 5x2
+ 3x3
where |x|  1
[Shown]
	31	(a)	
( 5 + 2)6
– ( 5 – 2)6
8 5
			 =
[( 5 + 2)3
+ ( 5 – 2)3
][( 5 + 2)3
– ( 5 – 2)3
]
8 5
			 =
( 5 + 2 + 5 – 2)[( 5 + 2)2
– ( 5 + 2)( 5 – 2) + ( 5 – 2)2
]
( 5 + 2 – 5 + 2)[( 5 + 2)2
+ ( 5 + 2)( 5 – 2) + ( 5 – 2)2
]
8 5
			 =
[2 5(5 + 4 5 + 4 – 1 + 5
– 4 5 + 4)] [(4)(5 + 4 5
+ 4 + 1 + 5 – 4 5 + 4)]
8 5
= (17)(19)
= 323
		 (b)	 (1 – 3x)
1
3
			 = 31 +
1
3
1!
 (–3x) +
1
31– 2
32
2!
(–3x)2
+
1
31– 2
321– 5
32
3!
(–3x)3
+ …4
	 	 	 = 1 – x – x2
– 5
3
x3
– … where |x| 
1
3
			 When x =
1
8
,
			 (1 – 3x)
1
3 = 15
82
1
3
=
3
5
2
≈ 1 – 1
8
– 11
82
2
– 5
311
82
3
– …
3
5 ≈ 1315
1536
(2)
≈ 1315
768
= 1.17
[2 decimal places]
	32	 ( ) ( )
( )( )
!
( )
(
1 1 2
2 2 1
2
1 2 2 1
1
2 2
2
- = + - +
-
- +
= + + -( ) +
+
y
y
n
n y
n n
y
ny n n y
…
…
)) ( )
( )( )
!
( )-
= + -( ) +
- - -
+
= - + +( ) +
2 2
2
1 2
2 2 1
2
1 2 2 1
n
n y
n n
y
ny n n y
…
…
		
 1
1
1 1
1 2 2 1
1 2 2 1
2
2 2
2
−
+
= −( ) +( )
= − + −( ) +( )
− + +(
−y
y
y y
ny n n y
ny n n
n
n n
…
)) +( )
= − + + − +
+ −( )
= − +
∴
y
ny n n y ny
n y n n y
ny n y
2
2
2 2 2
2 2
1 2 2 1 2
4 2 1
1 4 8
…
( )
11
1
1 4 8
1
50
1
16
2
2 2−
+
= − + +
= =
y
y
ny n y
y n
n
 …
Let ,
	 	
1
1
50
1
1
50
1 4
1
16
1
50
8
1
10
1
50
49
51
79 601
80 00
1
8
2 2
1
8
-
+
» - +
»
     
  00
1 1
Chapter 2.indd 9 6/24/2015 5:37:15 PM
10 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
	33	 (1 – x)10
= 1 – 10x + 45x2
+ …
		(1 + 2x2
)3
= 1 + 6x2
+ …
		(1 + ax)5
= 1 + 5ax + 10a2
x2
+ …
		(1 + bx2
)4
= 1 + 4bx2
+ …
		 (1 – x)10
(1 + 2x2
)3
– (1 + ax)5
(1 + bx2
)4
		= (1 – 10x + 45x2
+ …)(1 + 6x2
+ …)
– (1 + 5ax + 10a2
x2
+ …)(1 + 4bx2
+ …)
		= 1 + 6x2
– 10x + 45x2
– 1 – 4bx2
– 5ax
– 10a2
x2
+ …
		 –10 – 5a = 0	 6 + 45 – 4b – 10a2
= 0
a = –2	6 + 45 – 4b – 40 = 0
b =
11
4
	34	(a)	1x +
1
x2
5
1x –
1
x2
3
			 = 3x5
+ 5(x)4
11
x2+ 10x3
11
x2 2+ 10x2
11
x3 2
+ 5x11
x4 2+
1
x5 43x3
+ 3(x)2
1–1
x 2
+ 3x1–
1
x2
2
+ 1–
1
x2
3
4
			 = 1x5
+ 5x3
+ 10x +
10
x
+
5
x3 +
1
x5 2
1x3
– 3x +
3
x
–
1
x32
			 To obtain x4
term,
			 = … + x5
13
x2+ 5x3
(–3x) + 10x(x3
) + …
			 = 3x4
– 15x4
+ 10x4
= –2x4
			 The coefficient of x4
term is –2.
		(b)	(1 + x)
1
5 – 5 + 3x
5 + 2x
			 = 31 +
1
5
1!
(x) +
1
51– 4
52
2!
 (x)2
+
1
51– 4
521– 9
52
3!
(x)3
+ …4
– (5 + 3x)(5 + 2x)–1
= 11 +
1
5
x –
2
25
x2
+
6
125
x3
2
– (5 + 3x)(5)–1
11 +
2
5
x2
–1
= 11 +
1
5
x –
2
25
x2
+
6
125
x3
2
– (5 + 3x)11
5231 +
–1
1!12
5
x2
+
–1(–2)
2!
 12
5
x2
2
+
–1(–2)(–3)
3! 12
5
x2
3
4
= 1 +
1
5
x –
2
25
x2
+
6
125
x3
–
1
5
(5 + 3x)
11 –
2
5
x +
4
25
x2
–
8
125
x3
2
= 1 +
1
5
x –
2
25
x2
+
6
125
x3
–
1
5 15 – 2x
+
4
5
x2
–
8
25
x3
+ 3x –
6
5
x2
+
12
25
x3
2
= 1 +
1
5
 x –
2
25
 x2
+
6
125
 x3
– 1 –
1
5
 x +
2
25
 x2
–
4
125
x3
=
2
125
x3
where |x| 
2
5
[Shown]
Hence, p =
2
125
By using x = 0.02,
			 (1.02)
1
5
–
1253
50 2
1252
50 2
=
2
125
 (0.02)3
			 = 1.28 × 10–7
[Shown]
	35	(1 + ax + bx2
)7
		= [(1 + ax) + (bx2
)]7
		= 7
Cr
(1 + ax)7 – r
(bx2
)r
		x term:
		= 7
C0
(1 + ax)7
		= 7
C0
[7
C1
(ax)]
		= 7ax
		x2
term:
		= 7
C0
(1 + ax)7
+ 7
C1
(1 + ax)6
(bx2
)
		= 7
C0
[7
C2
(ax)2
] + 7
C1
[6
C0
(ax)0
(bx2
)]
		= 21a2
x2
+ 7bx2
		= (21a2
+ 7b)x2
		7a = 1	 21a2
+ 7b = 0
a =
1
7
	2111
72
2
+ 7b = 0
7b = –
3
7
b = –
3
49
		 Let (1 + ax + bx2
)7
= 1 + x
		(1 + x)
1
7
= 1 +
1
7
x –
3
49
x2
+ … where |x|  1
		 By using x = 0.014,
		7 1.014 ≈ 1 +
1
7
 (0.014) –
3
49
 (0.014)2
≈ 1.001988 [6 decimal places]
	36	 (1 + x)7
1 – 2x
		= (1 + x)7
(1 – 2x)–1
		= [1 + 7x + 21x2
+ 35x3
+ …] 31 +
–1
1!
(–2x)
+
–1(–2)
2!
(–2x)2
+
–1(–2)(–3)
3!
(–2x)3
+ …4
Chapter 2.indd 10 6/24/2015 5:37:17 PM
ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
11
		= (1 + 7x + 21x2
+ 35x3
+ …) (1 + 2x + 4x2
+ 8x3
+ …)
		= 1 + 2x + 4x2
+ 8x3
+ 7x + 14x2
+ 28x3
+ 21x2
+ 42x3
+ 35x3
+ …
		= 1 + 9x + 39x2
+ 113x3
+ … where |x| 
1
2
[Shown]
		Using x = –0.01,
		
(0.99)7
(1.02)
≈ 1 + 9(–0.01) + 39(–0.01)2
+ 113(–0.01)3
+ …
≈ 0.914 [3 decimal places]
	37	 1 + x
		= (1 + x)
1
2
		= 1 +
1
2
1!
(x) +
1
21– 1
22
2!
(x)2
+
1
21– 1
221– 3
22
3!
 (x)3
+
1
21– 1
221– 3
221– 5
22
4!
 (x)4
+ …
		= 1 +
x
2
–
x2
8
+
x3
16
–
5
128
 x4
+ … … 1
		1
4
(6 + x) – (2 + x)–1
		=
6 + x
4
– 2–1
31 +
x
24
– 1
		=
6 + x
4
–
1
231 +
–1
1!
 1x
22 +
–1(–2)
2!
 1x
22
2
+
–1(–2)(–3)
3!
 1x
22
3
+
–1(–2)(–3)(– 4)
4!
 1x
22
4
4
		=
6 + x
4
–
1
211 –
x
2
+
x2
4
–
x3
8
+
x4
16
– …2
		=
6 + x
4
–
1
2
+
x
4
–
x2
8
+
x3
16
–
x4
32
+ …
		= 1 +
x
2
–
x2
8
+
x3
16
–
x4
32
… 2
		 To obtain the error,
		1 – 2 , 11 +
x
2
–
x2
8
+
x3
16
–
5
128
x4
2
			   – 11 +
x
2
–
x2
8
+
x3
16
–
x4
32 2
			   = –
5
128
 x4
+
x4
32
			   = –
x4
128
		 The error is approximately
x4
128
.[Shown]
	38	 ( )a b a
b
a
a
b
a
a
b
a
a
b
+ = +








= +
+ = +
1
2
1
2 1
2
1
2
1
2
1
2 1
2
1 1
1 1
1
2
   
  aa
b
a
b
a
a
  
    
 

+
−






+
− −
+




=
1
2
1
2
1
2
1
2
1
2
1
1
2
2
3
2
3
1
2
!
!
…
11
2 8
16
1
1
2 8
2
2
3
3
1
2
1
2
1
2
2
2
2
+ − +
+
−( ) = −
= − − −
b
a
b
a
b
a
a b a
b
a
a
b
a
b
a
… …
 
 bb
a
a b a b a
b
a
b
a
a
b
a
b
a
3
3
1
2
1
2
1
2
3
3
1
2
3
3
16
2
2
2
16
8
+
+( ) − −( ) = +
= +
… …
 
 
		Let a = 4, b = 1
		
5 3 4
1
4
1
8 4
129
256
1
2
3
- = +
( )
æ
è
ç
ç
ö
ø
÷
÷
=
		
5 3 5 3 5 3
2
129
256
5 3 2
5 3 2
256
129
512
129
-( ) +( )= -
=
+( )=
+( )= ´
=
1 – 2
2
1
Chapter 2.indd 11 6/24/2015 5:37:19 PM
12 ACE AHEAD Mathematics (T) First Term Second Edition
© Oxford Fajar Sdn. Bhd. 2015
	39	 y =
1
1 + 3x + 1 + x
×
1 + 3x – 1 + x
1 + 3x – 1 + x
=
1 + 3x – 1 + x
1 + 3x – (1 + x)
=
1
2x
 1 1 + 3x – 1 + x[Shown]
		
1
2x3(1 + 3x)
1
2
– (1 + x)
1
2
4
		=
1
2x531 +
1
2
1!
(3x) +
1
21– 1
22
2!
(3x)2
+
1
21– 1
22 1– 3
22
3!
(3x)3
+ …4– 31 +
1
2
1!
(x)
+
1
2
 1– 1
22
2!
(x)2
+
1
21– 1
22 1– 3
22
3!
(x)3
+ …46
		=
1
2x311 +
3
2
 x –
9
8
 x2
+
27
16
 x3
+ …2 – 11 +
x
2
–
x2
8
+
x3
16
+ …24
		=
1
2x1x – x2
+
13
8
 x3
+ …2
		=
1
2
–
x
2
+
13
16
 x2
		Using x =
1
100
,
		y =
1
1 + 3x + 1 + x
=
1
103
100
+
101
100
=
10
103 + 101
≈
1
2
–
1 1
1002
2
+
13
161 1
1002
2
≈
79 213
160 000
[Shown]
	40	 (a)	 3 – 5x + 3x2
			 ≡ A(1 + x2
) + (B + Cx)(1 – 2x)
			 Let x =
1
2
,
5
4
=
5
4
 (A)
A = 1
			 Let x = 0,
3 = 1(1 + 0) + (B + 0)(1)
B = 2
			 Let x = 1,
1 = 1(2) + (2 + C )(–1)
C + 2 = 1
C = –1
		 (b)	 (1 – 2x)–1
= 31 +
–1
1!
 (–2x) +
–1(–2)
2!
 (–2x)2
+
–1(–2)(–3)
3!
 (–2x)3
4
= 1 + 2x + 4x2
+ 8x3
			 (1 + x2
)–1
= 31 +
–1
1!
(x2
) + …4
= 1 – x2
		 (c)	 (3 – 5x + 3x2
)(1 – 2x)–1
(1 + x2
)–1
			 =
1
1 – 2x
+
2 – x
1 + x2
			 = 1(1 – 2x)–1
+ (2 – x)(1 + x2
)–1
			 = 1(1 + 2x + 4x2
+ 8x3
) + (2 – x)(1 – x2
)
			 = 1 + 2x + 4x2
+ 8x3
+ 2 – 2x2
– x + x3
			 = 3 + x + 2x2
+ 9x3
			 ⇒ a = 1, b = 2, c = 9
	41	(a)	ur
r r
r r
r
= +
= +
= +( )
=
+ + −
+ +
+
   
   
 
1
3
1
3
1
3
9
1
3
1
3
1 9
10
2 1 2 1 2
2 1 2 1
2 1
332 1r +
		 (b)	 It is a G.P. with a =
10
27
and r =
1
9
S
a r
r
S
n
n
n
n
=
−( )
−
=
−








−
= −








=∞
1
1
10
7
1
1
9
1
1
9
5
12
1
1
9
 
 
55
12
Chapter 2.indd 12 6/24/2015 5:37:22 PM

Chapter 2 sequencess and series

  • 1.
    FULLY WORKED SOLUTIONS 2 CHAPTER FocusSTPM 2 ACE AHEAD Mathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 1 SEQUENCES AND SERIES 1 u13 = 3, S13 = 234 a + 12d = 3 13 2  (a + u13 ) = 234 a = 3 – 12d ... 1 13 2  (a + 3) = 234 ... 2 From 2 , a = 33 When a = 33, 33 = 3 – 12d ⇒ d = – 5 2 S25 = 25 2 3(2)(33) + (24)1– 5 224 = 25 2  (66 – 60) = 75 2 (a) a = 1, r = 5 4 Sn = a(rn – 1) r – 1 = 15 42 n – 1 15 4 – 12 = 4315 42 n – 14 (b) Sn > 20 4315 42 n – 14 > 20 15 42 n – 1 > 5 15 42 n > 6 n lg 5 4 > lg 6 n > 8.03 The least number of terms is 9. 3 312 – 22 4 + 332 – 42 4 + … + 3(2n – 1)2 – (2n)2 4 = –3 – 7 – 11… a = –3, d = – 4 Sn = n 2 3–6 + (n – 1)(– 4)4 = n 2 (–6 – 4n + 4) = n 2 (– 4n – 2) = –n(2n + 1) [Shown] (a) 12 – 22 + 32 – 42 + … + (2n – 1)2 – (2n)2 + (2n + 1)2 = –n(2n + 1) + (2n + 1)2 = (2n + 1)(–n + 2n + 1) = (2n + 1)(n + 1) (b) 212 – 222 + 232 – 242 + … + 392 – 402 = (12 – 22 + 32 – 42 + … + 392 – 402 ) – (12 – 22 + 32 – 42 + … + 192 – 202 ) = S20 – S10 = –20(2(20) + 1) – [–10(2(10) + 1)] = –820 – (–210) = –610 4 d = 2 un = a + (n – 1)(2) = a + 2n – 2 When n = 20, u20 = a + 2(20) – 2 = a + 38 S20 = 1120 20 2 (a + u20 ) = 1120 10(a + a + 38) = 1120 2a = 74 a = 37 u20 = a + 38 = 37 + 38 = 75 5 (a) a = 3, d = 4, Sn = 820 Sn = n 2 [2a + (n – 1)d ] 820 = n 2  (6 + 4n – 4) 1640 = n(2 + 4n) n(1 + 2n) = 820 n + 2n2 – 820 = 0 (2n + 41)(n – 20) = 0 n = 20 since n = – 41 2 is not a solution. T20 = 3 + 19(4) = 79 Chapter 2.indd 1 6/24/2015 5:36:59 PM
  • 2.
    2 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 (b) Since they form an A.P., (p2 + q2 )2 – (p2 – 2pq – q2 )2 = (p2 + 2pq – q2 )2 – (p2 + q2 )2 (p2 + q2 – p2 – 2pq – q2 )(p2 + q2 – p2 + 2pq + q2 ) = (p2 + 2pq + q2 + p2 + q2 )(p2 + 2pq – q2 – p2 – q2 ) (2p2 – 2pq)(2q2 + 2pq) = (2p2 + 2pq) (2pq – 2q2 ) 4pq(p – q)(q + p) = 4pq(p + q)(p – q) LHS = RHS [Shown] 6 (a) Sn = pn + qn2 , S8 = 20, S13 = 39 (i) S8 = 8p + 64q 8p = 20 – 64q p = 5 2 – 8q … 1 S13 = 39 13p + 169q = 39 … 2 Substitute 1 into 2 , 1315 2 – 8q2 + 169q = 39 65 2 – 104q + 169q = 39 65q = 13 2 q = 1 10 p = 5 2 – 811 102 = 17 10 (ii) un = Sn – Sn – 1 = pn + qn2 – [p(n – 1) + q(n – 1)2 ] = p(n – n + 1) + q[n2 – (n – 1)2 ] = p + q[(n + n – 1)(n – n + 1)] = p + q(2n – 1)(1) = 17 10 + 1 10  (2n – 1) = 17 10 + n 5 – 1 10 = 8 + n 5 (iii) To show that it is an A.P., un = 1 5 (8 + n) un – 1 = 1 5 [8 + (n – 1)] = 1 5 (7 + n) un – un – 1 = 1 5 ⇒ Series is an A.P. with d = 1 5 = 0.2. 7 If J, K, M is a G.P., then K J = M K K 2 = MJ … 1 (ar k – 1 )2 = (ar m – 1 ) (ar j – 1 ) r2k – 2 = rm – 1 + j – 1 2k – 2 = m + j – 2 k + k = m + j k – m = j – k … 2 and 2k = m + j … 3 (k – m)lg J + (m – j)lg K + ( j – k)lg M = lg J k – m + lg Km – j + lg M j – k = lg J j – k + lg Km – j + lg M j – k [from 2 ] = ( j – k)(lg J + lg M) + lg K m – j = ( j – k)lg JM + lg K m – j = ( j – k)lg K2 + (m – j)lg K = 2( j – k)lg K + (m – j)lg K = (2j – 2k + m – j)lg K = ( j + m – 2k)lg K = (2k – 2k)lg K [from 3 ] = 0 [Proven] 8 (a) A.P., a = 200, d = 400 T a n d n n n = + −( ) = + − = + 1 2000 1 400 400 1600 ( )( ) = +400( 4)n (b) S n a l n n n n n = + = + +[ ] = + 2 2 2000 400 1600 2 400 3600 ( ) ( ) = +200 ( 9)n n (c) Sn  200 000 200n(n + 9)  200 000 n2 + 9n – 1000  0 n  –36.44135, n  27.44135 ∴ n = 28 Chapter 2.indd 2 6/24/2015 5:37:02 PM
  • 3.
    ACE AHEAD Mathematics(T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 3 9 S5 = 44, a(1 – r5 ) 1 – r = 44 … 1 S10 – S5 = – 11 8 a(1 – r10 ) 1 – r – a(1 – r5 ) 1 – r = – 11 8 a(1 + r5 )(1 – r5 ) 1 – r – a(1 – r5 ) 1 – r = – 11 8 … 2 a(1 – r5 ) 1 – r  (1 + r5 – 1) = – 11 8 Substitute 1 into 2 , 44(r5 ) = – 11 8 r5 = – 1 32 r = – 1 2 [Shown] a31 – 1– 1 22 5 4 1 – 1– 1 22 = 44 a11 + 1 322 = 66 a = 64 Sn = a 1 – r = 64 1 – 1– 1 22 = 422 3 10 (a) r = 3 – 1 3 + 1 × 3 – 1 3 – 1  = 3 – 2 3 + 1 3 – 1 = 2 – 3 u3 = u2 r = ( 3 – 1)(2 – 3) = 2 3 – 3 – 2 + 3 = 3 3 – 5 u4 = u3 r = (3 3 – 5)(2 – 3) = 6 3 – 3(3) – 10 + 5 3 = 11 3 – 19 (b) r = 2 – 3  [ 1] S∞ = a 1 – r = 3 + 1 1 – (2 – 3 ) = 3 + 1 3 – 1 × 3 + 1 3 + 1 = 3 + 2 3 + 1 2 = 2 + 3 11 (a) S6 S3 = 7 8 , u2 = – 4 8S6 = 7S3 … 1 ar = – 4 a = – 4 r … 2 83a(1 – r6 ) 1 – r 4 = 73a(1 – r3 ) 1 – r 4 8(1 – r6 ) = 7(1 – r3 ) 8 – 8r6 = 7 – 7r3 8r6 – 7r3 – 1 = 0 (r3 – 1)(8r3 + 1) = 0 r3 = 1 or – 1 8 r = – 1 2 since r = 1 is not a solution. a = – 4 1– 1 22 = 8 (b) r = 8 5 × 1 2 = 4 5 , a = 2 Sn 9.9 a(1 – rn ) 1 – r 9.9 231 – 14 52 n 4 11 52 9.9 1 – 14 52 n 0.99 14 52 n 0.01 n lg 4 5 lg (0.01) n 20.64 The least number of terms is 21. 12 u3 = S2 ar2 = a(1 – r2 ) 1 – r ar2 (1 – r) = a(1 + r)(1 – r) ar2 = a(1 + r) r2 – r – 1 = 0 r = –(–1) ± (–1)2 – 4(1)(–1) 2 = 1 ± 5 2 a = 2 When r = 1 + 5 2 [|r| 1], S∞ doesn’t exist When r = 1 – 5 2 [|r| 1], Chapter 2.indd 3 6/24/2015 5:37:04 PM
  • 4.
    4 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 S∞ = a 1 – r = 2 1 – 1 – 5 2 = 2 12 – 1 + 5 2 2 = 4 1 + 5 × 1 – 5 1 – 5 = 4 – 4 5 1 – 5 = 5 – 1 13 a = 3, r = 0.4 (a) un 0.02 ar n – 1 0.02 3(0.4)n – 1 0.02 (0.4)n – 1 1 150 (n – 1)lg 0.4 lg 1 150 n – 1 5.47 n 6.47 The least number of terms is 7. (b) S∞ – Sn 0.01 a 1 – r – a(1 – rn ) 1 – r 0.01 a 1 – r  (1 – 1 + r n ) 0.01 3 0.6  (r n ) 0.01 0.4n 2 × 10–3 n lg 0.4 lg (2 × 10–3 ) n 6.78 The least number of terms is 7. 14 Sn = a + ar + ar 2 + … + ar n – 2 + ar n – 1  … 1 rSn = ar + ar 2 + … + ar n – 2 + ar n – 1 + ar n … 2 1 – 2 , Sn – rSn = a – ar n Sn (1 – r) = a(1 – r n ) Sn = a(1 – r n ) 1 – r [Shown] For S∞ to exist, |r| 1, lim Sn = S∞ = a(1 – r ∞) 1 – r = a 1 – rn → ∞ S∞ – Sn S∞ = a 1 – r – a(1 – rn ) 1 – r a 1 – r = a 1 – r [1 – (1 – rn )] a 1 – r = rn [Shown] (a) u4 = 18, u7 = 16 3 ar3 = 18 … 1 ar6 = 16 3 … 2 2 1 , r3 = 116 3 2 × 1 18 r3 = 18 272 r = 12 32 a12 32 3 = 18 a = 243 4 S∞ = 1243 4 2 1 – 2 3 = 729 4 (b) S∞ – Sn S∞ 0.001 rn 0.001 12 32 n 0.001 n lg 2 3 lg 0.001 n 17.04 The least value of n is 18. 15 2r – 1 r(r – 1) – 2r + 1 r(r + 1) = (r + 1)(2r – 1) – (2r + 1)(r – 1) r(r – 1)(r + 1) = 2r2 – r + 2r – 1 – 2r2 + 2r – r + 1 r(r – 1)(r + 1) = 2r r(r – 1)(r + 1) = 2 (r – 1)(r + 1) [Verified] Σr = 2 n 2 (r – 1)(r + 1) = Σr = 2 n 3 2r – 1 r(r – 1) – 2r + 1 r(r + 1)4 Chapter 2.indd 4 6/24/2015 5:37:06 PM
  • 5.
    ACE AHEAD Mathematics(T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 5 = Σr = 2 n [  f (r) – f (r + 1)] 3f (r) = 2r – 1 r(r – 1)4 = f (2) – f (n + 1) = 3 2 – 2n + 1 n(n + 1) [Proven] 1 2 Σr = 2 ∞ 2 (r – 1)(r + 1) = 1 2 lim 33 2 – 2n + 1 n(n + 1)4n → ∞ = 1 2 lim 33 2 – 2 n + 1 n2 1 + 1 n 4n → ∞ = 1 2  13 2 – 02 = 3 4 16 1 r(r + 1) – 1 (r + 1)(r + 2) = r + 2 – r r(r + 1)(r + 2) = 2 r(r + 1)(r + 2) [Shown] Σr = 1 n 1 r(r + 1)(r + 2) = 1 2 Σr = 1 n 2 r(r + 1)(r + 2) = 1 2 Σr = 1 n 3 1 r(r + 1) – 1 (r + 1)(r + 2)4   3f (r) = 1 r(r + 1)4 = 1 2 Σr = 1 n [  f (r) – f (r + 1)] = 1 2 [  f (1) – f (n + 1)] = 1 2 3 1 2 – 1 (n + 1)(n + 2)4 = 1 2 3 n2 + 3n + 2 – 2 2(n + 1)(n + 2)4 = n2 + 3n 4(n + 1)(n + 2) 17 (a) 1 (2r – 1)(2r + 1) ≡ A 2r – 1 + B 2r – 1 1 ≡ A(2r + 1) + B(2r – 1) Let r = – 1 2 , Let r = – 1 2 , l = B(–2) 1 = A(2) B = – 1 2 A = 1 2 1 (2r – 1)(2r + 1) = 1 2(2r – 1) – 1 2(2r + 1) = 1 21 1 2r – 1 – 1 2r + 12 (b) Σr = n 2n 1 (2r – 1)(2r + 1) = Σr = n 2n 3 1 2(2r – 1) – 1 2(2r + 1)4 = 1 2 Σr = n 2n [  f (r) – f (r + 1)] 3f (r) = 1 2r – 14, = 1 2 [  f (n) – f (2n + 1)] = 1 2 3 1 2n – 1 – 1 4n + 14 = 1 2 1 4n + 1 – 2n + 1 (2n – 1)(4n + 1)2 = n + 1 (2n – 1)(4n + 1) = an + b (2n – 1)(4n + 1) [Shown] a = 1, b = 1 (c) lim 3 n + 1 (2n – 1)(4n + 1)4n → ∞ = lim 3 1 n + 1 n2 8 – 2 n – 1 n2 4= 0n → ∞ 18 Let 1 (2r + 1)(2r + 3) ≡ A 2r + 1 + B 2r + 3 l ≡ A(2r + 3) + B(2r + 1) Let r = –  3 2 Let r = –  1 2 1 = B(–2) 1 = A(2) B = –  1 2 A = 1 2 1 (2r + 1)(2r + 3) = 1 2(2r + 1) – 1 2(2r + 3) Σr = 1 n 1 (2r + 1)(2r + 3) = 1 2 Σr = 1 n 3 1 2r + 1 – 1 2r + 34 = 1 2 Σr = 1 n [  f (r) – f (r + 1)]  3f (r) = 1 2r + 14 = 1 2 [  f (1) – f (n + 1)] = 1 2 31 3 – 1 2n + 34 = 1 6 – 1 2(2n + 3) Chapter 2.indd 5 6/24/2015 5:37:07 PM
  • 6.
    6 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 To test for the convergence, lim 31 6 – 1 2(2n + 3)4 = 1 6n → ∞ The series converges to 1 6 . S` = 1 6 19 Σn = 25 N 1 1 2n – 1 – 1 2n + 1 2 = Σn = 25 N [  f (n) – f (n + 1)]  3f (n) = 1 2n – 1 4 = f (25) – f (N + 1) = 1 50 – 1 – 1 2N + 1 = 1 7 – 1 2N + 1 Σn = 25 ∞ un = lim 11 7 – 1 2n + 1 2 = 1 7n → ∞ 20 1 r! – 1 (r + 1)! = (r + 1)! – r! r!(r + 1)! = (r + 1)r! – r! r!(r + 1)! = r (r + 1)! [Shown] Σr = 1 n r (r + 1)! = Σr = 1 n 31 r! – 1 (r + 1)!4 = Σr = 1 n [  f (r) – f (r + 1)],  3f (r) = 1 r!4 = f (1) – f (n + 1) = 1 – 1 (n + 1)! 21 r + 1 r + 2 – r r + 1 = (r + 1)2 – r(r + 2) (r + 1)(r + 2) = r2 + 2r + 1 – r2 – 2r (r + 1)(r + 2) = 1 (r + 1)(r + 2) [Shown] Σr = 1 n 1 (r + 1)(r + 2) = Σr = 1 n 3r + 1 r + 2 – r r + 14 = Σr = 1 n [  f (r) – f (r – 1)], 3f (r) = r + 1 r + 24 = f (n) – f (0) = n + 1 n + 2 – 1 2 = 2(n + 1) – (n + 2) 2(n + 2) = 2n + 2 – n – 2 2(n + 2) = n 2(n + 2) 22 f (r) – f (r – 1) = 1 (2r + 1)(2r + 3) – 1 (2r – 1)(2r + 1) = 2r – 1 – 2r – 3 (2r – 1)(2r + 1)(2r + 3) = – 4 (2r – 1)(2r + 1)(2r + 3) [Shown] Σr = 1 n 1 (2r – 1)(2r + 1)(2r + 3) = – 1 4 Σr = 1 n – 4 (2r – 1)(2r + 1)(2r + 3) = – 1 4 Σr = 1 n [  f (r) – f (r – 1)] 3f (r) = 1 (2r + 1)(2r + 3)4 = – 1 4 [  f (n) – f (0)] = – 1 43 1 (2n + 1)(2n + 3) – 1 34 = 1 12 – 1 4(2n + 1)(2n + 3) = 4n2 + 6n + 2n + 3 – 3 12(2n + 1)(2n + 3) = 4n2 + 8n 12(2n + 1)(2n + 3) = n2 + 2n 3(2n + 1)(2n + 3) 23 Let 1 (4n – 1)(4n + 3) ≡ A 4n – 1 + B 4n + 3 l ≡ A(4n + 3) + B(4n – 1) Let n = –  3 4 Let n = 1 4 1 = B(– 4) 1 = A(4) B = –  1 4 A = 1 4 1 (4n – 1)(4n + 3) = 1 41 1 4n – 1 – 1 4n + 32 Chapter 2.indd 6 6/24/2015 5:37:09 PM
  • 7.
    ACE AHEAD Mathematics(T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 7 Let f (r) = 1 4r + 3 1 4 Σr = 1 n 1 1 4r – 1 – 1 4r + 32 = 1 4 Σr = 1 n [  f (r – 1) – f (r)] = 1 4 [  f (0) – f (n)] = 1 4 31 3 – 1 4n + 34 = 1 4 34n + 3 – 3 3(4n + 3)4 = n 3(4n + 3) 24 f (x) = x + x + 1 1 f (x) = 1 x + x + 1 × x – x + 1 x – x + 1 = x – x + 1 x – (x + 1) = x + 1 – x Σx = 1 24 1 f (x) = – Σx = 1 24 1 x – x + 12 = – ( 1 – 2 + 2 – 3 + … + 24 – 25) = – (1 – 5) = 4 25 Using long division, 1 x2 + 6x + 8 2 x2 + 6x + 0 x2 + 6x + 8 –8 x(x + 6) (x + 2)(x + 4) ≡ 1 – 8 (x + 2)(x + 4) Let 8 (x + 2)(x + 4) ≡ A (x + 2) + B (x + 4) , 8 ≡ A(x + 4) + B(x + 2) Let x = – 4, Let x = –2, 8 = B(–2) 8 = A(2) B = – 4 A = 4 x(x + 6) (x + 2)(x + 4) = 1 – 4 x + 2 + 4 x + 4 Σx = 1 n 31 – 4 x + 2 + 4 x + 44 = Σx = 1 n  1 – 4 Σx = 1 n 3 1 x + 2 – 1 x + 44 = n – 431 3 – 1 5 + 1 4 – 1 6 + 1 5 – 1 7 + … + 1 n + 1 – 1 n + 3 + 1 n + 2 – 1 n + 44 = n – 431 3 + 1 4 – 1 n + 3 – 1 n + 44 = n – 437 12 – 2n + 7 (n + 3)(n + 4)4 = n – 437(n2 + 7n + 12) – 12(2n + 7) 12(n + 3)(n + 4) 4 = n – 7n2 + 49n + 84 – 24n – 84 3(n + 3)(n + 4) = n – 7n2 + 25n 3(n + 3)(n + 4) = 3n(n + 3)(n + 4) – n(7n + 25) 3(n + 3)(n + 4) = n[3n2 + 7n + 12) – 7n – 25] 3(n + 3)(n + 4) = n[3n2 + 21n + 36 – 7n – 25] 3(n + 3)(n + 4) = n(3n2 + 14n + 11) 3(n + 3)(n + 4) = n(n + 1)(3n + 11) 3(n + 3)(n + 4) [Shown] 26 ( ) ( )( ) ( )( ) ( )( ) ( ) 2 3 2 4 2 3 6 2 3 4 2 3 3 16 96 216 4 4 3 2 2 3 4 + = + + + + = + + x x x x x x xx x x x x x 2 3 4 4 4 3 2 2 216 81 2 3 2 4 2 3 6 2 3 4 2 3 + + + -[ ] = + - + - + - ( ) ( )( ) ( )( ) ( )( xx x x x x x x x x ) ( ) ( ) ( ) 3 4 2 3 4 4 4 3 16 96 216 216 81 2 3 2 3 192 43 + - = - + - + + - + = + 22 2 2 3 2 2 3 2 192 2 432 2 1056 2 3 4 4 3 x xLet = + - + = + = , ( ) ( ) ( ) 27 (a)             x x x x x x x x x x x x x x + = + + + + + = + 1 5 1 10 1 10 1 5 1 1 5 5 5 4 3 2 2 3 4 5 5 33 3 5 3 3 2 10 10 1 5 1 1 1 3 1 3 1 1 + + + + − = + − + − + − x x x x x x x x x x x x              3 Chapter 2.indd 7 6/24/2015 5:37:11 PM
  • 8.
    8 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 x x= + 55 33 3 5 3 3 2 10 10 1 5 1 1 1 3 1 3 1 1 + + + + − = + − + − + − x x x x x x x x x x x x                        3 3 3 5 3 5 3 3 3 3 1 1 1 1 5 10 10 1 5 1 = − + − + − = + + + + x x x x x x x x x x x x x       + × − + − 1 3 3 1 1 5 3 3 x x x x x Terms containing x4 = + −( )+ ( ) = − + = − x x x x x x x x x x 5 3 3 4 4 4 4 3 5 3 10 3 15 10 2   Coefficient of x4 = –2 (b) T n r a b r x x r x x r r n r r r r r r r + − − − − − = = ( ) ( ) = ( ) = 1 2 6 1 12 2 6 2 6 2 6 2        (( ) −r r x12 3 The term independent of x is the term where 12 – 3r = 0 r = 4 28 (a) 11 – 3 2 x2 5 (2 + 3x)6 = 31 + 5 C11– 3 2 x2 + 5 C21– 3 2 x2 2 + …4 [26 + 6 C1 (2)5 (3x) + 6 C2 (2)4 (3x)2 + … ] = 11 – 15 2 x + 45 2 x2 2(64 + 576x + 2160x2 ) = 64 + 576x + 2160x2 – 480x – 4320x2 + 1440x2 = –720x2 + 96x + 64 [Shown] (b) 29 (a) 1 + 10(3x + 2x2 ) + 10(9) 2  (3x + 2x2 )2 + 10(9)(8) 3!  (3x + 2x2 )3 = 1 + 30x + 20x2 + 45(9x2 + 12x3 ) + 120(27x3 ) = 1 + 30x + 425x2 + 3780x3 Coefficient of x3 = 3780 (b) (1 + x)–1 (4 + x2 ) –  1 2 = 31 + –1 1! (x) + –1(–2) 2!  (x)2 + –1(–2)(–3) 3!  (x)3 + …4 14 –  1 2 2 31 + x2 4 4 –   1 2 = 1 2  (1 – x + x2 – x3 + …)1 + – 1 2 1! 1x2 4 2 + – 1 21– 3 22 2! 1x2 4 2 2 + … = 1 2  (1 – x + x2 – x3 + …) 11 – x2 8 + …2         1 3 2 1 3 2 1 5 3 2 10 3 2 10 2 5 5 2 2 3 − − = − +         = − + + + − x x x x x x x x x        3 2 5 3 2 1 15 2 5 10 9 4 3 10 27 8 27 4 3 4 4 2 2 2 3 + + + = − − + + + − + x x x x x x x x x xx x x x x x x x x x   + + + + = − − + + + − − 5 81 16 6 1 15 2 5 45 2 30 10 135 4 13 4 4 2 2 3 4 3 … 55 2 405 16 4 4 x x+ + = … 1 15 2 35 5 15 4 515 16 2 3 4 - + - -x x x x Chapter 2.indd 8 6/24/2015 5:37:13 PM
  • 9.
    ACE AHEAD Mathematics(T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 9 = 1 2  11 – x2 8 – x + x3 8 + x2 – x3 2 = 1 2  11 – x + 7 8 x2 – 7 8 x3 + …2 where |x| 1 30 Let f (x) ≡ A 1 – x + Bx + C 1 + x2 1 + 2x + 3x2 ≡ A(1 + x2 ) + (Bx + C)(1 – x) Let x = 1, 1 + 2 + 3 = A(2) A = 3 Let x = 0, 1 = 3(1) + (0 + C)(1) C = –2 Let x = –1, 1 – 2 + 3 = 3(2) + [–B + (–2)](2) 2 = 6 – 4 – 2B B = 0 Hence, f (x) = 3 1 – x – 2 1 + x2 f (x) = 3(1 – x)–1 – 2(1 + x2 )–1 = 331 + –1 1!  (–x) + –1(–2) 2!  (–x)2 + –1(–2)(–3) 3!  (–x)3 + …4 – 231 + –1 1!  (x)2 + …4 = 3(1 + x + x2 + x3 + …) – 2(1 – x2 + …) = 3 + 3x + 3x2 + 3x3 – 2 + 2x2 = 1 + 3x + 5x2 + 3x3 where |x| 1 [Shown] 31 (a) ( 5 + 2)6 – ( 5 – 2)6 8 5 = [( 5 + 2)3 + ( 5 – 2)3 ][( 5 + 2)3 – ( 5 – 2)3 ] 8 5 = ( 5 + 2 + 5 – 2)[( 5 + 2)2 – ( 5 + 2)( 5 – 2) + ( 5 – 2)2 ] ( 5 + 2 – 5 + 2)[( 5 + 2)2 + ( 5 + 2)( 5 – 2) + ( 5 – 2)2 ] 8 5 = [2 5(5 + 4 5 + 4 – 1 + 5 – 4 5 + 4)] [(4)(5 + 4 5 + 4 + 1 + 5 – 4 5 + 4)] 8 5 = (17)(19) = 323 (b) (1 – 3x) 1 3 = 31 + 1 3 1!  (–3x) + 1 31– 2 32 2! (–3x)2 + 1 31– 2 321– 5 32 3! (–3x)3 + …4 = 1 – x – x2 – 5 3 x3 – … where |x| 1 3 When x = 1 8 , (1 – 3x) 1 3 = 15 82 1 3 = 3 5 2 ≈ 1 – 1 8 – 11 82 2 – 5 311 82 3 – … 3 5 ≈ 1315 1536 (2) ≈ 1315 768 = 1.17 [2 decimal places] 32 ( ) ( ) ( )( ) ! ( ) ( 1 1 2 2 2 1 2 1 2 2 1 1 2 2 2 - = + - + - - + = + + -( ) + + y y n n y n n y ny n n y … … )) ( ) ( )( ) ! ( )- = + -( ) + - - - + = - + +( ) + 2 2 2 1 2 2 2 1 2 1 2 2 1 n n y n n y ny n n y … …  1 1 1 1 1 2 2 1 1 2 2 1 2 2 2 2 − + = −( ) +( ) = − + −( ) +( ) − + +( −y y y y ny n n y ny n n n n n … )) +( ) = − + + − + + −( ) = − + ∴ y ny n n y ny n y n n y ny n y 2 2 2 2 2 2 2 1 2 2 1 2 4 2 1 1 4 8 … ( ) 11 1 1 4 8 1 50 1 16 2 2 2− + = − + + = = y y ny n y y n n  … Let , 1 1 50 1 1 50 1 4 1 16 1 50 8 1 10 1 50 49 51 79 601 80 00 1 8 2 2 1 8 - + » - + »         00 1 1 Chapter 2.indd 9 6/24/2015 5:37:15 PM
  • 10.
    10 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 33 (1 – x)10 = 1 – 10x + 45x2 + … (1 + 2x2 )3 = 1 + 6x2 + … (1 + ax)5 = 1 + 5ax + 10a2 x2 + … (1 + bx2 )4 = 1 + 4bx2 + … (1 – x)10 (1 + 2x2 )3 – (1 + ax)5 (1 + bx2 )4 = (1 – 10x + 45x2 + …)(1 + 6x2 + …) – (1 + 5ax + 10a2 x2 + …)(1 + 4bx2 + …) = 1 + 6x2 – 10x + 45x2 – 1 – 4bx2 – 5ax – 10a2 x2 + … –10 – 5a = 0 6 + 45 – 4b – 10a2 = 0 a = –2 6 + 45 – 4b – 40 = 0 b = 11 4 34 (a) 1x + 1 x2 5 1x – 1 x2 3 = 3x5 + 5(x)4 11 x2+ 10x3 11 x2 2+ 10x2 11 x3 2 + 5x11 x4 2+ 1 x5 43x3 + 3(x)2 1–1 x 2 + 3x1– 1 x2 2 + 1– 1 x2 3 4 = 1x5 + 5x3 + 10x + 10 x + 5 x3 + 1 x5 2 1x3 – 3x + 3 x – 1 x32 To obtain x4 term, = … + x5 13 x2+ 5x3 (–3x) + 10x(x3 ) + … = 3x4 – 15x4 + 10x4 = –2x4 The coefficient of x4 term is –2. (b) (1 + x) 1 5 – 5 + 3x 5 + 2x = 31 + 1 5 1! (x) + 1 51– 4 52 2!  (x)2 + 1 51– 4 521– 9 52 3! (x)3 + …4 – (5 + 3x)(5 + 2x)–1 = 11 + 1 5 x – 2 25 x2 + 6 125 x3 2 – (5 + 3x)(5)–1 11 + 2 5 x2 –1 = 11 + 1 5 x – 2 25 x2 + 6 125 x3 2 – (5 + 3x)11 5231 + –1 1!12 5 x2 + –1(–2) 2!  12 5 x2 2 + –1(–2)(–3) 3! 12 5 x2 3 4 = 1 + 1 5 x – 2 25 x2 + 6 125 x3 – 1 5 (5 + 3x) 11 – 2 5 x + 4 25 x2 – 8 125 x3 2 = 1 + 1 5 x – 2 25 x2 + 6 125 x3 – 1 5 15 – 2x + 4 5 x2 – 8 25 x3 + 3x – 6 5 x2 + 12 25 x3 2 = 1 + 1 5  x – 2 25  x2 + 6 125  x3 – 1 – 1 5  x + 2 25  x2 – 4 125 x3 = 2 125 x3 where |x| 2 5 [Shown] Hence, p = 2 125 By using x = 0.02, (1.02) 1 5 – 1253 50 2 1252 50 2 = 2 125  (0.02)3 = 1.28 × 10–7 [Shown] 35 (1 + ax + bx2 )7 = [(1 + ax) + (bx2 )]7 = 7 Cr (1 + ax)7 – r (bx2 )r x term: = 7 C0 (1 + ax)7 = 7 C0 [7 C1 (ax)] = 7ax x2 term: = 7 C0 (1 + ax)7 + 7 C1 (1 + ax)6 (bx2 ) = 7 C0 [7 C2 (ax)2 ] + 7 C1 [6 C0 (ax)0 (bx2 )] = 21a2 x2 + 7bx2 = (21a2 + 7b)x2 7a = 1 21a2 + 7b = 0 a = 1 7 2111 72 2 + 7b = 0 7b = – 3 7 b = – 3 49 Let (1 + ax + bx2 )7 = 1 + x (1 + x) 1 7 = 1 + 1 7 x – 3 49 x2 + … where |x| 1 By using x = 0.014, 7 1.014 ≈ 1 + 1 7  (0.014) – 3 49  (0.014)2 ≈ 1.001988 [6 decimal places] 36 (1 + x)7 1 – 2x = (1 + x)7 (1 – 2x)–1 = [1 + 7x + 21x2 + 35x3 + …] 31 + –1 1! (–2x) + –1(–2) 2! (–2x)2 + –1(–2)(–3) 3! (–2x)3 + …4 Chapter 2.indd 10 6/24/2015 5:37:17 PM
  • 11.
    ACE AHEAD Mathematics(T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 11 = (1 + 7x + 21x2 + 35x3 + …) (1 + 2x + 4x2 + 8x3 + …) = 1 + 2x + 4x2 + 8x3 + 7x + 14x2 + 28x3 + 21x2 + 42x3 + 35x3 + … = 1 + 9x + 39x2 + 113x3 + … where |x| 1 2 [Shown] Using x = –0.01, (0.99)7 (1.02) ≈ 1 + 9(–0.01) + 39(–0.01)2 + 113(–0.01)3 + … ≈ 0.914 [3 decimal places] 37 1 + x = (1 + x) 1 2 = 1 + 1 2 1! (x) + 1 21– 1 22 2! (x)2 + 1 21– 1 221– 3 22 3!  (x)3 + 1 21– 1 221– 3 221– 5 22 4!  (x)4 + … = 1 + x 2 – x2 8 + x3 16 – 5 128  x4 + … … 1 1 4 (6 + x) – (2 + x)–1 = 6 + x 4 – 2–1 31 + x 24 – 1 = 6 + x 4 – 1 231 + –1 1!  1x 22 + –1(–2) 2!  1x 22 2 + –1(–2)(–3) 3!  1x 22 3 + –1(–2)(–3)(– 4) 4!  1x 22 4 4 = 6 + x 4 – 1 211 – x 2 + x2 4 – x3 8 + x4 16 – …2 = 6 + x 4 – 1 2 + x 4 – x2 8 + x3 16 – x4 32 + … = 1 + x 2 – x2 8 + x3 16 – x4 32 … 2 To obtain the error, 1 – 2 , 11 + x 2 – x2 8 + x3 16 – 5 128 x4 2    – 11 + x 2 – x2 8 + x3 16 – x4 32 2    = – 5 128  x4 + x4 32    = – x4 128 The error is approximately x4 128 .[Shown] 38 ( )a b a b a a b a a b a a b + = +         = + + = + 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2       aa b a b a a            + −       + − − +     = 1 2 1 2 1 2 1 2 1 2 1 1 2 2 3 2 3 1 2 ! ! … 11 2 8 16 1 1 2 8 2 2 3 3 1 2 1 2 1 2 2 2 2 + − + + −( ) = − = − − − b a b a b a a b a b a a b a b a … …    bb a a b a b a b a b a a b a b a 3 3 1 2 1 2 1 2 3 3 1 2 3 3 16 2 2 2 16 8 + +( ) − −( ) = + = + … …     Let a = 4, b = 1 5 3 4 1 4 1 8 4 129 256 1 2 3 - = + ( ) æ è ç ç ö ø ÷ ÷ = 5 3 5 3 5 3 2 129 256 5 3 2 5 3 2 256 129 512 129 -( ) +( )= - = +( )= +( )= ´ = 1 – 2 2 1 Chapter 2.indd 11 6/24/2015 5:37:19 PM
  • 12.
    12 ACE AHEADMathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 39 y = 1 1 + 3x + 1 + x × 1 + 3x – 1 + x 1 + 3x – 1 + x = 1 + 3x – 1 + x 1 + 3x – (1 + x) = 1 2x  1 1 + 3x – 1 + x[Shown] 1 2x3(1 + 3x) 1 2 – (1 + x) 1 2 4 = 1 2x531 + 1 2 1! (3x) + 1 21– 1 22 2! (3x)2 + 1 21– 1 22 1– 3 22 3! (3x)3 + …4– 31 + 1 2 1! (x) + 1 2  1– 1 22 2! (x)2 + 1 21– 1 22 1– 3 22 3! (x)3 + …46 = 1 2x311 + 3 2  x – 9 8  x2 + 27 16  x3 + …2 – 11 + x 2 – x2 8 + x3 16 + …24 = 1 2x1x – x2 + 13 8  x3 + …2 = 1 2 – x 2 + 13 16  x2 Using x = 1 100 , y = 1 1 + 3x + 1 + x = 1 103 100 + 101 100 = 10 103 + 101 ≈ 1 2 – 1 1 1002 2 + 13 161 1 1002 2 ≈ 79 213 160 000 [Shown] 40 (a) 3 – 5x + 3x2 ≡ A(1 + x2 ) + (B + Cx)(1 – 2x) Let x = 1 2 , 5 4 = 5 4  (A) A = 1 Let x = 0, 3 = 1(1 + 0) + (B + 0)(1) B = 2 Let x = 1, 1 = 1(2) + (2 + C )(–1) C + 2 = 1 C = –1 (b) (1 – 2x)–1 = 31 + –1 1!  (–2x) + –1(–2) 2!  (–2x)2 + –1(–2)(–3) 3!  (–2x)3 4 = 1 + 2x + 4x2 + 8x3 (1 + x2 )–1 = 31 + –1 1! (x2 ) + …4 = 1 – x2 (c) (3 – 5x + 3x2 )(1 – 2x)–1 (1 + x2 )–1 = 1 1 – 2x + 2 – x 1 + x2 = 1(1 – 2x)–1 + (2 – x)(1 + x2 )–1 = 1(1 + 2x + 4x2 + 8x3 ) + (2 – x)(1 – x2 ) = 1 + 2x + 4x2 + 8x3 + 2 – 2x2 – x + x3 = 3 + x + 2x2 + 9x3 ⇒ a = 1, b = 2, c = 9 41 (a) ur r r r r r = + = + = +( ) = + + − + + +           1 3 1 3 1 3 9 1 3 1 3 1 9 10 2 1 2 1 2 2 1 2 1 2 1 332 1r + (b) It is a G.P. with a = 10 27 and r = 1 9 S a r r S n n n n = −( ) − = −         − = −         =∞ 1 1 10 7 1 1 9 1 1 9 5 12 1 1 9     55 12 Chapter 2.indd 12 6/24/2015 5:37:22 PM