SlideShare a Scribd company logo
1 of 27
Download to read offline
Chapter 9
Problem Solutions

9.1
(a)
 vO = Ad ( v2 − v1 )
          (                  )
  1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500
(b)
1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2
                 v2 = 3 mV
(c)
5 = 500 (1 − v1 ) ⇒ 500v1 = 495
         v1 = 0.990 V
(d)           vO = 0
(e)
       − 3 = 500 ( v2 − ( −0.5 ) )
−250 − 3 = 500v2
      v2 = −0.506 V

9.2
(a)
     ⎛          ⎞
                ⎟ vI = ( 0.49975 × 10 ) ( 3)
           1                         −3
v2 = ⎜
     ⎝ 1 + 2000 ⎠
v2 = 1.49925 × 10−3
vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 )
vO = 7.49625 V
(b)
 vO = Aod ( v2 − v1 )
3 = Aod (1.49925 × 10−3 − 0 )
Aod = 2 × 103

9.3
         R2
Av = −      = −12 ⇒ R2 = 12 R1
         R1
Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ

9.3
(a)           v2 = 3.00 V
(b)
   vO = Aod ( v2 − v1 )
2.500 = Aod ( 3.010 − 3.00 )
  Aod = 250

9.4
⎛ Ri ⎞
vid = ⎜         ⎟ vI
      ⎝ Ri + 25 ⎠
         ⎛ Ri ⎞
0.790 = ⎜          ⎟ ( 0.80 )
         ⎝ Ri + 25 ⎠
0.9875 ( Ri + 25 ) = Ri
24.6875 = 0.0125 Ri
Ri = 1975 K

9.5
       200       ⎫
Av = −     = −10 ⎪
        20
                 ⎪
and              ⎬ for each case
Ri = 20 kΩ       ⎪
                 ⎪
                 ⎭

9.6
a.
        100
Av = −       = −10
         10
Ri = R1 = 10 kΩ
b.
        100 100
 Av = −           = −5
            10
Ri = R1 = 10 kΩ
c.
          100
 Av = −         = −5
        10 + 10
Ri = 10 + 10 = 20 K

9.7
vI        0.5
I1 =      ⇒ R1 =     ⇒ R1 = 5 K
       R1        0.1
R2
   = 15 ⇒ R2 = 75 K
R1

9.8
         R2
Av = −
         R1
(a)        Av = −10
(b)        Av = −1
(c)        Av = −0.20
(d)        Av = −10
(e)        Av = −2
(f)        Av = −1

9.9
         R2
Av = −
         R1
(a)       R1 = 20 K, R2 = 40 K
(b)       R1 = 20 K, R2 = 200 K
(c)       R1 = 20 K, R2 = 1000 K
(d)       R1 = 80 K, R2 = 20 K

9.10
         R2
Av = −      = −8 ⇒ R2 = 8 R1
         R1
                     1
For vI = −1, i1 =       = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ
                     R1

9.11
         R2
Av = −      = −30 ⇒ R2 = 30 R1
         R1
Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ

9.12
a.
       R2   1.05R2          ⎛R ⎞
Av =      ⇒         = 1.105 ⎜ 2 ⎟
       R1   0.95 R1         ⎝ R1 ⎠
0.95R2         ⎛R ⎞
       = 0.905 ⎜ 2 ⎟
1.05R1         ⎝ R1 ⎠
Deviation in gain is +10.5% and − 9.5%
b.
      1.01R2         ⎛R ⎞    0.99 R2        ⎛R ⎞
 Av ⇒         = 1.02 ⎜ 2 ⎟ ⇒         = 0.98 ⎜ 2 ⎟
      0.99 R1        ⎝ R1 ⎠  1.01R1         ⎝ R1 ⎠
Deviation in gain = ±2%

9.13
(a)
vO −15
Av =       =   = −15
        vl   1
vO = −15vl ⇒ vO = −150sin ω t ( mV )
(b)
            vI
i2 = i1 =      = 10sin ω t ( μ A )
            R1
       vO
iL =      ⇒ iL = −37.5sin ω t ( μ A )
       RL
iO = iL − i2
iO = −47.5sin ω t ( μ A )

9.14
            R2
Av = −
          R1 + R5
Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75
        R2                 R2
So            = 29.25 and        = 30.75
       R1 + 2             R1 + 1
We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1)
Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω
For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V

9.15
            R2          120
vO1 = −        , vI = −     ( 0.2 ) ⇒ vO1 = −1.2 V
            R1           20
         R4         ⎛ −75 ⎞
 vO = −     , vO1 = ⎜     ⎟ ( −1.2 ) ⇒ vO = +6 V
         R3         ⎝ 15 ⎠
          0.2
i1 = i2 =     ⇒ i1 = i2 = 10 μ A
          20
          v     −1.2
i3 = i4 = O1 =        ⇒ i3 = i4 = −80 μ A
          R3      15
1st op-amp: 90 μ A into output terminal
2nd op-amp: 80 μ A out of output terminal.

9.16
(a)
       R2     22
Av = −    =−     ⇒ Av = −22
       R1     1
(b)     From Eq. (9.23)
       R2         1                         1
 Av = − ⋅                    = −22 ⋅
       R1 ⎡     1 ⎛ R2 ⎞ ⎤           ⎡     1        ⎤
          ⎢1 +    ⎜1 + ⎟ ⎥           ⎢1 + 104 ( 23) ⎥
                                     ⎣              ⎦
          ⎣ Aod ⎝     R1 ⎠ ⎦
 Av = −21.95
(c)
Want Av = −22 ( 0.98 ) = −21.56
                    −22
 So − 21.56 =
                     1
                 1+     ( 23)
                    Aod
       1           22
1+        ( 23) =
      Aod         21.56
       1
          ( 23) = 0.020408 ⇒ Aod = 1127
      Aod

9.17
(a)
       R2              1
Av = −    ⋅
       R1 ⎡        1 ⎛ R2 ⎞ ⎤
            ⎢1 +       ⎜1 + ⎟ ⎥
            ⎣ Aod ⎝          R1 ⎠ ⎦
      100             1
   =−       ⋅
       25 ⎡           1          ⎤
              ⎢1 + 5 × 103 ( 5 ) ⎥
              ⎣                  ⎦
Av = −3.9960
(b)        vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V
            4 − 3.9960
(c)                    × 100% = 0.10%
                 4
(d)
 vO = Aod ( v2 − v1 ) = − Aod v1
         vO    − ( −3.9960 )
v1 = −       =
         Aod      5 × 10+3
v1 = 0.7992 mV

9.18
vO = Aod ( v2 − v1 ) = − Aod v1
      v          −5
v1 = − O =
      Aod 5 × 10+3
v1 = −1 mV

9.19
         R2 ⎛ R3 R3 ⎞
Av = −      ⎜1 + + ⎟
         R1 ⎝ R4 R2 ⎠
a.
           R2 ⎛ 100 100 ⎞
−10 = −       ⎜1 + +    ⎟
          100 ⎝ 100 R2 ⎠
         2 R2
  10 =        + 1 ⇒ R2 = 450 kΩ
         100
                  2R
b.          100 = 2 + 1 ⇒ R2 = 4.95 MΩ
                  100

9.20
a.
R2 ⎛ R3 R3 ⎞
Av = −    ⎜1 + + ⎟
       R1 ⎝ R4 R2 ⎠
R1 = 500 kΩ
     R2 ⎛ R3 R3 ⎞
80 =    ⎜1 +    + ⎟
    500 ⎝ R4 R2 ⎠
Set R2 = R3 = 500 kΩ
        ⎛ 500 ⎞             500
80 = 1⎜ 1 +      + 1⎟ = 2 +       ⇒ R4 = 6.41 kΩ
        ⎝    R4     ⎠        R4
b.
For vI = −0.05 V
           −0.05
i1 = i2 =          ⇒ i1 = i2 = −0.1 μ A
          500 kΩ
v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05
         vX    0.05
i4 = −      =−      ⇒ i4 = −7.80 μ A
         R4    6.41
i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A

9.21
(a)
                  − R2 −500
Av = −1000 =          =
                   R1   R1
R1 = 0.5 K
(b)
      − R2 ⎛ R3 R3 ⎞
Av =       ⎜1 +    + ⎟
       R1 ⎝ R4 R2 ⎠
          −250 ⎛ 500 500 ⎞ −1250
−1000 =         ⎜1 +   + ⎟=
            R1 ⎝ 250 250 ⎠   R1
R1 = 1.25 K

9.22




        vI
 i1 =      = i2
        R
                ⎛v ⎞
v A = −i2 R = − ⎜ I ⎟ R = −vI
                ⎝R⎠
        v     v
 i3 = − A = I
        R R
vA vA         2v       2v
 i4 = i2 + i3 = −   −     =− A = I
                  R R            R       R
                        ⎛ 2vI ⎞
vB = v A − i4 R = −vI − ⎜     ⎟ ( R ) = −3vI
                        ⎝ R ⎠
         vB      ( −3vI ) 3vI
 i5 = −      =−          =
         R          R        R
                2vI 3vI 5vI
 i6 = i4 + i5 =      +      =
                 R      R      R
                          ⎛ 5vI ⎞     v0
v0 = vB − i6 R = −3vI − ⎜       ⎟ R ⇒ v = −8
                          ⎝ R ⎠        I

From Figure 9.12 ⇒ Av = −3

9.23
(a)
        R2          1
Av = −     ⋅
        R1 ⎡      1 ⎛ R2 ⎞ ⎤
             ⎢1 +   ⎜1 + ⎟ ⎥
             ⎣ Aod ⎝       R1 ⎠ ⎦
        50            1
      =− ⋅                           ⇒ Av = −4.99985
        10 ⎡       1 ⎛ 50 ⎞ ⎤
              1+          1 + ⎟⎥
             ⎢ 2 × 105 ⎜ 10
             ⎣          ⎝         ⎠⎦
(b)        vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV
                     0.5 − 0.499985
(c)        Error =                  × 100% ⇒ 0.003%
                           0.5

9.24
a.     From Equation (9.23)
      R2           1
Av = − ⋅
      R1 ⎡      1 ⎛ R2 ⎞ ⎤
          ⎢1 +     ⎜1 + ⎟ ⎥
          ⎣ Aod ⎝       R1 ⎠ ⎦
      100            1
   =−     ⋅                      = −0.9980
      100 ⎡      1 ⎛ 100 ⎞ ⎤
             1 + 3 ⎜1 +
            ⎢ 10              ⎟⎥
            ⎣       ⎝ 100 ⎠ ⎦
Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V
b.




 v0 = Aod ( v A − vB )
vB v0 − vB         ⎛ 1  1 ⎞ v
   =          ⇒ vB ⎜ + ⎟ = 0
R1     R2          ⎝ R1 R2 ⎠ R2
         v0
vB =
     ⎛ R2 ⎞
     ⎜1 + ⎟
     ⎝     R1 ⎠
Aod v0
Then v0 = Aod v A −
                       ⎛ R2 ⎞
                       ⎜1 + ⎟
                       ⎝   R1 ⎠
   ⎡           ⎤
   ⎢           ⎥
v0 ⎢1 +
        Aod ⎥
                 = Aod v A
   ⎢ ⎛ R ⎞⎥
   ⎢ ⎜1 + ⎟ ⎥
           2

   ⎢ ⎝
   ⎣      R1 ⎠ ⎥
               ⎦
   ⎡ ⎛ R2 ⎞             ⎤
   ⎢ ⎜ 1 + ⎟ + Aod ⎥
v0 ⎢ ⎝
           R1 ⎠         ⎥=A v
   ⎢ ⎛ R ⎞ ⎥                od A

   ⎢ ⎜1 + 2 ⎟ ⎥
   ⎢ ⎝
   ⎣           R1 ⎠ ⎥   ⎦
            ⎛ R2 ⎞
       Aod ⎜ 1 + ⎟ v A
v0 =        ⎝     R1 ⎠
              ⎛ R ⎞
        Aod + ⎜ 1 + 2 ⎟
              ⎝      R1 ⎠
          ⎛ R2 ⎞
          ⎜1 + ⎟ vA
v0 = ⎝
                R1 ⎠
             1 ⎛ R2 ⎞
       1+       ⎜1 + ⎟
           Aod ⎝      R1 ⎠
            ⎛ 10 ⎞ ⎛ vI ⎞
            ⎜1 + ⎟ ⎜ ⎟
So v0 = ⎝
                 10 ⎠ ⎝ 2 ⎠
                             = 0.9980vI
                1 ⎛ 10 ⎞
           1 + 3 ⎜1 + ⎟
               10 ⎝ 10 ⎠
For vI = 2 V
v0 = 1.9960 V

9.25
                   vl         v   v     R
(a)         ii =      = i2 = − O ⇒ O = − 2
                   R1         R2   vl   R1
(b)
        vl        v         1 ⎛ R2      ⎞
i2 = i1 =   = i3 + O = i3 +    ⎜ − ⋅ vl ⎟
        R1        RL        RL ⎝ R1     ⎠
           v ⎛ R ⎞
Then i3 = l ⎜ 1 + 2 ⎟
           R1 ⎝ RL ⎠

9.26
          ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞
                           ⎜ 0.1 1 + 10 ⎟ ( )
VX .max = ⎜           ⋅V = ⎜               10 ⇒ VX .max = 0.09008 V
          ⎜R R +R ⎟ ⎟                   ⎟
          ⎝ 3 1   4 ⎠      ⎝            ⎠
        R
vO = 2 ⋅ VX .max
        R1
       R2              R
10 =      ( 0.09008 ) ⇒ 2 = 111
       R1              R1
So R2 = 111 k Ω

9.27
(a)
⎛R           R           R          ⎞
vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
       ⎝ R1          R2          R3        ⎠
       ⎡⎛ 100 ⎞           ⎛ 100 ⎞            ⎛ 100 ⎞         ⎤
   = − ⎢⎜     ⎟ ( 0.5 ) + ⎜     ⎟ ( 0.75 ) + ⎜     ⎟ ( 2.5 ) ⎥
       ⎣ ⎝ 50 ⎠           ⎝ 20 ⎠             ⎝ 100 ⎠         ⎦
      = − [1 + 3.75 + 2.5]
vO = −7.25 V
(b)
       ⎡⎛ 100 ⎞       ⎛ 100 ⎞           ⎛ 100 ⎞ ⎤
−2 = − ⎢⎜     ⎟ (1) + ⎜     ⎟ ( 0.8 ) + ⎜     ⎟ vI 3 ⎥
       ⎣⎝ 50 ⎠        ⎝ 20 ⎠            ⎝ 100 ⎠ ⎦
 2 = 2 + 4 + vI 3
vI 3 = −4 V

9.28
        − RF         R          R
vo =         ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1          R2         R3
      = −4vI 1 − 8vI 2 − 2vI 3
RF            RF          RF
   =4            =8          =2
R1            R2          R3
Largest resistance = RF = 250 K ⇒ R1 = 62.5 K                    R2 = 31.25 K   R3 = 125 K

9.29
                                 RF       R
v0 = −4vI 1 − 0.5vI 2 = −           vI 1 − F vI 2
                                 R1       R2
RF            RF
   =4            = 0.5 ⇒ R1 is the smallest resistor
R1            R2
                    vI   2
i = 100 μ A =          =           ⇒ R1 = 20 kΩ
                    R1 R1
                                   ⇒ RF = 80 kΩ
                                   ⇒ R2 = 160 kΩ

9.30
vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft )
                        1                             1
  f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 =                  ⇒ 10 ms
                      10                           100
          R         R             10       10
vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2
          R1        R2             1        5
vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V )
vO = −0.707 sin ( 2π ft ) − ( ±2 V )
9.31
         RF         R          R
vO = −      ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1         R2         R3
       20          20         20
vO = −     ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3
       10          5           2
K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0
Set vI 1 = −4 mV

9.32
Only two inputs.
       ⎡R          R         ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1        R2        ⎦
        ⎡        1      ⎤
    = − ⎢3vI 1 + ⋅ vI 2 ⎥
        ⎣        4      ⎦
 RF        RF 1
     =3         =
 R1        R2 4
Smallest resistor = 10 K = R1
RF = 30 K       R2 = 120 K

9.33
       ⎡R           R        ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1         R2       ⎦
                 − RF               −R          R               RF
−5 − 5sin ω t =       ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2             = 2.5
                  R1                 R2          R1             R2
RF = largest resistor ⇒ RF = 200 K
R1 = 100 K        R2 = 80 K

9.34
a.
         RF              R               R               R
v0 = −      ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 )
         R3              R2              R1              R0
          RF ⎡ a3 a2 a1 a0 ⎤
So v0 =           + + +          ( 5)
          10 ⎢ 2 4 8 16 ⎥
              ⎣                ⎦
                     R 1
b.         v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ
                     10 2
c.
                  10 1
i.         v0 =     ⋅ ⋅ 5 ⇒ v0 = 0.3125 V
                  10 16
10 ⎡ 1 1 1 1 ⎤
ii.         v0 =         + + +     ( 5 ) ⇒ v0 = 4.6875 V
                   10 ⎢ 2 4 8 16 ⎥
                      ⎣          ⎦

9.35
(a)
       10
vO1 = −   ⋅ vI 1
        1
       20        20
vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2
       1          1
vO = 200vI 1 − 20vI 2
(b)
 vI 1 = 1 + 2sin ω t ( mV )
 vI 2 = −10 mV
 Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 )
So vO = 0.4 + 0.4sin ω t (V )

9.36
For one-input




         v0
v1 = −
         Aod
vI 1 − v1     v1   v −v
          =       + 1 0
    R1      R2 R3    RF
VI 1      ⎡1     1    1 ⎤ v0
     = v1 ⎢ +       +   ⎥−
R1        ⎣ R1 R2 R3 RF ⎦ RF
           v0    ⎡1     1    1 ⎤ v0
      =−         ⎢ +       +   ⎥−
           Aod   ⎣ R1 R2 R3 RF ⎦ RF
            ⎧ 1
            ⎪         1   1 ⎛ 1    1 ⎞⎫  ⎪
      = −v0 ⎨       +   +   ⎜ +        ⎟⎬
            ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪
            ⎩                            ⎭
           v0 ⎧ 1        1     RF    ⎫
      =−      ⎨     +1+    ⋅         ⎬
           RF ⎩ Aod     Aod R1 R2 R3 ⎭
                    ⎧             ⎫
                    ⎪             ⎪
        R           ⎪      1      ⎪
  v0 = − F ⋅ vI 1 ⋅ ⎨             ⎬ where RP = R1 R2 R3
        R1          ⎪1 + 1 ⎛ RF ⎞ ⎪
                             1+
                    ⎪ Aod ⎜ RP ⎟ ⎪
                           ⎝    ⎠⎭
                    ⎩
                                           −1       ⎛R          R          R         ⎞
Therefore, for three-inputs v0 =                  × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
                                        1 ⎛ RF ⎞ ⎝ R1           R2         R3        ⎠
                                    1+     ⎜1 + ⎟
                                       Aod ⎝ RP ⎠

9.37
⎛ R ⎞        R
Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11
          ⎝    R1 ⎠    R1
       v           v     0.5
  i1 = I ⇒ R1 = I =
       R1           i1 0.15
          R1 = 3.33 K
          R2 = 36.7 K

9.38




     ⎛ 1 ⎞                      ⎛ 1 ⎞
vB = ⎜         ⎟ vI  v0 = Aod ⎜       ⎟ vi
     ⎝ 1 + 500 ⎠                ⎝ 501 ⎠
                    ⎛ 1 ⎞
a.        2.5 = Aod ⎜     ⎟ ( 5 ) ⇒ Aod = 250.5
                    ⎝ 501 ⎠
                     ⎛ 1 ⎞
b.        v0 = 5000 ⎜      ⎟ ( 5 ) ⇒ v0 = 49.9 V
                     ⎝ 501 ⎠

9.39
      ⎛ R ⎞
 Av = ⎜ 1 + 2 ⎟
      ⎝    R1 ⎠
(a)        Av = 11
(b)        Av = 2
(c)        Av = 1.2
(d)        Av = 11
(e)        Av = 3
(f)        Av = 2

9.40
           R2
(a)           = 1 ⇒ R1 = R2 = 20 K
           R1
           R2
(b)           = 9 ⇒ R1 = 20 K, R2 = 180 K
           R1
           R2
(c)           = 49 ⇒ R1 = 20 K, R2 = 980 K
           R1
           R2
(d)           = 0 can set R2 = 20 K, R1 = ∞ (open circuit)
           R1

9.41
     ⎛ 50 ⎞ ⎡⎛ 20 ⎞                ⎛ 40 ⎞ ⎤
v0 = ⎜ 1 + ⎟ ⎢⎜           ⎟ vI 2 + ⎜         ⎟ vI 1 ⎥
     ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠           ⎝ 20 + 40 ⎠ ⎦
v0 = 1.33vI 1 + 0.667vI 2

9.42
(a)
vI 1 − v2 vI 2 − v2 v2
         +          =
    20        40      10
       ⎛ 100 ⎞
vO = ⎜ 1 +     ⎟ v2 = 3v2
       ⎝   50 ⎠
Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2
                       ⎛v ⎞
2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟
                       ⎝3⎠
            6      3
So vO = ⋅ vI 1 + ⋅ vI 2
            7      7

                 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V
               6             3
(b)       vO =             ⎜ ⎟
               7           ⎝ 7⎠
               ⎛6⎞             ⎛ 3⎞
(c)       vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV
               ⎝7⎠             ⎝7⎠

9.43
     ⎛ R4 ⎞
v2 = ⎜         ⎟ vI
     ⎝ R3 + R4 ⎠
     ⎛ R ⎞         ⎛ R ⎞ ⎛ R4 ⎞
vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜        ⎟ vI
     ⎝   R1 ⎠      ⎝    R1 ⎠⎝ R3 + R4 ⎠
       vO ⎛ R2 ⎞ ⎛ R4 ⎞
Av =     = ⎜1 + ⎟ ⎜           ⎟
       vI ⎝    R1 ⎠ ⎝ R3 + R4 ⎠

9.44
(a)
 vO ⎛      50 x ⎞
    = ⎜1 +
      ⎜ (1 − x ) 50 ⎟
                    ⎟
 vI ⎝               ⎠
 vO ⎛         x ⎞ 1− x + x
    = ⎜1 +       ⎟=
 vI ⎝ 1 − x ⎠          1− x
      v        1
 Av = O =
      vI 1 − x
(b)       1 ≤ Av ≤ ∞
(c)       If x = 1, gain goes to infinity.

9.45
Change resister values as shown.
vI
i1 =      = i2
       R
                   ⎛v ⎞
vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI
                   ⎝R⎠
     v x 3I
i3 = =
      R R
               v 3v        4v
i4 = i2 + i3 = I + I = I
               R     R       R
                   ⎛ 4vI ⎞
v0 = i4 2 R + vx = ⎜     ⎟ 2 R + 3vI
                   ⎝ R ⎠
v0
    = 11
vI

9.46
            vO
(a)             =1
             vI
(b)         From Exercise TYU9.7
              ⎛ R2 ⎞
              ⎜1 + ⎟
vO
   =          ⎝   R1 ⎠
vI ⎡       1 ⎛ R2 ⎞ ⎤
     ⎢1 +     ⎜1 + ⎟ ⎥
     ⎣ Aod ⎝      R1 ⎠ ⎦
But R2 = 0, R1 = ∞
vO     1           1        v
   =        =              ⇒ O = 0.999993
vI 1 +   1           1       vI
              1+
        Aod      1.5 × 105
                   vO              1
(b)         Want      = 0.990 =         ⇒ Aod = 99
                   vI                1
                                1+
                                    Aod

9.47
v0 = Aod ( vI − v0 )
⎛ 1      ⎞
⎜     + 1⎟ v0 = vI
⎝ Aod    ⎠
v0         1
   =
vI ⎛         1 ⎞
      ⎜1 +       ⎟
      ⎝     Aod ⎠
              v
Aod = 104 ; 0 = 0.99990
              vI
              v0
Aod = 103 ;      = 0.9990
              vI
               v0
Aod = 102 ;       = 0.990
               vI
              v0
Aod = 10;        = 0.909
              vI

9.48
       ⎛ R ⎞
v0 A = ⎜ 1 + 2 ⎟ vI
       ⎝    R1 ⎠
      ⎛ R ⎞                 ⎛ R ⎞
v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI
      ⎝     R1 ⎠            ⎝    R1 ⎠
So v01 = −v02

9.49
                   vI
(a)         iL =
                   R1
(b)
 vO1 = iL RL + vI = iL RL + iL R1
 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL
So iL ( max ) ≅ 1 mA
Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V

9.50
(a)
     ⎛ 20 ⎞             ⎛ 20 ⎞
vX = ⎜         ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2
     ⎝ 20 + 40 ⎠        ⎝ 60 ⎠
vO = 2 V
(b)       Same as (a)
(c)
     ⎛ 6 ⎞
vX = ⎜        ⎟ ( 6 ) = 0.666 V
     ⎝ 6 + 48 ⎠
     ⎛ 10 ⎞
vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V
     ⎝ 10 ⎠

9.51
a.
v1    v −v
Rin =      and 1 0 = i1 and v0 = − Aod v1
        i1      RF
          v1 − ( − Aod v1 )       v1 (1 + Aod )
So i1 =                       =
                RF                    RF
               v1   RF
Then Rin =        =
               i1 1 + Aod
b.
     ⎛ RS ⎞                               RF
i1 = ⎜          ⎟ iS and v0 = − Aod ⋅         ⋅ i1
     ⎝ RS + Rin ⎠                     1 + Aod
              ⎛ A ⎞⎛ RS ⎞
So v0 = − RF ⎜ od ⎟⎜                 ⎟ iS
              ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠
          RF     10
Rin =          =     = 0.009990
        1 + Aod 1001
          ⎛ 1000 ⎞ ⎛       RS      ⎞
v0 = − RF ⎜      ⎟⎜                ⎟ iS
          ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
     ⎛ 1000 ⎞ ⎛       RS      ⎞
Want ⎜      ⎟⎜                ⎟ ≤ 0.990
     ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
which yields RS ≥ 1.099 kΩ

9.52




vO = iC RF , 0 ≤ iC ≤ 8 mA
For vO ( max ) = 8 V, Then RF = 1 k Ω

9.53
    v         10
i = I so 1 =     ⇒ R = 10 kΩ
     R         R
In the ideal op-amp, R1 has no influence.
                     ⎛ R ⎞
Output voltage: v0 = ⎜1 + 2 ⎟ vI
                     ⎝    R⎠
v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input
voltage vI in which the output is valid.

9.54
(a)
− vI
iL =
       R2
              − ( −10V )
10mA =
                 R2
R2 = 1 K
        1   R
Also      = F
        R2 R1 R3
vL = (10mA )( 0.05k ) = 0.5 V
      0.5
i2 =      = 0.5 mA
       1
iR 3 = 10 + 0.5 = 10.5 mA
                          v −v   13 − 0.5
Limit vo to 13V ⇒ R3 = O L =              R3 = 1.19 K
                            iR 3  10.5
         RF R3 1.19         R
Then       =   =    = 1.19 = F
         R1 R2   1           R1
For example, RF = 119 K, R1 = 100 K
(b)           From part (a), vO = 13 V when vI = −10 V

9.55
(a)
                      vx
i1 = i2 and i2 =         + iD , vx = −i2 RF
                      R2
               ⎛R       ⎞
Then i1 = −i1 ⎜ F       ⎟ + iD
               ⎝ R2     ⎠
           ⎛     R      ⎞
Or iD = i1 ⎜ 1 + F      ⎟
           ⎝     R2     ⎠
(b)
       vI 5
R1 =     = ⇒ R1 = 5 k Ω
       i1 1
         ⎛    R ⎞   R
12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11
         ⎝    R2 ⎠  R2
For example, R2 = 5 k Ω, RF = 55 k Ω

9.56
                     VX VX − vO
(1)           IX =      +
                     R2   R3
              VX VX − vO
(2)              +       =0
              R1   RF
⎛ R ⎞
From (2) vO = VX ⎜ 1 + F ⎟
                 ⎝    R1 ⎠
                  ⎛ 1   1 ⎞ 1    ⎛ R ⎞
Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟
                  ⎝ R2 R3 ⎠ R3   ⎝   R1 ⎠
IX    1      1    1   1    R   1   R
   =     =     +     − − F =     − F
VX R0 R2 R3 R3 R1 R3 R2 R1 R3
           R1 R3 − R2 RF
       =
              R1 R2 R3
                 R1 R2 R3
or Ro =
              R1 R3 − R2 RF
                RF    1
Note: If            =   ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source.
               R1 R3 R2

9.57
      R2 R4
Ad =     =     =5
      R1 R3
Minimum resistance seen by vI1 is R1.
Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ
       v0
iL =      ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V
       RL
v0 = 5 ( vI 2 − vI 1 )
2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V

9.58
           R2
vO =          ( vI 2 − vI 1 )
           R1
       R2      R     R
Ad =       and 2 = 4 with R2 = R4 and R1 = R3
       R1       R1 R3
Differential input resistance
                  R 20
 Ri = 2 R1 ⇒ R1 = i =      = 10 K
                   2     2
           R2
(a)           = 50 ⇒ R2 = R4 = 500 K
           R1
                                 R1 = R3 = 10 K
                R2
(b)                = 20 ⇒ R2 = R4 = 200 K
                R1
                                 R1 = R3 = 10 K
                R2
(c)                = 2 ⇒ R2 = R4 = 20 K
                R1
                                R1 = R3 = 10 K
                R2
(d)                = 0.5 ⇒ R2 = R4 = 5 K
                R1
                                 R1 = R3 = 10 K

9.59
We have
     ⎛ R ⎞⎛ R / R ⎞                 ⎛R ⎞         ⎛ R ⎞⎛           1      ⎞        ⎛ R2 ⎞
vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜             ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    R1 ⎠ ⎝ 1 + R4 / R3 ⎠      ⎝ R1 ⎠       ⎝    R1 ⎠ ⎝ 1 + R3 / R4 ⎠        ⎝ R1 ⎠
Set R2 = 50 (1 + x ) , R1 = 50 (1 − x )
      R3 = 50 (1 − x ) , R4 = 50 (1 + x )
                      ⎡              ⎤
     ⎡ ⎛ 1 + x ⎞⎤     ⎢              ⎥          1+ x ⎞
                                     ⎥ vI 2 − ⎛
                             1
vO = ⎢1 + ⎜       ⎟⎥ ⎢                        ⎜      ⎟ vI 1
     ⎣    ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥        ⎝ 1− x ⎠
                      ⎢ ⎜ 1+ x ⎟ ⎥
                      ⎣ ⎝          ⎠⎦
     ⎡1 − x + (1 + x ) ⎤ ⎡         1+ x      ⎤        ⎛ 1+ x ⎞
vO = ⎢                   ⎥⋅⎢                 ⎥ vI 2 − ⎜      ⎟ vI 1
     ⎣      1− x         ⎦ ⎢1 + x + (1 − x ) ⎥
                           ⎣                 ⎦        ⎝ 1− x ⎠
     ⎛ 1+ x ⎞          ⎛1+ x ⎞
   =⎜         ⎟ vI 2 − ⎜      ⎟ vI 1
     ⎝1− x ⎠           ⎝ 1− x ⎠
For vI 1 = vI 2 ⇒ vO = 0
Set     R2 = 50 (1 + x )       R1 = 50 (1 − x )
        R3 = 50 (1 + x ) R4 = 50 (1 − x )
                     ⎛         ⎞
        ⎛ 1+ x ⎞⎜            1 ⎟      ⎛ 1+ x ⎞
 vO = ⎜1 +         ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜      ⎟ vI 1
        ⎝ 1− x ⎠⎜1+            ⎟      ⎝ 1− x ⎠
                     ⎜         ⎟
                     ⎝ 1− x ⎠
               ⎛ 1+ x ⎞
      = vI 2 − ⎜      ⎟ vI 1
               ⎝ 1− x ⎠
 vI 1 = vI 2 = vcm
vO       1 + x 1 − x − (1 + x ) −2 x
    = 1−      =                =
vcm      1− x       1− x         1− x
Set     R2 = 50 (1 − x )       R1 = 50 (1 + x )
        R3 = 50 (1 − x ) R4 = 50 (1 + x )
               ⎛       ⎞
      ⎛ 1− x ⎞⎜    1 ⎟          ⎛ 1− x ⎞
 vO = ⎜ 1 +  ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜      ⎟ vI 1
      ⎝ 1+ x ⎠⎜ 1+     ⎟        ⎝ 1+ x ⎠
               ⎜       ⎟
               ⎝ 1+ x ⎠
      ⎛ 1− x ⎞
    = ⎜1 −   ⎟ vcm
      ⎝ 1+ x ⎠
        1 + x − (1 − x )
                  2x
Acm =                      =
         1+ x    1+ x
Worst common-mode gain
        −2 x
Acm =
        1− x
(b)
−2 x −2 ( 0.01)
For x = 0.01,      Acm =      =           = −0.0202
                       1 − x 1 − 0.01
                       −2 ( 0.02 )
For x = 0.02, Acm =                = −0.04082
                        1 − 0.02
                       −2 ( 0.05 )
For x = 0.05, Acm =                = −0.1053
                        1 − 0.05
                                1          1
For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V
                                2          2
      1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2        1
Ad = ⎢1 + ⎜       ⎟⎥ = ⎢                  ⎥= ⋅      =
      2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣        1− x      ⎦ 2 1− x 1− x
                                                              1.010
For x = 0.01 Ad = 1.010                C M R RdB = 20 log10          = 33.98 dB
                                                              0.0202
                       1                                       1.020
For x = 0.02, Ad =         = 1.020     C M R RdB = 20 log10           = 27.96 dB
                      0.98                                    0.04082
                       1                                 1.0526
For x = 0.05 Ad =          = 1.0526 C M R RdB = 20 log10        ≅ 20 dB
                      0.95                               0.1053

9.60
      ⎛ 10R ⎞          ⎛ 10 ⎞
vy = ⎜          ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V
      ⎝ 10R+R ⎠        ⎝ 11 ⎠
           v2 − v y 2.65 − 2.40909
 i3 = i4 =          =                  = 0.0120 mA
              R               20
           v −v       2.50 − 2.40909
 i1 = i2 = 1 x =                       = 0.0045455 mA
              R              20
vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 )
vO = 1.50 V

9.61
                                              10
iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA =
                                               R
                 R = 61.73 Ω

9.62
a.      From superposition:
       R2
v01 = − ⋅ vI 1
       R1
      ⎛ R ⎞ ⎛ R1 ⎞
v02 = ⎜ 1 + 2 ⎟ ⎜          ⎟ vI 2
      ⎝     R1 ⎠ ⎝ R3 + R4 ⎠
Setting vI 1 = vI 2 = vcm
                 ⎡          ⎛         ⎞     ⎤
                 ⎢⎛ R ⎞ ⎜ 1           ⎟ R ⎥
v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜         ⎟ − 2 ⎥ vcm
                 ⎢⎝    R1 ⎠ ⎜    R3   ⎟ R1 ⎥
                 ⎢          ⎜ 1+ R    ⎟     ⎥
                 ⎣          ⎝     4   ⎠     ⎦
⎛                ⎞
      v    R ⎛ R ⎞⎜ 1                    ⎟ R
Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜                ⎟− 2
     vcm R3 ⎝      R1 ⎠ ⎜    R4          ⎟ R1
                        ⎜ 1+ R           ⎟
                        ⎝     3          ⎠
     R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞
        ⎜1 + ⎟ − ⎜1 + ⎟
    = 3⎝
     R      R1 ⎠ R1 ⎝ R3 ⎠
            ⎛ R4 ⎞
            ⎜1 + ⎟
            ⎝ R3 ⎠
      R4 R2
         −
      R    R1
Acm = 3
     ⎛ R4 ⎞
     ⎜1 + ⎟
     ⎝ R3 ⎠
                                R4         R
b.         Max. Acm ⇒ Min.         and Max. 2
                                R3         R1
              47.5 52.5
                  −
Max. Acm    = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A                = 0.1815
                            1 + 4.5238
                                            cm
                  47.5                                max
               1+
                  10.5

9.63




vI 1 − v A v A − vB vA − v0
          =        +                            (1)
R1 + R2       Rv      R2
vI 2 − vB vB − v A vB
         =        +                             (2)
R1 + R2     Rv      R2
     ⎛ R1 ⎞           ⎛ R2 ⎞
v− = ⎜         ⎟ vA + ⎜         ⎟ vI 1          (3)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞           ⎛ R2 ⎞
v+ = ⎜         ⎟ vB + ⎜         ⎟ vI 2          (4)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2
                  R
So that v A = vB + 2 ( vI 2 − vI 1 )
                  R1
  vI 1       ⎛ 1        1  1 ⎞ v  v
        = vA ⎜        +   + ⎟− B − 0                                                                (1)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV R2
  vI 2       ⎛ 1        1  1 ⎞ v
        = vB ⎜        +   + ⎟− A                                                                    ( 2)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV
Then
   vI 1          ⎛ 1            1      1 ⎞ v      v ⎛ R ⎞⎛ 1                1   1 ⎞
         = vB ⎜              +      + ⎟ − B − 0 + ⎜ 2 ⎟⎜                  +   + ⎟ ( vI 2 − vI 1 )   (1)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠
   vI 2          ⎛ 1            1      1 ⎞ 1 ⎡        R2              ⎤
         = vB ⎜              +      + ⎟−       ⎢ vB + ( vI 2 − vI 1 ) ⎥                             (2)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV ⎣               R1              ⎦
Subtract (2) from (1)
    1                      ⎛ R ⎞⎛ 1          1      1 ⎞                 v    1 R2
         ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜         +     + ⎟ ( vI 2 − vI 1 ) − 0 +     ⋅ ( vI 2 − vI 1 )
 R1 + R2                   ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠                     R2 RV R1
v0                   ⎧⎛ R ⎞ ⎛ 1
                     ⎪                  1  1 ⎞    1          ⎫
                                                        1 R2 ⎪
   = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜         +   + ⎟+        +   ⋅ ⎬
R2                   ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪
                     ⎩                                       ⎭
                     ⎛ R ⎞ ⎧ R2       R         R1   R ⎫
v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨         + 2 +1+        + 2⎬
                     ⎝ R1 ⎠ ⎩ R1 + R2 RV     R1 + R2 RV ⎭
       2 R2 ⎛    R2 ⎞
v0 =        ⎜1 +    ⎟ ( vI 2 − vI 1 )
        R1 ⎝ RV ⎠

9.64
vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t )
i1 =              =
            R1                            20
     −0.060sin ω t
  =
            20
i1 = −3sin ω t ( μ A )
vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t
vO1 = 0.50 − 0.375sin ω t
vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 )
vO 2 = 0.50 + 0.375sin ω t
        R4                  200
vO =       ( vO 2 − vO1 ) =     ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤
        R3                  50 ⎣                                                ⎦
vO = 3sin ω t ( V )
         vO 2    0.50 + 0.375sin ω t
i3 =           =
       R3 + R4        50 + 200
i3 = 2 + 1.5sin ω t ( μ A )
       vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t )
i2 =           =
       R3 + R4                250
i2 = 2 − 13.5sin ω t ( μ A )

9.65
                  ⎛ 40 ⎞
(a)         vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t
                  ⎝ 12 ⎠
                    30
(b)         vOC = − vI = −1.25sin ω t
                    12
(c)
 vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t )
vO = 3.417 sin ω t
            vO 3.417
(d)            =     = 6.83
            vI   0.5

9.66
       vI
iO =
       R

9.67
         vO      R ⎛ 2R ⎞
Ad =            = 4 ⎜1 + 2 ⎟
     vI 2 − vI 1 R3 ⎝       R1 ⎠
      200 ⎛ 2 (115 ) ⎞
vO =        ⎜1 +        ⎟ ( 0.06sin ω t )
      50 ⎝        R1 ⎠
                 230
For vO = 0.5          = 1.0833 ⇒ R1 = 212.3 K
                  R1
                    230
vO = 8 V                = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K
                     R1

9.68
⎛ 2 R2 ⎞
       R4
vO =    ⎜1 +    ⎟ ( vI 2 − vI 1 )
        ⎝
       R3    R1 ⎠
Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot )
         R4
Want        ≈8       Set R3 = 10 K
         R3
                     R 4 = 75 K
Now
                   75 ⎛ 2 (15 ) ⎞
 Gain (min) =         ⎜1 +      ⎟ = 9.71
                   10 ⎝    102 ⎠
                   75 ⎛ 2 (15 ) ⎞
Gain ( max ) =        ⎜1 +      ⎟ = 120
                   10 ⎝    2 ⎠

9.69
For a common-mode gain, vcm = vI 1 = vI 2
Then
      ⎛ R ⎞          R
v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
      ⎛ R ⎞          R
v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
From Problem 9.62 we can write
        R4 R4
           −
        R3 R3  ′
Acm =
       ⎛    R4 ⎞
       ⎜1 + ⎟
       ⎝    R3 ⎠
                    ′
R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5%
          20
      1−
          R3 1 ⎛ 20 ⎞
            ′
Acm =         = ⎜1 − ⎟
      (1 + 1) 2 ⎝     ′
                     R3 ⎠
     ′
For R3 = 20 kΩ − 5% = 19 kΩ
      1 ⎛ 20 ⎞
Acm =    ⎜ 1 − ⎟ = −0.0263
       2 ⎝ 19 ⎠
     ′
For R3 = 20 kΩ + 5% = 21 kΩ
     1 ⎛ 20 ⎞
Acm =  ⎜ 1 − ⎟ = 0.0238
     2⎝      21 ⎠
So Acm max = 0.0263

9.70
a.
         1
           ⋅ vI ( t ′ ) dt ′
       R1C2 ∫
v0 =

                       0.5
∫ 0.5sin ω t dt = − ω          cos ω t

                 1 ( 0.5 )      0.5
v0 = 0.5 =         ⋅       =
               R1C2 ω        2π R1C2 f
          1                 1
f =           =                             ⇒ f = 31.8 Hz
       2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 )
Output signal lags input signal by 90°
b.
                                   0.5
i.            f =                                   ⇒ f = 15.9 Hz
                    2π ( 50 × 103 )( 0.1× 10−6 )
                                         0.5
ii.           f =                                          ⇒ f = 159 Hz
                    ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 )

9.71
        1                − vI ⋅ t
vO = −
       RC ∫ vI ( t ) dt = RC
vI = −0.2
Now
      − ( −0.2 )( 2 )
8=
           RC
(a)         RC = 0.05 s
                    ( 0.2 ) t
(b)         14 =                ⇒ t = 3.5 s
                     0.05

9.72
a.
                 1                          1
       − R2                        R2 ⋅
v0             jω C2                      jω C2
   =                    =−
vI            R1                   ⎛        1 ⎞
                                R1 ⎜ R2 +       ⎟
                                   ⎝      jω C2 ⎠
v0   R       1
   =− 2⋅
vI   R1 1 + jω R2 C2
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R2 C2

9.73
a.
 v0     − R2      R ( jω C1 )
    =           =− 2
 vI R + 1         1 + jω R1C1
          jω C1
      1


v0   R     jω R1C1
   =− 2⋅
vI   R1 1 + jω R1C1
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R1C1

9.74
Assuming the Zener diode is in breakdown,
R2         1
vO = −      ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V
         R1         1
        0 − vO 0 − ( −6.8 )
 i2 =         =             ⇒ i2 = 6.8 mA
          R2        1
     10 − Vz         10 − 6.8
 iz =         − i2 =          − 6.8 ⇒ iz = −6.2 mA!!!
        Rs              5.6
Circuit is not in breakdown. Now
 10 − 0            10
         = i2 =         ⇒ i2 = 1.52 mA
Rs + R1         5.6 + 1
vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V
iz = 0

9.75
            ⎛ v ⎞                  ⎡     v      ⎤               ⎛ vI ⎞
vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟
            ⎝ I s R1 ⎠             ⎢ (10 )(10 ) ⎥
                                   ⎣            ⎦               ⎝ 10 ⎠
For vI = 20 mV , vO = 0.497 V
For vI = 2 V , vO = 0.617 V




9.76
⎛ 333 ⎞
v0 = ⎜     ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 )
     ⎝ 20 ⎠
                        ⎛i ⎞
v01 = −vBE1 = −VT ln ⎜ C1 ⎟
                        ⎝ IS ⎠
                        ⎛i ⎞
v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟
                        ⎝ IS ⎠
                   ⎛i ⎞           ⎛i ⎞
v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟
                   ⎝ iC 2 ⎠       ⎝ iC1 ⎠
       v           v
iC 2 = 2 , iC1 = 1
       R2          R1
                     ⎛v R ⎞
So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟
                     ⎝ R2 v1 ⎠
Then
                          ⎛v R ⎞
v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟
                          ⎝ v1 R2 ⎠
                ⎛v R ⎞
v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟
                ⎝ v1 R2 ⎠
ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤
                         ⎣             ⎦ ⎣              ⎦
        = 2.3026 log10 ( x )
                       ⎛v R ⎞
Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟
                       ⎝ v1 R2 ⎠

9.77
              (            )
vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT
 vO = (10   −10
                  )e   vI / 0.026



For vI = 0.30 V ,               vo = 1.03 × 10−5 V
For vI = 0.60 V ,               vo = 1.05 V

More Related Content

What's hot

Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
An empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAn empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAngela Ouroutsi
 
Kuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstaKuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstamardiyanto83
 
SSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With SolutionsSSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With SolutionsHansraj Academy
 
45 model non linear prediksi
45 model non linear prediksi45 model non linear prediksi
45 model non linear prediksiAminullahAssagaf3
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoIvan Lobato Baltazar
 

What's hot (10)

Ejercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldorEjercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldor
 
ejercicio 130 libro de baldor
ejercicio 130 libro de baldorejercicio 130 libro de baldor
ejercicio 130 libro de baldor
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
An empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAn empirical investigation of economic growth and debt
An empirical investigation of economic growth and debt
 
Kuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstaKuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwsta
 
BS1501 tutorial 2
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2
 
SSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With SolutionsSSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With Solutions
 
45 model non linear prediksi
45 model non linear prediksi45 model non linear prediksi
45 model non linear prediksi
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resuelto
 
Ch13 12
Ch13 12Ch13 12
Ch13 12
 

Viewers also liked

Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Ontico
 

Viewers also liked (19)

Ch12p
Ch12pCh12p
Ch12p
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch02s
Ch02sCh02s
Ch02s
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch10s
Ch10sCh10s
Ch10s
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch09s

Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคkrookay2012
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionSalman Salman
 
6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot productetcenterrbru
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensãoJhayson Carvalho
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition명중 김
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition명중 김
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 

Similar to Ch09s (17)

Ch11s
Ch11sCh11s
Ch11s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch06p
Ch06pCh06p
Ch06p
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Ch16p
Ch16pCh16p
Ch16p
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch04s
Ch04sCh04s
Ch04s
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Ch03s
Ch03sCh03s
Ch03s
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 

More from Bilal Sarwar

More from Bilal Sarwar (6)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 

Recently uploaded

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

Ch09s

  • 1. Chapter 9 Problem Solutions 9.1 (a) vO = Ad ( v2 − v1 ) ( ) 1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500 (b) 1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2 v2 = 3 mV (c) 5 = 500 (1 − v1 ) ⇒ 500v1 = 495 v1 = 0.990 V (d) vO = 0 (e) − 3 = 500 ( v2 − ( −0.5 ) ) −250 − 3 = 500v2 v2 = −0.506 V 9.2 (a) ⎛ ⎞ ⎟ vI = ( 0.49975 × 10 ) ( 3) 1 −3 v2 = ⎜ ⎝ 1 + 2000 ⎠ v2 = 1.49925 × 10−3 vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 ) vO = 7.49625 V (b) vO = Aod ( v2 − v1 ) 3 = Aod (1.49925 × 10−3 − 0 ) Aod = 2 × 103 9.3 R2 Av = − = −12 ⇒ R2 = 12 R1 R1 Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ 9.3 (a) v2 = 3.00 V (b) vO = Aod ( v2 − v1 ) 2.500 = Aod ( 3.010 − 3.00 ) Aod = 250 9.4
  • 2. ⎛ Ri ⎞ vid = ⎜ ⎟ vI ⎝ Ri + 25 ⎠ ⎛ Ri ⎞ 0.790 = ⎜ ⎟ ( 0.80 ) ⎝ Ri + 25 ⎠ 0.9875 ( Ri + 25 ) = Ri 24.6875 = 0.0125 Ri Ri = 1975 K 9.5 200 ⎫ Av = − = −10 ⎪ 20 ⎪ and ⎬ for each case Ri = 20 kΩ ⎪ ⎪ ⎭ 9.6 a. 100 Av = − = −10 10 Ri = R1 = 10 kΩ b. 100 100 Av = − = −5 10 Ri = R1 = 10 kΩ c. 100 Av = − = −5 10 + 10 Ri = 10 + 10 = 20 K 9.7
  • 3. vI 0.5 I1 = ⇒ R1 = ⇒ R1 = 5 K R1 0.1 R2 = 15 ⇒ R2 = 75 K R1 9.8 R2 Av = − R1 (a) Av = −10 (b) Av = −1 (c) Av = −0.20 (d) Av = −10 (e) Av = −2 (f) Av = −1 9.9 R2 Av = − R1 (a) R1 = 20 K, R2 = 40 K (b) R1 = 20 K, R2 = 200 K (c) R1 = 20 K, R2 = 1000 K (d) R1 = 80 K, R2 = 20 K 9.10 R2 Av = − = −8 ⇒ R2 = 8 R1 R1 1 For vI = −1, i1 = = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ R1 9.11 R2 Av = − = −30 ⇒ R2 = 30 R1 R1 Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ 9.12 a. R2 1.05R2 ⎛R ⎞ Av = ⇒ = 1.105 ⎜ 2 ⎟ R1 0.95 R1 ⎝ R1 ⎠ 0.95R2 ⎛R ⎞ = 0.905 ⎜ 2 ⎟ 1.05R1 ⎝ R1 ⎠ Deviation in gain is +10.5% and − 9.5% b. 1.01R2 ⎛R ⎞ 0.99 R2 ⎛R ⎞ Av ⇒ = 1.02 ⎜ 2 ⎟ ⇒ = 0.98 ⎜ 2 ⎟ 0.99 R1 ⎝ R1 ⎠ 1.01R1 ⎝ R1 ⎠ Deviation in gain = ±2% 9.13 (a)
  • 4. vO −15 Av = = = −15 vl 1 vO = −15vl ⇒ vO = −150sin ω t ( mV ) (b) vI i2 = i1 = = 10sin ω t ( μ A ) R1 vO iL = ⇒ iL = −37.5sin ω t ( μ A ) RL iO = iL − i2 iO = −47.5sin ω t ( μ A ) 9.14 R2 Av = − R1 + R5 Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75 R2 R2 So = 29.25 and = 30.75 R1 + 2 R1 + 1 We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1) Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V 9.15 R2 120 vO1 = − , vI = − ( 0.2 ) ⇒ vO1 = −1.2 V R1 20 R4 ⎛ −75 ⎞ vO = − , vO1 = ⎜ ⎟ ( −1.2 ) ⇒ vO = +6 V R3 ⎝ 15 ⎠ 0.2 i1 = i2 = ⇒ i1 = i2 = 10 μ A 20 v −1.2 i3 = i4 = O1 = ⇒ i3 = i4 = −80 μ A R3 15 1st op-amp: 90 μ A into output terminal 2nd op-amp: 80 μ A out of output terminal. 9.16 (a) R2 22 Av = − =− ⇒ Av = −22 R1 1 (b) From Eq. (9.23) R2 1 1 Av = − ⋅ = −22 ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎡ 1 ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎢1 + 104 ( 23) ⎥ ⎣ ⎦ ⎣ Aod ⎝ R1 ⎠ ⎦ Av = −21.95 (c)
  • 5. Want Av = −22 ( 0.98 ) = −21.56 −22 So − 21.56 = 1 1+ ( 23) Aod 1 22 1+ ( 23) = Aod 21.56 1 ( 23) = 0.020408 ⇒ Aod = 1127 Aod 9.17 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ 25 ⎡ 1 ⎤ ⎢1 + 5 × 103 ( 5 ) ⎥ ⎣ ⎦ Av = −3.9960 (b) vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V 4 − 3.9960 (c) × 100% = 0.10% 4 (d) vO = Aod ( v2 − v1 ) = − Aod v1 vO − ( −3.9960 ) v1 = − = Aod 5 × 10+3 v1 = 0.7992 mV 9.18 vO = Aod ( v2 − v1 ) = − Aod v1 v −5 v1 = − O = Aod 5 × 10+3 v1 = −1 mV 9.19 R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ a. R2 ⎛ 100 100 ⎞ −10 = − ⎜1 + + ⎟ 100 ⎝ 100 R2 ⎠ 2 R2 10 = + 1 ⇒ R2 = 450 kΩ 100 2R b. 100 = 2 + 1 ⇒ R2 = 4.95 MΩ 100 9.20 a.
  • 6. R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ R1 = 500 kΩ R2 ⎛ R3 R3 ⎞ 80 = ⎜1 + + ⎟ 500 ⎝ R4 R2 ⎠ Set R2 = R3 = 500 kΩ ⎛ 500 ⎞ 500 80 = 1⎜ 1 + + 1⎟ = 2 + ⇒ R4 = 6.41 kΩ ⎝ R4 ⎠ R4 b. For vI = −0.05 V −0.05 i1 = i2 = ⇒ i1 = i2 = −0.1 μ A 500 kΩ v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05 vX 0.05 i4 = − =− ⇒ i4 = −7.80 μ A R4 6.41 i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A 9.21 (a) − R2 −500 Av = −1000 = = R1 R1 R1 = 0.5 K (b) − R2 ⎛ R3 R3 ⎞ Av = ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ −250 ⎛ 500 500 ⎞ −1250 −1000 = ⎜1 + + ⎟= R1 ⎝ 250 250 ⎠ R1 R1 = 1.25 K 9.22 vI i1 = = i2 R ⎛v ⎞ v A = −i2 R = − ⎜ I ⎟ R = −vI ⎝R⎠ v v i3 = − A = I R R
  • 7. vA vA 2v 2v i4 = i2 + i3 = − − =− A = I R R R R ⎛ 2vI ⎞ vB = v A − i4 R = −vI − ⎜ ⎟ ( R ) = −3vI ⎝ R ⎠ vB ( −3vI ) 3vI i5 = − =− = R R R 2vI 3vI 5vI i6 = i4 + i5 = + = R R R ⎛ 5vI ⎞ v0 v0 = vB − i6 R = −3vI − ⎜ ⎟ R ⇒ v = −8 ⎝ R ⎠ I From Figure 9.12 ⇒ Av = −3 9.23 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 50 1 =− ⋅ ⇒ Av = −4.99985 10 ⎡ 1 ⎛ 50 ⎞ ⎤ 1+ 1 + ⎟⎥ ⎢ 2 × 105 ⎜ 10 ⎣ ⎝ ⎠⎦ (b) vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV 0.5 − 0.499985 (c) Error = × 100% ⇒ 0.003% 0.5 9.24 a. From Equation (9.23) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ = −0.9980 100 ⎡ 1 ⎛ 100 ⎞ ⎤ 1 + 3 ⎜1 + ⎢ 10 ⎟⎥ ⎣ ⎝ 100 ⎠ ⎦ Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V b. v0 = Aod ( v A − vB ) vB v0 − vB ⎛ 1 1 ⎞ v = ⇒ vB ⎜ + ⎟ = 0 R1 R2 ⎝ R1 R2 ⎠ R2 v0 vB = ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠
  • 8. Aod v0 Then v0 = Aod v A − ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠ ⎡ ⎤ ⎢ ⎥ v0 ⎢1 + Aod ⎥ = Aod v A ⎢ ⎛ R ⎞⎥ ⎢ ⎜1 + ⎟ ⎥ 2 ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎡ ⎛ R2 ⎞ ⎤ ⎢ ⎜ 1 + ⎟ + Aod ⎥ v0 ⎢ ⎝ R1 ⎠ ⎥=A v ⎢ ⎛ R ⎞ ⎥ od A ⎢ ⎜1 + 2 ⎟ ⎥ ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎛ R2 ⎞ Aod ⎜ 1 + ⎟ v A v0 = ⎝ R1 ⎠ ⎛ R ⎞ Aod + ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ vA v0 = ⎝ R1 ⎠ 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ ⎛ 10 ⎞ ⎛ vI ⎞ ⎜1 + ⎟ ⎜ ⎟ So v0 = ⎝ 10 ⎠ ⎝ 2 ⎠ = 0.9980vI 1 ⎛ 10 ⎞ 1 + 3 ⎜1 + ⎟ 10 ⎝ 10 ⎠ For vI = 2 V v0 = 1.9960 V 9.25 vl v v R (a) ii = = i2 = − O ⇒ O = − 2 R1 R2 vl R1 (b) vl v 1 ⎛ R2 ⎞ i2 = i1 = = i3 + O = i3 + ⎜ − ⋅ vl ⎟ R1 RL RL ⎝ R1 ⎠ v ⎛ R ⎞ Then i3 = l ⎜ 1 + 2 ⎟ R1 ⎝ RL ⎠ 9.26 ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞ ⎜ 0.1 1 + 10 ⎟ ( ) VX .max = ⎜ ⋅V = ⎜ 10 ⇒ VX .max = 0.09008 V ⎜R R +R ⎟ ⎟ ⎟ ⎝ 3 1 4 ⎠ ⎝ ⎠ R vO = 2 ⋅ VX .max R1 R2 R 10 = ( 0.09008 ) ⇒ 2 = 111 R1 R1 So R2 = 111 k Ω 9.27 (a)
  • 9. ⎛R R R ⎞ vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ = − ⎢⎜ ⎟ ( 0.5 ) + ⎜ ⎟ ( 0.75 ) + ⎜ ⎟ ( 2.5 ) ⎥ ⎣ ⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ = − [1 + 3.75 + 2.5] vO = −7.25 V (b) ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ −2 = − ⎢⎜ ⎟ (1) + ⎜ ⎟ ( 0.8 ) + ⎜ ⎟ vI 3 ⎥ ⎣⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ 2 = 2 + 4 + vI 3 vI 3 = −4 V 9.28 − RF R R vo = ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 = −4vI 1 − 8vI 2 − 2vI 3 RF RF RF =4 =8 =2 R1 R2 R3 Largest resistance = RF = 250 K ⇒ R1 = 62.5 K R2 = 31.25 K R3 = 125 K 9.29 RF R v0 = −4vI 1 − 0.5vI 2 = − vI 1 − F vI 2 R1 R2 RF RF =4 = 0.5 ⇒ R1 is the smallest resistor R1 R2 vI 2 i = 100 μ A = = ⇒ R1 = 20 kΩ R1 R1 ⇒ RF = 80 kΩ ⇒ R2 = 160 kΩ 9.30 vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft ) 1 1 f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 = ⇒ 10 ms 10 100 R R 10 10 vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2 R1 R2 1 5 vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V ) vO = −0.707 sin ( 2π ft ) − ( ±2 V )
  • 10. 9.31 RF R R vO = − ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 20 20 20 vO = − ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3 10 5 2 K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0 Set vI 1 = −4 mV 9.32 Only two inputs. ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ ⎡ 1 ⎤ = − ⎢3vI 1 + ⋅ vI 2 ⎥ ⎣ 4 ⎦ RF RF 1 =3 = R1 R2 4 Smallest resistor = 10 K = R1 RF = 30 K R2 = 120 K 9.33 ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ − RF −R R RF −5 − 5sin ω t = ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2 = 2.5 R1 R2 R1 R2 RF = largest resistor ⇒ RF = 200 K R1 = 100 K R2 = 80 K 9.34 a. RF R R R v0 = − ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 ) R3 R2 R1 R0 RF ⎡ a3 a2 a1 a0 ⎤ So v0 = + + + ( 5) 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ R 1 b. v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ 10 2 c. 10 1 i. v0 = ⋅ ⋅ 5 ⇒ v0 = 0.3125 V 10 16
  • 11. 10 ⎡ 1 1 1 1 ⎤ ii. v0 = + + + ( 5 ) ⇒ v0 = 4.6875 V 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ 9.35 (a) 10 vO1 = − ⋅ vI 1 1 20 20 vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2 1 1 vO = 200vI 1 − 20vI 2 (b) vI 1 = 1 + 2sin ω t ( mV ) vI 2 = −10 mV Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 ) So vO = 0.4 + 0.4sin ω t (V ) 9.36 For one-input v0 v1 = − Aod vI 1 − v1 v1 v −v = + 1 0 R1 R2 R3 RF VI 1 ⎡1 1 1 ⎤ v0 = v1 ⎢ + + ⎥− R1 ⎣ R1 R2 R3 RF ⎦ RF v0 ⎡1 1 1 ⎤ v0 =− ⎢ + + ⎥− Aod ⎣ R1 R2 R3 RF ⎦ RF ⎧ 1 ⎪ 1 1 ⎛ 1 1 ⎞⎫ ⎪ = −v0 ⎨ + + ⎜ + ⎟⎬ ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪ ⎩ ⎭ v0 ⎧ 1 1 RF ⎫ =− ⎨ +1+ ⋅ ⎬ RF ⎩ Aod Aod R1 R2 R3 ⎭ ⎧ ⎫ ⎪ ⎪ R ⎪ 1 ⎪ v0 = − F ⋅ vI 1 ⋅ ⎨ ⎬ where RP = R1 R2 R3 R1 ⎪1 + 1 ⎛ RF ⎞ ⎪ 1+ ⎪ Aod ⎜ RP ⎟ ⎪ ⎝ ⎠⎭ ⎩ −1 ⎛R R R ⎞ Therefore, for three-inputs v0 = × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ 1 ⎛ RF ⎞ ⎝ R1 R2 R3 ⎠ 1+ ⎜1 + ⎟ Aod ⎝ RP ⎠ 9.37
  • 12. ⎛ R ⎞ R Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11 ⎝ R1 ⎠ R1 v v 0.5 i1 = I ⇒ R1 = I = R1 i1 0.15 R1 = 3.33 K R2 = 36.7 K 9.38 ⎛ 1 ⎞ ⎛ 1 ⎞ vB = ⎜ ⎟ vI v0 = Aod ⎜ ⎟ vi ⎝ 1 + 500 ⎠ ⎝ 501 ⎠ ⎛ 1 ⎞ a. 2.5 = Aod ⎜ ⎟ ( 5 ) ⇒ Aod = 250.5 ⎝ 501 ⎠ ⎛ 1 ⎞ b. v0 = 5000 ⎜ ⎟ ( 5 ) ⇒ v0 = 49.9 V ⎝ 501 ⎠ 9.39 ⎛ R ⎞ Av = ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ (a) Av = 11 (b) Av = 2 (c) Av = 1.2 (d) Av = 11 (e) Av = 3 (f) Av = 2 9.40 R2 (a) = 1 ⇒ R1 = R2 = 20 K R1 R2 (b) = 9 ⇒ R1 = 20 K, R2 = 180 K R1 R2 (c) = 49 ⇒ R1 = 20 K, R2 = 980 K R1 R2 (d) = 0 can set R2 = 20 K, R1 = ∞ (open circuit) R1 9.41 ⎛ 50 ⎞ ⎡⎛ 20 ⎞ ⎛ 40 ⎞ ⎤ v0 = ⎜ 1 + ⎟ ⎢⎜ ⎟ vI 2 + ⎜ ⎟ vI 1 ⎥ ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠ ⎝ 20 + 40 ⎠ ⎦ v0 = 1.33vI 1 + 0.667vI 2 9.42 (a)
  • 13. vI 1 − v2 vI 2 − v2 v2 + = 20 40 10 ⎛ 100 ⎞ vO = ⎜ 1 + ⎟ v2 = 3v2 ⎝ 50 ⎠ Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2 ⎛v ⎞ 2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟ ⎝3⎠ 6 3 So vO = ⋅ vI 1 + ⋅ vI 2 7 7 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V 6 3 (b) vO = ⎜ ⎟ 7 ⎝ 7⎠ ⎛6⎞ ⎛ 3⎞ (c) vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV ⎝7⎠ ⎝7⎠ 9.43 ⎛ R4 ⎞ v2 = ⎜ ⎟ vI ⎝ R3 + R4 ⎠ ⎛ R ⎞ ⎛ R ⎞ ⎛ R4 ⎞ vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠⎝ R3 + R4 ⎠ vO ⎛ R2 ⎞ ⎛ R4 ⎞ Av = = ⎜1 + ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ 9.44 (a) vO ⎛ 50 x ⎞ = ⎜1 + ⎜ (1 − x ) 50 ⎟ ⎟ vI ⎝ ⎠ vO ⎛ x ⎞ 1− x + x = ⎜1 + ⎟= vI ⎝ 1 − x ⎠ 1− x v 1 Av = O = vI 1 − x (b) 1 ≤ Av ≤ ∞ (c) If x = 1, gain goes to infinity. 9.45 Change resister values as shown.
  • 14. vI i1 = = i2 R ⎛v ⎞ vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI ⎝R⎠ v x 3I i3 = = R R v 3v 4v i4 = i2 + i3 = I + I = I R R R ⎛ 4vI ⎞ v0 = i4 2 R + vx = ⎜ ⎟ 2 R + 3vI ⎝ R ⎠ v0 = 11 vI 9.46 vO (a) =1 vI (b) From Exercise TYU9.7 ⎛ R2 ⎞ ⎜1 + ⎟ vO = ⎝ R1 ⎠ vI ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ But R2 = 0, R1 = ∞ vO 1 1 v = = ⇒ O = 0.999993 vI 1 + 1 1 vI 1+ Aod 1.5 × 105 vO 1 (b) Want = 0.990 = ⇒ Aod = 99 vI 1 1+ Aod 9.47
  • 15. v0 = Aod ( vI − v0 ) ⎛ 1 ⎞ ⎜ + 1⎟ v0 = vI ⎝ Aod ⎠ v0 1 = vI ⎛ 1 ⎞ ⎜1 + ⎟ ⎝ Aod ⎠ v Aod = 104 ; 0 = 0.99990 vI v0 Aod = 103 ; = 0.9990 vI v0 Aod = 102 ; = 0.990 vI v0 Aod = 10; = 0.909 vI 9.48 ⎛ R ⎞ v0 A = ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎛ R ⎞ ⎛ R ⎞ v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠ So v01 = −v02 9.49 vI (a) iL = R1 (b) vO1 = iL RL + vI = iL RL + iL R1 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL So iL ( max ) ≅ 1 mA Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V 9.50 (a) ⎛ 20 ⎞ ⎛ 20 ⎞ vX = ⎜ ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2 ⎝ 20 + 40 ⎠ ⎝ 60 ⎠ vO = 2 V (b) Same as (a) (c) ⎛ 6 ⎞ vX = ⎜ ⎟ ( 6 ) = 0.666 V ⎝ 6 + 48 ⎠ ⎛ 10 ⎞ vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V ⎝ 10 ⎠ 9.51 a.
  • 16. v1 v −v Rin = and 1 0 = i1 and v0 = − Aod v1 i1 RF v1 − ( − Aod v1 ) v1 (1 + Aod ) So i1 = = RF RF v1 RF Then Rin = = i1 1 + Aod b. ⎛ RS ⎞ RF i1 = ⎜ ⎟ iS and v0 = − Aod ⋅ ⋅ i1 ⎝ RS + Rin ⎠ 1 + Aod ⎛ A ⎞⎛ RS ⎞ So v0 = − RF ⎜ od ⎟⎜ ⎟ iS ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠ RF 10 Rin = = = 0.009990 1 + Aod 1001 ⎛ 1000 ⎞ ⎛ RS ⎞ v0 = − RF ⎜ ⎟⎜ ⎟ iS ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ ⎛ 1000 ⎞ ⎛ RS ⎞ Want ⎜ ⎟⎜ ⎟ ≤ 0.990 ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ which yields RS ≥ 1.099 kΩ 9.52 vO = iC RF , 0 ≤ iC ≤ 8 mA For vO ( max ) = 8 V, Then RF = 1 k Ω 9.53 v 10 i = I so 1 = ⇒ R = 10 kΩ R R In the ideal op-amp, R1 has no influence. ⎛ R ⎞ Output voltage: v0 = ⎜1 + 2 ⎟ vI ⎝ R⎠ v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input voltage vI in which the output is valid. 9.54 (a)
  • 17. − vI iL = R2 − ( −10V ) 10mA = R2 R2 = 1 K 1 R Also = F R2 R1 R3 vL = (10mA )( 0.05k ) = 0.5 V 0.5 i2 = = 0.5 mA 1 iR 3 = 10 + 0.5 = 10.5 mA v −v 13 − 0.5 Limit vo to 13V ⇒ R3 = O L = R3 = 1.19 K iR 3 10.5 RF R3 1.19 R Then = = = 1.19 = F R1 R2 1 R1 For example, RF = 119 K, R1 = 100 K (b) From part (a), vO = 13 V when vI = −10 V 9.55 (a) vx i1 = i2 and i2 = + iD , vx = −i2 RF R2 ⎛R ⎞ Then i1 = −i1 ⎜ F ⎟ + iD ⎝ R2 ⎠ ⎛ R ⎞ Or iD = i1 ⎜ 1 + F ⎟ ⎝ R2 ⎠ (b) vI 5 R1 = = ⇒ R1 = 5 k Ω i1 1 ⎛ R ⎞ R 12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11 ⎝ R2 ⎠ R2 For example, R2 = 5 k Ω, RF = 55 k Ω 9.56 VX VX − vO (1) IX = + R2 R3 VX VX − vO (2) + =0 R1 RF
  • 18. ⎛ R ⎞ From (2) vO = VX ⎜ 1 + F ⎟ ⎝ R1 ⎠ ⎛ 1 1 ⎞ 1 ⎛ R ⎞ Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟ ⎝ R2 R3 ⎠ R3 ⎝ R1 ⎠ IX 1 1 1 1 R 1 R = = + − − F = − F VX R0 R2 R3 R3 R1 R3 R2 R1 R3 R1 R3 − R2 RF = R1 R2 R3 R1 R2 R3 or Ro = R1 R3 − R2 RF RF 1 Note: If = ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source. R1 R3 R2 9.57 R2 R4 Ad = = =5 R1 R3 Minimum resistance seen by vI1 is R1. Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ v0 iL = ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V RL v0 = 5 ( vI 2 − vI 1 ) 2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V 9.58 R2 vO = ( vI 2 − vI 1 ) R1 R2 R R Ad = and 2 = 4 with R2 = R4 and R1 = R3 R1 R1 R3 Differential input resistance R 20 Ri = 2 R1 ⇒ R1 = i = = 10 K 2 2 R2 (a) = 50 ⇒ R2 = R4 = 500 K R1 R1 = R3 = 10 K R2 (b) = 20 ⇒ R2 = R4 = 200 K R1 R1 = R3 = 10 K R2 (c) = 2 ⇒ R2 = R4 = 20 K R1 R1 = R3 = 10 K R2 (d) = 0.5 ⇒ R2 = R4 = 5 K R1 R1 = R3 = 10 K 9.59
  • 19. We have ⎛ R ⎞⎛ R / R ⎞ ⎛R ⎞ ⎛ R ⎞⎛ 1 ⎞ ⎛ R2 ⎞ vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ R1 ⎠ ⎝ 1 + R4 / R3 ⎠ ⎝ R1 ⎠ ⎝ R1 ⎠ ⎝ 1 + R3 / R4 ⎠ ⎝ R1 ⎠ Set R2 = 50 (1 + x ) , R1 = 50 (1 − x ) R3 = 50 (1 − x ) , R4 = 50 (1 + x ) ⎡ ⎤ ⎡ ⎛ 1 + x ⎞⎤ ⎢ ⎥ 1+ x ⎞ ⎥ vI 2 − ⎛ 1 vO = ⎢1 + ⎜ ⎟⎥ ⎢ ⎜ ⎟ vI 1 ⎣ ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥ ⎝ 1− x ⎠ ⎢ ⎜ 1+ x ⎟ ⎥ ⎣ ⎝ ⎠⎦ ⎡1 − x + (1 + x ) ⎤ ⎡ 1+ x ⎤ ⎛ 1+ x ⎞ vO = ⎢ ⎥⋅⎢ ⎥ vI 2 − ⎜ ⎟ vI 1 ⎣ 1− x ⎦ ⎢1 + x + (1 − x ) ⎥ ⎣ ⎦ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ ⎛1+ x ⎞ =⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝1− x ⎠ ⎝ 1− x ⎠ For vI 1 = vI 2 ⇒ vO = 0 Set R2 = 50 (1 + x ) R1 = 50 (1 − x ) R3 = 50 (1 + x ) R4 = 50 (1 − x ) ⎛ ⎞ ⎛ 1+ x ⎞⎜ 1 ⎟ ⎛ 1+ x ⎞ vO = ⎜1 + ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠⎜1+ ⎟ ⎝ 1− x ⎠ ⎜ ⎟ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ = vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠ vI 1 = vI 2 = vcm vO 1 + x 1 − x − (1 + x ) −2 x = 1− = = vcm 1− x 1− x 1− x Set R2 = 50 (1 − x ) R1 = 50 (1 + x ) R3 = 50 (1 − x ) R4 = 50 (1 + x ) ⎛ ⎞ ⎛ 1− x ⎞⎜ 1 ⎟ ⎛ 1− x ⎞ vO = ⎜ 1 + ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1+ x ⎠⎜ 1+ ⎟ ⎝ 1+ x ⎠ ⎜ ⎟ ⎝ 1+ x ⎠ ⎛ 1− x ⎞ = ⎜1 − ⎟ vcm ⎝ 1+ x ⎠ 1 + x − (1 − x ) 2x Acm = = 1+ x 1+ x Worst common-mode gain −2 x Acm = 1− x (b)
  • 20. −2 x −2 ( 0.01) For x = 0.01, Acm = = = −0.0202 1 − x 1 − 0.01 −2 ( 0.02 ) For x = 0.02, Acm = = −0.04082 1 − 0.02 −2 ( 0.05 ) For x = 0.05, Acm = = −0.1053 1 − 0.05 1 1 For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V 2 2 1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2 1 Ad = ⎢1 + ⎜ ⎟⎥ = ⎢ ⎥= ⋅ = 2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣ 1− x ⎦ 2 1− x 1− x 1.010 For x = 0.01 Ad = 1.010 C M R RdB = 20 log10 = 33.98 dB 0.0202 1 1.020 For x = 0.02, Ad = = 1.020 C M R RdB = 20 log10 = 27.96 dB 0.98 0.04082 1 1.0526 For x = 0.05 Ad = = 1.0526 C M R RdB = 20 log10 ≅ 20 dB 0.95 0.1053 9.60 ⎛ 10R ⎞ ⎛ 10 ⎞ vy = ⎜ ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V ⎝ 10R+R ⎠ ⎝ 11 ⎠ v2 − v y 2.65 − 2.40909 i3 = i4 = = = 0.0120 mA R 20 v −v 2.50 − 2.40909 i1 = i2 = 1 x = = 0.0045455 mA R 20 vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 ) vO = 1.50 V 9.61 10 iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA = R R = 61.73 Ω 9.62 a. From superposition: R2 v01 = − ⋅ vI 1 R1 ⎛ R ⎞ ⎛ R1 ⎞ v02 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ Setting vI 1 = vI 2 = vcm ⎡ ⎛ ⎞ ⎤ ⎢⎛ R ⎞ ⎜ 1 ⎟ R ⎥ v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜ ⎟ − 2 ⎥ vcm ⎢⎝ R1 ⎠ ⎜ R3 ⎟ R1 ⎥ ⎢ ⎜ 1+ R ⎟ ⎥ ⎣ ⎝ 4 ⎠ ⎦
  • 21. ⎞ v R ⎛ R ⎞⎜ 1 ⎟ R Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜ ⎟− 2 vcm R3 ⎝ R1 ⎠ ⎜ R4 ⎟ R1 ⎜ 1+ R ⎟ ⎝ 3 ⎠ R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞ ⎜1 + ⎟ − ⎜1 + ⎟ = 3⎝ R R1 ⎠ R1 ⎝ R3 ⎠ ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R2 − R R1 Acm = 3 ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R b. Max. Acm ⇒ Min. and Max. 2 R3 R1 47.5 52.5 − Max. Acm = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A = 0.1815 1 + 4.5238 cm 47.5 max 1+ 10.5 9.63 vI 1 − v A v A − vB vA − v0 = + (1) R1 + R2 Rv R2 vI 2 − vB vB − v A vB = + (2) R1 + R2 Rv R2 ⎛ R1 ⎞ ⎛ R2 ⎞ v− = ⎜ ⎟ vA + ⎜ ⎟ vI 1 (3) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ ⎛ R2 ⎞ v+ = ⎜ ⎟ vB + ⎜ ⎟ vI 2 (4) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠
  • 22. Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2 R So that v A = vB + 2 ( vI 2 − vI 1 ) R1 vI 1 ⎛ 1 1 1 ⎞ v v = vA ⎜ + + ⎟− B − 0 (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 vI 2 ⎛ 1 1 1 ⎞ v = vB ⎜ + + ⎟− A ( 2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV Then vI 1 ⎛ 1 1 1 ⎞ v v ⎛ R ⎞⎛ 1 1 1 ⎞ = vB ⎜ + + ⎟ − B − 0 + ⎜ 2 ⎟⎜ + + ⎟ ( vI 2 − vI 1 ) (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ vI 2 ⎛ 1 1 1 ⎞ 1 ⎡ R2 ⎤ = vB ⎜ + + ⎟− ⎢ vB + ( vI 2 − vI 1 ) ⎥ (2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV ⎣ R1 ⎦ Subtract (2) from (1) 1 ⎛ R ⎞⎛ 1 1 1 ⎞ v 1 R2 ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜ + + ⎟ ( vI 2 − vI 1 ) − 0 + ⋅ ( vI 2 − vI 1 ) R1 + R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R2 RV R1 v0 ⎧⎛ R ⎞ ⎛ 1 ⎪ 1 1 ⎞ 1 ⎫ 1 R2 ⎪ = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜ + + ⎟+ + ⋅ ⎬ R2 ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪ ⎩ ⎭ ⎛ R ⎞ ⎧ R2 R R1 R ⎫ v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨ + 2 +1+ + 2⎬ ⎝ R1 ⎠ ⎩ R1 + R2 RV R1 + R2 RV ⎭ 2 R2 ⎛ R2 ⎞ v0 = ⎜1 + ⎟ ( vI 2 − vI 1 ) R1 ⎝ RV ⎠ 9.64
  • 23. vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t ) i1 = = R1 20 −0.060sin ω t = 20 i1 = −3sin ω t ( μ A ) vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t vO1 = 0.50 − 0.375sin ω t vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 ) vO 2 = 0.50 + 0.375sin ω t R4 200 vO = ( vO 2 − vO1 ) = ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤ R3 50 ⎣ ⎦ vO = 3sin ω t ( V ) vO 2 0.50 + 0.375sin ω t i3 = = R3 + R4 50 + 200 i3 = 2 + 1.5sin ω t ( μ A ) vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t ) i2 = = R3 + R4 250 i2 = 2 − 13.5sin ω t ( μ A ) 9.65 ⎛ 40 ⎞ (a) vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t ⎝ 12 ⎠ 30 (b) vOC = − vI = −1.25sin ω t 12 (c) vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t ) vO = 3.417 sin ω t vO 3.417 (d) = = 6.83 vI 0.5 9.66 vI iO = R 9.67 vO R ⎛ 2R ⎞ Ad = = 4 ⎜1 + 2 ⎟ vI 2 − vI 1 R3 ⎝ R1 ⎠ 200 ⎛ 2 (115 ) ⎞ vO = ⎜1 + ⎟ ( 0.06sin ω t ) 50 ⎝ R1 ⎠ 230 For vO = 0.5 = 1.0833 ⇒ R1 = 212.3 K R1 230 vO = 8 V = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K R1 9.68
  • 24. ⎛ 2 R2 ⎞ R4 vO = ⎜1 + ⎟ ( vI 2 − vI 1 ) ⎝ R3 R1 ⎠ Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot ) R4 Want ≈8 Set R3 = 10 K R3 R 4 = 75 K Now 75 ⎛ 2 (15 ) ⎞ Gain (min) = ⎜1 + ⎟ = 9.71 10 ⎝ 102 ⎠ 75 ⎛ 2 (15 ) ⎞ Gain ( max ) = ⎜1 + ⎟ = 120 10 ⎝ 2 ⎠ 9.69 For a common-mode gain, vcm = vI 1 = vI 2 Then ⎛ R ⎞ R v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 ⎛ R ⎞ R v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 From Problem 9.62 we can write R4 R4 − R3 R3 ′ Acm = ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ ′ R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5% 20 1− R3 1 ⎛ 20 ⎞ ′ Acm = = ⎜1 − ⎟ (1 + 1) 2 ⎝ ′ R3 ⎠ ′ For R3 = 20 kΩ − 5% = 19 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = −0.0263 2 ⎝ 19 ⎠ ′ For R3 = 20 kΩ + 5% = 21 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = 0.0238 2⎝ 21 ⎠ So Acm max = 0.0263 9.70 a. 1 ⋅ vI ( t ′ ) dt ′ R1C2 ∫ v0 = 0.5 ∫ 0.5sin ω t dt = − ω cos ω t 1 ( 0.5 ) 0.5 v0 = 0.5 = ⋅ = R1C2 ω 2π R1C2 f 1 1 f = = ⇒ f = 31.8 Hz 2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 ) Output signal lags input signal by 90°
  • 25. b. 0.5 i. f = ⇒ f = 15.9 Hz 2π ( 50 × 103 )( 0.1× 10−6 ) 0.5 ii. f = ⇒ f = 159 Hz ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 ) 9.71 1 − vI ⋅ t vO = − RC ∫ vI ( t ) dt = RC vI = −0.2 Now − ( −0.2 )( 2 ) 8= RC (a) RC = 0.05 s ( 0.2 ) t (b) 14 = ⇒ t = 3.5 s 0.05 9.72 a. 1 1 − R2 R2 ⋅ v0 jω C2 jω C2 = =− vI R1 ⎛ 1 ⎞ R1 ⎜ R2 + ⎟ ⎝ jω C2 ⎠ v0 R 1 =− 2⋅ vI R1 1 + jω R2 C2 v0 R b. =− 2 vI R1 1 c. f = 2π R2 C2 9.73 a. v0 − R2 R ( jω C1 ) = =− 2 vI R + 1 1 + jω R1C1 jω C1 1 v0 R jω R1C1 =− 2⋅ vI R1 1 + jω R1C1 v0 R b. =− 2 vI R1 1 c. f = 2π R1C1 9.74 Assuming the Zener diode is in breakdown,
  • 26. R2 1 vO = − ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V R1 1 0 − vO 0 − ( −6.8 ) i2 = = ⇒ i2 = 6.8 mA R2 1 10 − Vz 10 − 6.8 iz = − i2 = − 6.8 ⇒ iz = −6.2 mA!!! Rs 5.6 Circuit is not in breakdown. Now 10 − 0 10 = i2 = ⇒ i2 = 1.52 mA Rs + R1 5.6 + 1 vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V iz = 0 9.75 ⎛ v ⎞ ⎡ v ⎤ ⎛ vI ⎞ vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟ ⎝ I s R1 ⎠ ⎢ (10 )(10 ) ⎥ ⎣ ⎦ ⎝ 10 ⎠ For vI = 20 mV , vO = 0.497 V For vI = 2 V , vO = 0.617 V 9.76
  • 27. ⎛ 333 ⎞ v0 = ⎜ ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 ) ⎝ 20 ⎠ ⎛i ⎞ v01 = −vBE1 = −VT ln ⎜ C1 ⎟ ⎝ IS ⎠ ⎛i ⎞ v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟ ⎝ IS ⎠ ⎛i ⎞ ⎛i ⎞ v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟ ⎝ iC 2 ⎠ ⎝ iC1 ⎠ v v iC 2 = 2 , iC1 = 1 R2 R1 ⎛v R ⎞ So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟ ⎝ R2 v1 ⎠ Then ⎛v R ⎞ v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ⎛v R ⎞ v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = 2.3026 log10 ( x ) ⎛v R ⎞ Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ 9.77 ( ) vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT vO = (10 −10 )e vI / 0.026 For vI = 0.30 V , vo = 1.03 × 10−5 V For vI = 0.60 V , vo = 1.05 V