SlideShare a Scribd company logo
1 of 22
Download to read offline
Chapter 3
Problem Solutions

3.1
     ⎛ W ⎞ ⎛ k ′ ⎞ ⎛ 10 ⎞ ⎛ 0.08 ⎞
Kn = ⎜ ⎟ ⎜ n ⎟ = ⎜      ⎟⎜       ⎟ = 0.333 mA/V
                                                2

     ⎝ L ⎠ ⎝ 2 ⎠ ⎝ 1.2 ⎠ ⎝ 2 ⎠
For VDS = 0.1 V ⇒ Non Sat Bias Region
(a)       VGS = 0 ⇒ I D = 0
          VGS = 1 V I D = 0.333 ⎡ 2 (1 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.01 mA
                                                             2
(b)
                                ⎣                              ⎦
                         I D = 0.333 ⎡ 2 ( 2 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.0767 mA
                                                                   2
(c)       VGS = 2 V
                                     ⎣                               ⎦
                         I D = 0.333 ⎡ 2 ( 3 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.143 mA
                                                                   2
(d)       VGS = 3 V
                                     ⎣                               ⎦

3.2
All in Sat region
      ⎛ 10 ⎞⎛ 0.08 ⎞
 Kn = ⎜     ⎟⎜     ⎟ = 0.333 mA/V
                                  2

      ⎝ 1.2 ⎠⎝ 2 ⎠
(a)       ID = 0
          I D = 0.333[1 − 0.8] = 0.0133 mA
                                2
(b)
          I D = 0.333[ 2 − 0.8] = 0.480 mA
                                2
(c)
          I D = 0.333[3 − 0.8] = 1.61 mA
                                2
(d)

3.3
(a)      Enhancement-mode
(b)      From Graph VT = 1.5 V
Now
 0.03 = K n ( 2 − 1.5 ) = 0.25 K n ⇒ K n = 0.12
                       2



0.15 = K n ( 3 − 1.5 ) = 2.25 K n
                     2
                                         K n = 0.0666
0.39 = K n ( 4 − 1.5 ) = 6.25 K n
                     2
                                         K n = 0.0624
0.77 = K n ( 5 − 1.5 ) = 12.25 K n
                     2
                                         K n = 0.0629
From last three, K n (Avg) = 0.0640 mA/V 2
(c)       iD (sat) = 0.0640(3.5 − 1.5) 2 ⇒ iD (sat) = 0.256 mA for VGS = 3.5 V
          iD (sat) = 0.0640(4.5 − 1.5) 2 ⇒ iD (sat) = 0.576 mA for VGS = 4.5 V

3.4
a.              VGS = 0
          VDS ( sat ) = VGS − VTN = 0 − ( −2.5 ) = 2.5 V
i.        VDS = 0.5 V ⇒ Biased in nonsaturation
           I D = (1.1) ⎡ 2 ( 0 − (−2.5) )( 0.5 ) − ( 0.5 ) ⎤ ⇒ I D = 2.48 mA
                                                          2
                       ⎣                                    ⎦
ii.       VDS = 2.5 V ⇒ Biased in saturation
            I D = (1.1) ( 0 − ( −2.5 ) ) ⇒ I D = 6.88 mA
                                     2



iii.      VDS = 5 V Same as (ii) ⇒ I D = 6.88 mA
b.         VGS = 2 V
VDS ( sat ) = 2 − ( −2.5 ) = 4.5 V
i.        VDS = 0.5 V ⇒ Nonsaturation
            I D = (1.1) ⎡ 2(2 − (−2.5))(0.5) − (0.5) 2 ⎤ ⇒ I D = 4.68 mA
                        ⎣                              ⎦
ii.           VDS = 2.5 V ⇒ Nonsaturation
                 I D = (1.1) ⎡ 2(2 − (−2.5))(2.5) − (2.5) 2 ⎤ ⇒ I D = 17.9 mA
                             ⎣                              ⎦
iii.          VDS = 5 V ⇒ Saturation
                 I D = (1.1) ( 2 − ( −2.5 ) ) ⇒ I D = 22.3 mA
                                                      2




3.5
VDS > VGS − VTN = 0 − ( −2 ) = 2 V
Biased in the saturation region
      k′ W
 I D = n ⋅ (VGS − VTN )
                         2

       2 L
      ⎛ 0.080 ⎞ ⎛ W ⎞                W
              ⎟ ⎜ ⎟ ⎡ 0 − ( −2 ) ⎤ ⇒
                                   2
1.5 = ⎜               ⎣          ⎦     = 9.375
      ⎝ 2 ⎠⎝ L ⎠                     L

3.6
                       μ n ∈ox         ( 600 )( 3.9 ) (8.85 ×10−14 )               2.071× 10−10
 ′
kn = μ n Cox =                     =                                          =
                           tox                            tox                          tox
(a)          500 A                ′
                                 kn = 41.4 μ A/V 2
(b)          250                  ′
                                 kn = 82.8 μ A/V 2
(c)          100                  ′
                                 kn = 207 μ A/V 2
(d)          50                   ′
                                 kn = 414 μ A/V 2
(e)          25                   ′
                                 kn = 828 μ A/V 2

3.7
a.
           ∈ox ( 3.9 ) ( 8.85 × 10                )⇒∈
                                            −14

Cox =           =                                               ox
                                                                     = 7.67 ×10−8 F/cm 2
           t0 x      450 × 10−8                            t0 x
           μ n Cox W
Kn =               ⋅
             2         L

        ( 650 ) ( 7.67 ×10−8 ) ⎛ ⎞
      1                         64
       =                       ⎜ ⎟
      2                        ⎝ 4 ⎠
K n = 0.399 mA / V 2
b.            VGS = VDS = 3 V ⇒ Saturation
                 I D = K n (VGS − VTN ) = ( 0.399 )( 3 − 0.8 ) ⇒ I D = 1.93 mA
                                                  2                            2




3.8
      ⎛ ω ⎞⎛ k′ ⎞
I D = ⎜ ⎟ ⎜ n ⎟ (VGS − VTN )
                             2

      ⎝ 2 ⎠⎝ 2 ⎠
     ⎛ ω ⎞ ⎛ 0.08 ⎞
                  ⎟ ( 2.5 − 1.2 ) ⇒ ω = 23.1 μ m
                                 2
1.25 ⎜      ⎟⎜
     ⎝ 1.25 ⎠ ⎝ 2 ⎠

3.9
     ∈                 ( 3.9 ) (8.85 ×10−14 )
Cox = ox          =
     t0 x                        400 × 10−8
                  = 8.63 × 10−8 F/cm 2
μ n Cox W
Kn =           ⋅
           2    L
                                ⎛W ⎞
      = ( 600 ) ( 8.63 × 10−8 ) ⎜
       1
                                      ⎟
       2                        ⎝ 2.5 ⎠
K n = (1.036 × 10−5 ) W

I D = K n (VGS − VTN )
                           2



1.2 × 10 −3 = (1.036 × 10 −5 ) W ( 5 − 1) ⇒ W = 7.24 μ m
                                          2




3.10
Biased in the saturation region in both cases.
        ′
       kp W
 I D = ⋅ (VSG + VTP )
                          2

       2 L
                   ⎛ 0.040 ⎞⎛ W ⎞
                            ⎟⎜ ⎟ ( 3 + VTP )
                                              2
(1)       0.225 = ⎜
                   ⎝   2 ⎠⎝ L ⎠
                 ⎛ 0.040 ⎞ ⎛ W ⎞
                          ⎟ ⎜ ⎟ ( 4 + VTP )
                                            2
(2)       1.40 = ⎜
                 ⎝ 2 ⎠⎝ L ⎠
Take ratio of (2) to (1):
  1.40             (4 + VTP ) 2
        = 6.222 =
 0.225             (3 + VTP ) 2
                      4 + VTP
     6.222 = 2.49 =           ⇒ VTP = −2.33 V
                      3 + VTP
             ⎛ 0.040 ⎞ ⎛ W ⎞             W
                     ⎟ ⎜ ⎟ ( 3 − 2.33) ⇒
                                      2
Then 0.225 = ⎜                             = 25.1
             ⎝ 2 ⎠⎝ L ⎠                  L

3.11
 VS = 5 V, VG = 0 ⇒ VSG = 5 V
VTP = −0.5 V ⇒ VSD ( sat ) = VSG + VTP = 5 − 0.5 = 4.5 V
a.          VD = 0 ⇒ VSD = 5 V ⇒ Biased in saturation
            I D = 2 ( 5 − 0.5 ) ⇒ I D = 40.5 mA
                               2



b.          VD = 2 V ⇒ VSD = 3 V ⇒ Nonsaturation
            I D = 2 ⎡ 2 ( 5 − 0.5 )( 3) − ( 3) ⎤ ⇒ I D = 36 mA
                                              2
                    ⎣                           ⎦
c.          VD = 4 V ⇒ VSD = 1 V ⇒ Nonsaturation
            I D = 2 ⎡ 2 ( 5 − 0.5 )(1) − (1) ⎤ ⇒ I D = 16 mA
                                            2
                    ⎣                         ⎦
d.          VD = 5 V ⇒ VSD = 0 ⇒ I D = 0

3.12
(a)        Enhancement-mode
(b)        From Graph VTP = + 0.5 V
0.45 = k p ( 2 − 0.5 ) = 2.25 K p ⇒ K p =
                       2
                                                        0.20
1.25 = k p ( 3 − 0.5 ) = 6.25 K p
                      2
                                                        0.20
2.45 = k p ( 4 − 0.5 ) = 12.25 K p
                       2
                                                        0.20
4.10 = k p ( 5 − 0.5 ) = 20.25 K p
                      2
                                                        0.202
                                              Avg K p = 0.20 mA/V 2
(c)         iD (sat) = 0.20 (3.5 − 0.5) 2 = 1.8 mA
            iD (sat) = 0.20 (4.5 − 0.5) 2 = 3.2 mA
3.13
VSD ( sat ) = VSG + VTP
(a)       VSD ( sat ) = −1 + 2 ⇒ VSD ( sat ) = 1 V
(b)       VSD ( sat ) = 0 + 2 ⇒ VSD ( sat ) = 2 V
(c)       VSD ( sat ) = 1 + 2 ⇒ VSD ( sat ) = 3 V
        ′
       kp W                     k′ W
          ⋅ (VSG + VTP ) = ⋅ ⋅ ⎡VSD ( sat ) ⎤
                          2                         2
ID =
                                  p

       2 L                       2 L   ⎣          ⎦
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )(1) ⇒ I D = 0.12 mA
                                    2
(a)        ID = ⎜
                ⎝ 2 ⎠
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )( 2 ) ⇒ I D = 0.48 mA
                                     2
(b)        ID = ⎜
                ⎝ 2 ⎠
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )( 3) ⇒ I D = 1.08 mA
                                    2
(c)        ID = ⎜
                ⎝ 2 ⎠

3.14
VSD (sat) = VSG + VTP = 3 − 0.8 = 2.2 V
     ⎛ 15 ⎞⎛ 0.04 ⎞
KP = ⎜     ⎟⎜     ⎟ = 0.25 mA/V
                                2

     ⎝ 1.2 ⎠⎝ 2 ⎠
          VSD = 0.2 Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = 0.21 mA
                                                                       2
a)
                                       ⎣                                 ⎦
          VSD = 1.2 V Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )(1.2 ) − (1.2 ) ⎤ = 0.96 mA
                                                                       2
b)
                                          ⎣                              ⎦
c)        VSD = 2.2 V Sat I D = 0.25(3 − 0.8) = 1.21 mA
                                             2


d)        VSD = 3.2 V Sat ID = 1.21 mA
e)        VSD = 4.2 V Sat ID = 1.21 mA

3.15
                  μ p ∈ox       ( 250 )( 3.9 ) (8.85 ×10−14 )       8.629 × 10−11
  ′
k p = μ p Cox =             =                                   =
                    t0 x                    t0 x                        t0 x
(a)       tox = 500Å ⇒ k ′ = 17.3 μ A/V 2
                         p

(b)        250Å ⇒ k ′ = 34.5 μ A/V 2
                    p

(c)       100Å ⇒ k ′ = 86.3 μ A/V 2
                   p

(d)               ′
          50Å ⇒ k p = 173 μ A/V 2
(e)        25Å ⇒ k ′ = 345 μ A/V 2
                   p



3.16
      ∈ox ( 3.9 ) ( 8.85 × 10 )
                              −14

Cox =      =               −8
                                  = 6.90 × 10−8 F/cm 2
      t0 x      500 × 10
kn = ( μ n Cox ) = ( 675 ) ( 6.90 × 10−8 ) ⇒ 46.6 μ A/V 2
 ′
k ′ = ( μ p Cox ) = ( 375 ) ( 6.90 × 10−8 ) ⇒ 25.9 μ A/V 2
  p

PMOS:
k′ ⎛ W ⎞
           ⎜ ⎟ (VSG + VTP )
                            2
ID =
         p

        2 ⎝ L ⎠p
      ⎛ 0.0259 ⎞⎛ W ⎞             ⎛W ⎞
               ⎟⎜ ⎟ ( 5 − 0.6 ) ⇒ ⎜ ⎟ = 3.19
                               2
0.8 = ⎜
      ⎝ 2 ⎠⎝ L ⎠ p                ⎝ L ⎠p
L = 4 μ m ⇒ W p = 12.8 μ m
      ⎛ 0.0259 ⎞
Kp = ⎜         ⎟ ( 3.19 ) ⇒ K p = 41.3 μ A/V = K n
                                            2

      ⎝ 2 ⎠
Want Kn = Kp
 ′
kn ⎛ W ⎞     k′ ⎛ W ⎞
   ⎜ ⎟ = ⎜ ⎟ = 41.3
              p

2 ⎝ L ⎠N     2 ⎝ L ⎠p
⎛ 46.6 ⎞ ⎛ W ⎞        ⎛W ⎞
⎜      ⎟ ⎜ ⎟ = 41.3 ⇒ ⎜ ⎟ = 1.77
⎝  2 ⎠ ⎝ L ⎠N         ⎝ L ⎠N
L = 4 μ m ⇒ WN = 7.09 μ m

3.17
VGS = 2 V, I D = ( 0.2 )( 2 − 1.2 ) = 0.128 mA
                                         2


      1           1
r0 =      =                 ⇒ r0 = 781 kΩ
     λ I D ( 0.01)( 0.128 )
VGS = 4 V, I D = ( 0.2 )( 4 − 1.2 ) = 1.57 mA
                                         2


           1
r0 =               ⇒ r = 63.7 kΩ
     ( 0.01)(1.57 ) 0
        1          1
VA =        =           ⇒ VA = 100 V
        λ       ( 0.01)

3.18
     ⎛ 0.080 ⎞
             ⎟ ( 4 )( 3 − 0.8 ) = ( 0.16 )( 3 − 0.8 ) ⇒ I D = 0.774 mA
                               2                     2
ID = ⎜
     ⎝    2 ⎠
      1               1            1
r0 =      ⇒λ =            =                  ⇒ λ (max) = 0.00646 V −1
     λ ID           r0 I D ( 200 )( 0.774 )
                    1               1
VA ( min ) =                 =           ⇒ VA ( min ) = 155 V
                 λ ( max )       0.00646

3.19
VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤
               ⎣                    ⎦
ΔVTN = 2 = ( 0.8 ) ⎡ 2φ f + VSB − 2 ( 0.35 ) ⎤
                   ⎣                         ⎦
2.5 + 0.837 = 2 ( 0.35 ) + VSB ⇒ VSB = 10.4 V

3.20
       VTN = VTNo + r ⎡ 2φ f + VSB − 2φ f ⎤
                      ⎣                    ⎦
           = 0.75 + 0.6 ⎡ 2 ( 0.37 ) + 3 − 2 ( 0.37 ) ⎤
                        ⎣                             ⎦
           = 0.75 + 0.6 [1.934 − 0.860]
       VTN = 1.39 V
VDS (sat) = 2.5 − 1.39 = 1.11 V
⎛ 0.08 ⎞
            Sat Region I D = (15 ) ⎜      ⎟ ( 2.5 − 1.39 )
                                                           2
(a)
                                   ⎝ 2 ⎠
                       I D = 0.739 mA
                                ⎛ 0.08 ⎞ ⎡
            Non-Sat I D = (15 ) ⎜      ⎟ 2 ( 2.5 − 1.39 )( 0.25 ) − ( 0.25 ) ⎤
                                                                            2
(b)
                                ⎝   2 ⎠⎣                                      ⎦
                    I D = 0.296 mA

3.21
a.
VG = %ox t0 x = ( 6 × 106 )( 275 × 10−8 )
VG = 16.5 V
                    16.5
b.          VG =         ⇒ VG = 5.5 V
                     3

3.22
Want VG = ( 3)( 24 ) = %ox t0 x = ( 6 × 106 ) t0 x
t0 x = 1.2 ×10−5 cm = 1200 Angstroms

3.23
     ⎛ R2 ⎞            ⎛ 18 ⎞
VG = ⎜         ⎟ VDD = ⎜         ⎟ (10 ) = 3.6 V
     ⎝ R1 + R2 ⎠       ⎝ 18 + 32 ⎠
Assume transistor biased in saturation region
     V     V − VGS
                     = K n (VGS − VTN )
                                         2
ID = S = G
     RS        RS
3.6 − VGS = ( 0.5 )( 2 )(VGS − 0.8 )
                                                2


          = VGS − 1.6VGS + 0.64
               2


VGS − 0.6VGS − 2.96 = 0
  2



                   ( 0.6 )       + 4 ( 2.96 )
                             2
         0.6 ±
VGS =                              ⇒ VGS = 2.046 V
                       2
        VG − VGS      3.6 − 2.046
ID =                =             ⇒ I D = 0.777 mA
           RS              2
VDS = VDD − I D ( RD + RS )
       = 10 − ( 0.777 )( 4 + 2 ) ⇒ VDS = 5.34 V
VDS > VDS ( sat )

3.24
ID(mA)


        4

                    (a)



                             Q-pt


                   Q-pt
      1.67


                                    (b)


                                                 4     5 V (V)
                                                          DS
(a)            VGS = 4 V VDS (sat) = 4 − 0.8 = 3.2 V
If Sat I D = 0.25 ( 4 − 0.8 ) = 2.56
                                2


     VDS = 1.44 ×
Non-Sat
4 = I D RD + VDS = K n RD ⎣ 2 (VGS − VT ) VDS − VDS ⎦ + VDS
                          ⎡                      2
                                                    ⎤
4 = ( 0.25 )(1) ⎡ 2 ( 4 − 0.8 ) VDS − VDS ⎤ + VDS
                ⎣
                                       2
                                          ⎦
4 = 2.6VDS − 0.25VDS
                  2


0.25VDS − 2.6VDS + 4 = 0
     2


             2.6 ± 6.76 − 4
VDS =                       = 1.88 V
                 2 ( 0.25 )
      4 − 1.88
ID =           = 2.12 mA
          1
(b)       Non-Sat region
5 = I D RD + VDS = K n RD ⎡ 2 (VGS − VT )VDS − VDS ⎤ + VDS
                          ⎣
                                                2
                                                   ⎦
5 = ( 0.25 )( 3) ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ + VDS
                 ⎣
                                        2
                                           ⎦
5 = 7.3VDS − 0.75VDS
                  2


0.75 VDS − 7.3VDS + 5 = 0
      2


             7.3 ± 53.29 − 15
VDS =
                  2 ( 0.75 )
VDS = 0.741 V
     5 − 0.741
ID =           = 1.42 mA
         3

3.25
ID(mA)


      2.92
                    (a)



                                Q-pt
      1.25


                                                 (b)

                                           3.5         5 V (V)
                                                          SD
(a)          VSG = VDD = 3.5            VSD ( sat ) = 3.5 − 0.8 = 2.7 V
If biased in Sat region, I D = ( 0.2 )( 3.5 − 0.8 )
                                                           2


                             = 1.46 mA
VSD = 3.5 − (1.46 )(1.2 ) = 1.75 V                 ×
Biased in Non-Sat Region.
3.5 = VSD + I D RD = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤
                                  ⎣
                                                           2
                                                             ⎦
3.5 = VSD + ( 0.2 )(1.2 ) ⎡ 2 ( 3.5 − 0.8 ) VSD − VSD ⎤
                          ⎣
                                                    2
                                                      ⎦
3.5 = VSD + 1.296 VSD − 0.24 VSD
                               2


0.24 VSD − 2.296 VSD + 3.5 = 0
       2


        +2.296 ± 5.272 − 3.36
VSD =                         use − sign VSD = 1.90 V
               2 ( 0.24 )
I D = ( 0.2 ) ⎡ 2 ( 3.5 − 0.8 )(1.9 ) − (1.9 ) ⎤ = 0.2 [10.26 − 3.61]
                                              2
              ⎣                                 ⎦
      3.5 − 1.90
ID =                 = 1.33 mA
          1.2
I D = 1.33 mA
(b)          VSG = VDD = 5 V VSD ( sat ) = 5 − 0.8 = 4.2 V
If Sat Region I D = ( 0.2 )( 5 − 0.8 ) = 3.53 mA, VSD < 0
                                               2


Non-Sat Region.
5 = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤
                 ⎣
                                          2
                                            ⎦
5 = VSD + ( 0.2 )( 4 ) ⎡ 2 ( 5 − 0.8 ) VSD − VSD ⎤
                       ⎣
                                               2
                                                 ⎦
5 = VSD + 6.72 VSD − 0.8 VSD
                           2


0.8 VSD − 7.72 VSD + 5 = 0
      2


        7.72 ± 59.598 − 16
VSD =                      use − sign VSD = 0.698 V
              2 ( 0.8 )
       5 − 0.698
ID =             ⇒ I D = 1.08 mA
           4

3.26
     10 − VS
             = K p (VSG + VTP )
                                2
ID =
        RS
Assume transistor biased in saturation region
     ⎛ R2 ⎞
VG = ⎜         ⎟ ( 20 ) − 10
     ⎝ R1 + R2 ⎠
     ⎛ 22 ⎞
   =⎜         ⎟ ( 20 ) − 10 ⇒ VG = 4.67 V
     ⎝ 8 + 22 ⎠
VS = VG + VSG
  10 − ( 4.67 + VSG ) = (1)( 0.5 )(VSG − 2 )
                                                       2


          5.33 − VSG = 0.5 (VSG − 4VSG + 4 )
                              2


0.5VSG − VSG − 3.33 = 0
     2



               (1)       + 4 ( 0.5 )( 3.33)
                     2
        1±
VSG =                                         ⇒ VSG = 3.77 V
                         2 ( 0.5 )
10 − ( 4.67 + 3.77 )
 ID =                          ⇒ I D = 3.12 mA
                  0.5
VSD    = 20 − I D ( RS + RD )
       = 20 − ( 3.12 )( 0.5 + 2 ) ⇒ VSD = 12.2 V
VSD > VSD ( sat )

3.27
VG = 0, VSG = VS
Assume saturation region
I D = 0.4 = K p (VSG + VTP )
                             2



0.4 = ( 0.2 )(VS − 0.8 )
                           2



        0.4
VS =        + 0.8 ⇒ VS = 2.21 V
        0.2
VD = I D RD − 5 = ( 0.4 )( 5 ) − 5 = −3 V
VSD = VS − VD = 2.21 − ( −3) ⇒ VSD = 5.21 V
VSD > VSD ( sat )

3.28
VDD = I DQ RD + VDSQ + I DQ RS
                                         ⎛ k ′ ⎞⎛ W ⎞
(1) 10 = I DQ ( 5 ) + 5 + VGS and I DQ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                                                                2

                                         ⎝ 2 ⎠⎝ L ⎠
              ⎛ 0.060 ⎞ ⎛ W ⎞
                         ⎟ ⎜ ⎟ (VGS − 1.2 )
                                            2
or (2) I DQ = ⎜
              ⎝ 2 ⎠⎝ L ⎠
Let VGS = 2.5 V
Then from (1), 10 = I DQ ( 5 ) + 5 + 2.5 ⇒ I D = 0.5 mA
                     ⎛ 0.060 ⎞⎛ W ⎞               W
                             ⎟⎜ ⎟ ( 2.5 − 1.2 ) ⇒
                                               2
Then from (2), 0.5 = ⎜                              = 9.86
                     ⎝   2 ⎠⎝ L ⎠                 L
                     V      2.5
I DQ RS = VGS ⇒ RS = GS =       ⇒ RS = 5 k Ω
                     I DQ 0.5
          10
IR =            = ( 0.5 )( 0.05 ) = 0.025 mA
        R1 + R2
                     10
Then R1 + R2 =            = 400 k Ω
                    0.025
⎛ R2 ⎞                      ⎛ R2 ⎞
⎜         ⎟ (VDD ) = 2VGS ⇒ ⎜     ⎟ (10 ) = 2 ( 2.5 ) ⇒ R1 = R2 = 200 k Ω
⎝ R1 + R2 ⎠                 ⎝ 400 ⎠

3.29
             ⎛ 75 ⎞
K n = ( 25 ) ⎜ ⎟ ⇒ 0.9375 mA/V 2
             ⎝ 2⎠
     ⎛ 6 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −2 V
     ⎝ 6 + 14 ⎠
(VG − VGS ) − ( −5)
                       = I D = K n (VGS − VTN )
                                                2

         RS
−2 − VGS + 5 = ( 0.9375 )( 0.5 )(VGS − 1)
                                             2


3 − VGS = 0.469 (VGS − 2VGS + 1)
                   2
0.469 VGS + 0.0625 VGS − 2.53 = 0
        2


        −0.0625 ± 0.003906 + 4.746
VGS =                              ⇒ VGS = 2.26 V
                 2 ( 0.469 )
I D = 0.9375 ( 2.26 − 1) ⇒ I D = 1.49 mA
                             2


VDS = 10 − (1.49 )(1.7 ) ⇒ VDS = 7.47 V

3.30
20 = I DQ RS + VSDQ + I DQ RD
(1) 20 = VSG + 10 + I DQ RD
        ⎛ k′ ⎞⎛ W ⎞
 I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
           p                  2

        ⎝ 2 ⎠⎝ L ⎠
            ⎛ 0.040 ⎞ ⎛ W ⎞
                    ⎟ ⎜ ⎟ (VSG − 2 )
                                     2
(2) I DQ = ⎜
            ⎝ 2 ⎠⎝ L ⎠
For example, let I DQ = 0.8 mA and VSG = 4 V
             ⎛ 0.040 ⎞ ⎛ W           ⎞            W
                                     ⎟ ( 4 − 2) ⇒
                                               2
Then 0.8 = ⎜         ⎟⎜                             = 10
             ⎝ 2 ⎠⎝ L                ⎠            L
I DQ RS = VSG ⇒ ( 0.8 ) RS           = 4 ⇒ RS = 5 k Ω
From (1) 20 = 4 + 10 + ( 0.8 ) RD ⇒ RD = 7.5 k Ω
         20
IR =           = ( 0.8 )( 0.1) ⇒ R1 + R2 = 250 k Ω
       R1 + R2
⎛ R1 ⎞
⎜          ⎟ ( 20 ) = 2VSG = ( 2 )( 4 )
⎝ R1 + R2 ⎠
  R1
     ( 20 ) = 8 ⇒ R1 = 100 k Ω, R2 = 150 k Ω
250

3.31
                    I Q = 50 = 500 (VGS − 1.2 ) ⇒ VGS = 1.516 V
                                                      2
(a)       (i)
                    VDS = 5 − ( −1.516 ) =⇒ VDS = 6.516 V
           I Q = 1 = ( 0.5 )(VGS − 1.2 ) ⇒ VGS = 2.61 V
                                             2
(ii)
          VDS = 5 − ( −2.61) ⇒ VDS = 7.61 V
(b)       (i) Same as (a) VGS = VDS = 1.516 V
(ii)      VGS = VDS = 2.61 V

3.32
I D = K n (VGS − VTN )
                         2



0.25 = ( 0.2 )(VGS − 0.6 )
                                 2



        0.25
VGS =         + 0.6 ⇒ VGS = 1.72 V ⇒ VS = −1.72 V
         0.2
VD = 9 − ( 0.25 )( 24 ) ⇒ VD = 3 V

3.33

(a)
ID(mA)



      1.0
  0.808

                               Q-pt
      0.5




                            3.81                         10 V (V)
                                                             DS

         5 −1
RD =          ⇒ RD = 8 K
         0.5
I DQ = 0.5 = 0.25 (VGS − 1.4 ) ⇒ VGS = 2.81 V
                                      2


        −2.81 − ( −5 )
RS =                  ⇒ RS = 4.38 K
              0.5
(b)          Let RD = 8.2 K, RS = 4.3 K
         −VGS − ( −5 )
                         = I D = 0.25 (VGS − 1.4 )
                                                     2
Now
               4.3
5 − VGS     = 1.075 (VGS − 2.8 VGS + 1.96 )
                       2


1.075 VGS − 2.01 VGS − 2.89 = 0
        2


         2.01 ± 4.04 + 12.427
VGS =                         ⇒ VGS = 2.82 V
               2 (1.075 )
I D = 0.25 ( 2.82 − 1.4 ) ⇒ I D = 0.504 mA
                           2


VDS = 10 − ( 0.504 )( 8.2 + 4.3) ⇒ VDS = 3.70 V
(c)          If RS = 4.3 + 10% = 4.73 K
5 − VGS = 1.18 (VGS − 2.8VGS + 1.96 )
                  2


1.18 VGS − 2.31 VGS − 2.68 = 0
       2


         2.31 ± 5.336 + 12.65
VGS =                         = 2.78 V
               2 (1.18 )
I D = ( 0.25 )( 2.78 − 1.4 ) ⇒ I D = 0.476 mA
                               2


If Rs = 4.3 − 10% = 3.87 K
5 − VGS = ( 0.9675 ) (VGS − 2.8VGS + 1.96 )
                        2


0.9675VGS − 1.71VGS − 3.10 = 0
        2


         1.71 ± 2.924 + 12.0
VGS =                        = 2.88 V
              2 ( 0.9675 )
I D = ( 0.25 )( 2.88 − 1.4 ) = 0.548 mA
                               2




3.34
VDD = VSD + I DQ R
9 = 2.5 + ( 0.1) R ⇒ R = 65 k Ω
       ⎛ k′ ⎞⎛ W ⎞
I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
           p                   2

       ⎝ 2 ⎠⎝ L ⎠
         ⎛ 0.025 ⎞ ⎛ W ⎞               W
( 0.1) = ⎜       ⎟ ⎜ ⎟ ( 2.5 − 1.5 ) ⇒
                                    2
                                         =8
         ⎝ 2 ⎠⎝      L⎠                L
Then for L = 4 μ m, W = 32 μ m
3.35
5 = I DQ RS + VSDQ = I DQ ( 2 ) + 2.5
I DQ = 1.25 mA
         10
IR =           = (1.25 )( 0.1) ⇒ R1 + R2 = 80 k Ω
       R1 + R2
I DQ = K p (VSG + VTP )
                           2


                                 1.25
1.25 = 0.5 (VSG + 1.5 ) ⇒
                           2
                                      − 1.5 = VSG
                                  0.5
VSG = 0.0811 V
VG = VS − VSG = 2.5 − 0.0811 = 2.42 V
     ⎛ R2 ⎞
VG = ⎜         ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠
       ⎛R ⎞
2.42 = ⎜ 2 ⎟ (10 ) − 5 ⇒ R2 = 59.4 k Ω, R1 = 20.6 k Ω
       ⎝ 80 ⎠

3.36

(a)
ID(mA)



  0.429


                               Q-pt




                                                      5 V (V)
                                                         SD

       VD − ( −5 )       5−2
RD =                 =        ⇒ RD = 12 K
          I DQ           0.25
     ⎛W    ⎞⎛ k′ ⎞
           ⎟ ⎜ ⎟ (VSG + VTP )
                               2
ID = ⎜
                p

     ⎝L    ⎠⎝ 2 ⎠
              ⎛ 0.035 ⎞
 0.25 = (15 ) ⎜       ⎟ (VSG − 1.2 ) ⇒ VSG = 2.18 V
                                    2

              ⎝ 2 ⎠
       5 − 2.18
 RS =            ⇒ RS = 11.3 K
         0.25
VSD = 2.18 − ( −2 ) = 4.18 V
(b)
 k ′ = 35 + 5% = 36.75 μ A/V 2
   p

            ⎛ 0.03675 ⎞                5 − VSG
I D = (15 ) ⎜         ⎟ (VSG − 1.2 ) =
                                    2

            ⎝    2    ⎠                 11.3
3.11(VSG − 2.4VSG + 1.44 ) = 5 − VSG
       2


3.11VSG − 6.46VSG − 0.522 = 0
      2
6.46 ± 41.73 + 6.49
VSG =                        = 2.155 V
               2 ( 3.11)
        5 − 2.155
ID =               = 0.252 mA
          11.3
VSD    = 10 − ( 0.252 )(12 + 11.3) = 4.13 V
k ′ = 35 − 5% = 33.25 μ A/V 2
  p

            ⎛ 0.03325 ⎞                5 − VSG
I D = (15 ) ⎜         ⎟ (VSG − 1.2 ) =
                                    2

            ⎝    2    ⎠                 11.3
2.82 (VSG − 2.4VSG + 1.44 ) = 5 − VSG
        2


2.82VSG − 5.77VSG − 0.939 = 0
      2


         5.77 ± 33.29 + 10.59
VSG =                         = 2.198 V
               2 ( 2.82 )
        5 − 2.198
ID =               = 0.248 mA
          11.3
VSD    = 10 − ( 0.248 )(12 + 11.3) = 4.22 V

3.37
        −VSD − ( −10 )         −6 + 10
ID =                     ⇒5=           ⇒ RD = 0.8 kΩ
               RD                RD
I D = K P (VSG + VTP ) ⇒ 5 = 3 (VSG − 1.75 )
                         2                          2



           5
VSG =        + 1.75 = 3.04 V ⇒ VG = −3.04
           3
     ⎛ R2 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −3.04
     ⎝ R1 + R2 ⎠
Rin = R1 || R2 = 80 kΩ
1
   ⋅ ( 80 )(10 ) = 5 − 3.04 ⇒ R1 = 408 kΩ
R1
 408 R2
         = 80 ⇒ R2 = 99.5 kΩ
408 + R2

3.38
                 ⎛ 60 ⎞
(a)       K n1 = ⎜ ⎟ ( 4 ) = 120 μ A/V 2
                 ⎝ 2 ⎠
                 ⎛ 60 ⎞
         K n 2 = ⎜ ⎟ (1) = 30 μ A/V 2
                 ⎝ 2 ⎠
For vI = 1 V , M1 Sat. region, M2 Non-sat region.
I D 2 = I D1
30 ⎡ 2 ( −VTNL )( 5 − vO ) − ( 5 − vO ) ⎤ = 120 (1 − 0.8 )
                                     2                       2
   ⎣                                    ⎦
We find vO − 6.4vO + 7.16 = 0 ⇒ vO = 4.955 V
            2


(b)        For vI = 3 V , M1 Non-sat region, M2 Sat. region. I D 2 = I D1
30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 3 − 0.8 ) vO − vO ⎤
                    2                         2
   ⎣            ⎦       ⎣                       ⎦
We find 4vO − 17.6vO + 3.24 = 0 ⇒ vO = 0.193 V
          2


(c)        For vI = 5 V , biasing same as (b)
30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 5 − 0.8 ) vO − vO ⎤
                    2                         2
   ⎣            ⎦       ⎣                       ⎦
We find 4vO − 33.6vO + 3.24 = 0 ⇒ vO = 0.0976 V
          2




3.39
For vI = 5 V , M1 Non-sat region, M2 Sat. region.
I D1 = I D 2
   ′
⎛ kn ⎞ ⎛ W ⎞                                         ′
                                                  ⎛ kn ⎞ ⎛ W ⎞
⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 (VGS1 − VTN 1 ) VDS 1 − VDS 1 ⎦ = ⎜ 2 ⎟ ⎜ L ⎟ (VGS 2 − VTN 2 )
             ⎡                                ⎤
                                           2                                   2

⎝ ⎠ ⎝ ⎠1                                          ⎝ ⎠ ⎝ ⎠2
⎛ W⎞ ⎡
⎜ ⎟ ⎣ 2 ( 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = (1) ⎡0 − ( −2 ) ⎤
                                       2                      2

                                         ⎦       ⎣          ⎦
⎝ L ⎠1
             ⎛W ⎞
which yields ⎜ ⎟ = 3.23
             ⎝ L ⎠1

3.40
a.        M1 and M2 in saturation
K n1 (VGS 1 − VTN 1 ) = K n 2 (VGS 2 − VTN 2 )
                     2                       2


K n1 = K n 2 , VTN 1 = VTN 2 ⇒ VGS1 = VGS 2 = 2.5 V, V0 = 2.5 V
I D = (15 )( 40 )( 2.5 − 0.8 ) ⇒ I D = 1.73 mA
                             2


b.
⎛W ⎞ ⎛W ⎞
⎜ ⎟ > ⎜ ⎟ ⇒ VGS1 < VGS 2
⎝ L ⎠1 ⎝ L ⎠ 2
40 (VGS1 − 0.8 ) = (15 )(VGS 2 − 0.8 )
                 2                       2


VGS 2 = 5 − VGS 1
1.633 (VGS 1 − 0.8 ) = ( 5 − VGS1 − 0.8 )
2.633VGS 1 = 5.506 ⇒ VGS 1 = 2.09 V
VGS 2 = 2.91 V, V0 = VGS1 = 2.91 V

I D = (15 )(15 )( 2.91 − 0.8 ) ⇒ I D = 1.0 mA
                                 2




3.41
(a)
V1 = VGS 3 = 2.5 V
            ⎛ W ⎞ ⎛ 0.06 ⎞
                         ⎟ ( 2.5 − 1.2 )
                                         2
I D = 0.5 = ⎜ ⎟ ⎜
            ⎝ L ⎠3 ⎝ 2 ⎠
⎛W ⎞
⎜ ⎟ = 9.86
⎝ L ⎠3
V2 = 6 V ⇒ VGS 2 = V2 − V1 = 6 − 2.5 = 3.5 V
      ⎛ W ⎞ ⎛ 0.06 ⎞                 ⎛W ⎞
                   ⎟ ( 3.5 − 1.2 ) ⇒ ⎜ ⎟ = 3.15
                                  2
0.5 = ⎜ ⎟ ⎜
      ⎝ L ⎠2 ⎝ 2 ⎠                   ⎝ L ⎠2
VGS1 = 10 − V2 = 10 − 6 = 4 V
        ⎛ W ⎞ ⎛ 0.06 ⎞                ⎛W ⎞
                      ⎟ ( 4 − 1.2 ) ⇒ ⎜ ⎟ = 2.13
                                   2
 0.5 = ⎜ ⎟ ⎜
        ⎝ L ⎠1 ⎝ 2 ⎠                  ⎝ L ⎠1
(b)
   ′
 kn1 = 0.06 + 5% = 0.063 mA/V 2
  ′       ′
 kn 2 = k n3 = 0.6 − 5% = 0.057 mA/V 2
                       ⎛ 0.057 ⎞
For M3: I D = ( 9.86 ) ⎜       ⎟ (V1 − 1.2 )
                                             2

                       ⎝ 2 ⎠
                       ⎛ 0.057 ⎞
For M2: I D = ( 3.15 ) ⎜       ⎟ (V2 − V1 − 1.2 )
                                                  2

                       ⎝   2 ⎠
⎛ 0.063 ⎞
For M1: I D = ( 2.13) ⎜       ⎟ (10 − V2 − 1.2 )
                                                 2

                      ⎝ 2 ⎠
0.281(V1 − 1.2 ) = 0.0898 (V2 − V1 − 1.2 ) = 0.0671( 8.8 − V2 )
                   2                          2                            2


Take square root.
0.530 (V1 − 1.2 ) = 0.300 (V2 − V1 − 1.2 ) = 0.259 ( 8.8 − V2 )
           (1) 0.830V1 = 0.300V2 + 0.276    (2) 0.559V2 = 0.300V1 + 2.64

From (2) ⇒ V2 = 0.537V1 + 4.72
Substitute into (1)
0.830V1 = 0.300 [ 0.537V1 + 4.72] + 0.276 = 0.161V1 + 1.69
V1 = 2.53 V
Then
V2 = 0.537 ( 2.53) + 4.72
V2 = 6.08 V

3.42
ML in saturation
MD in nonsaturation
⎛W ⎞                     ⎛W ⎞
⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦
                                ⎡                            ⎤
                     2                                     2

⎝ L ⎠L                   ⎝ L ⎠D
                       ⎛W ⎞
(1)( 5 − 0.1 − 0.8) = ⎜ ⎟ ⎡ 2 ( 5 − 0.8)( 0.1) − ( 0.1) ⎤
                   2                                   2

                       ⎝ L ⎠D ⎣                          ⎦
        ⎛W ⎞
16.81 = ⎜ ⎟ [ 0.83]
        ⎝ L ⎠D
⎛W ⎞
⎜ ⎟ = 20.3
⎝ L ⎠D

3.43
ML in saturation
MD in nonsaturation
⎛W ⎞                   ⎛W ⎞
⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦
                               ⎡                       ⎤
                   2                                2

⎝ L ⎠L                 ⎝ L ⎠D

(1)(1.8 ) = ⎛ ⎞ ⎡ 2 ( 5 − 0.8 )( 0.05) − ( 0.05) ⎤
         2   W                                  2
            ⎜ ⎟ ⎣                                 ⎦
            ⎝ L ⎠D
       ⎛W ⎞
3.24 = ⎜ ⎟ [ 0.4175]
       ⎝ L ⎠D
⎛W ⎞
⎜ ⎟ = 7.76
⎝ L ⎠D

3.44
      VDD − V0 5 − 0.1
ID =           =        = 0.49 mA
         RD        10
Transistor biased in nonsaturation
  I D = 0.49
                 ⎛W ⎞
     = ( 0.015 ) ⎜ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤
                                                     2

                 ⎝L⎠  ⎣                                ⎦
       ⎛W ⎞                W
0.49 = ⎜ ⎟ 0.01005 ⇒           = 48.8
       ⎝L⎠                  L

3.45
5 = I D RD + Vγ + VDS
5 = (12 ) RD + 1.6 + 0.2 ⇒ RD = 267 Ω
      ⎛ k′ ⎞⎛ W ⎞
I D = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                               2

      ⎝ 2 ⎠⎝ L ⎠
     ⎛ 0.040 ⎞ ⎛ W ⎞              W
              ⎟ ⎜ ⎟ ( 5 − 0.8 ) ⇒
                                2
12 = ⎜                              = 34
     ⎝    2 ⎠⎝ L ⎠                L

3.46
5 = VSD + I D RD + Vγ
5 = 0.15 + (15 ) RD + 1.6 ⇒ RD = 217 Ω
      ⎛ k′ ⎞⎛ W ⎞
I D = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
         p                    2

      ⎝ 2 ⎠⎝ L ⎠
     ⎛ 0.020 ⎞⎛ W ⎞              W
              ⎟⎜ ⎟ ( 5 − 0.8 ) ⇒
                               2
15 = ⎜                             = 85
     ⎝ 2 ⎠⎝ L ⎠                  L

3.47
(a)
 VDD − VO     ⎛W      ⎞⎛ 0.060 ⎞
           = 2⎜                ⎟ ⎡( 2 )(VGS − VTN ) VO − VO ⎤
                                                           2
                      ⎟⎜         ⎣                           ⎦
    RD        ⎝L      ⎠⎝ 2 ⎠
   5 − 0.2    ⎛W   ⎞
                   ⎟ ( 0.030 ) ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤
                                                               2
           = 2⎜
     20       ⎝L   ⎠           ⎣                                 ⎦
                     ⎛W ⎞ ⎛W ⎞ ⎛W ⎞
       0.24 = 0.0984 ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 2.44
                     ⎝ L ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2
(b)
 5 − VO            ⎛ 0.06 ⎞
        = ( 2.44 ) ⎜      ⎟ ⎡ 2 ( 5 − 0.8 ) VO − VO ⎤
                                                   2

   20              ⎝   2 ⎠⎣                          ⎦
5 − VO = 12.30VO − 1.464VO2
1.464VO2 − 13.30VO + 5 = 0
       13.30 ± 176.89 − 29.28
VO =
              2 (1.464 )
VO = 0.393 V

3.48
       ⎛W      ′
          ⎞ ⎛ kn ⎞
          ⎟ ⎜ ⎟ (VGS 1 − VTN )
                                    2
I Q1 = ⎜
       ⎝L ⎠1 ⎝ 2⎠
       ⎛W       ′
          ⎞ ⎛ kn ⎞
          ⎟ ⎜ ⎟ (VDS 2 ( sat ) )
                                    2
I Q1 = ⎜
       ⎝L ⎠2 ⎝ 2 ⎠
      ⎛ W ⎞ ⎛ 0.08 ⎞                ⎛W ⎞       ⎛W ⎞
                     ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 10 = ⎜ ⎟
                              2
0.1 = ⎜ ⎟ ⎜
      ⎝ L ⎠2 ⎝ 2 ⎠                  ⎝ L ⎠2     ⎝ L ⎠1
⎛ W ⎞ ⎛ 200 ⎞ ⎛ W ⎞
⎜ ⎟ =⎜         ⎟ ⎜ ⎟ = 20
⎝ L ⎠3 ⎝ 100 ⎠ ⎝ L ⎠ 2
M1 & M2 matched.
                  ⎛ 0.08 ⎞
Then 0.1 = (10 ) ⎜         ⎟ (VGS 1 − 0.25 )
                                             2

                  ⎝   2 ⎠
VGS1 = 0.75 V
VD1 = −0.75 + 2 = 1.25 V
        2.5 − 1.25
RD =               ⇒ RD = 12.5 K
           0.1
3.49
(a)
         ⎛ W ⎞ ⎛ k′ ⎞
 I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSDB ( sat ) )
                   p              2

         ⎝ L ⎠B ⎝ 2 ⎠
         ⎛ W ⎞ ⎛ 0.04 ⎞                    ⎛W ⎞            ⎛W ⎞
                      ⎟ ( 0.8 ) ⇒
                               2
0.25 = ⎜ ⎟ ⎜                               ⎜ ⎟ = 19.5 = ⎜ ⎟
         ⎝ L ⎠B ⎝ 2 ⎠                      ⎝ L ⎠B          ⎝ L ⎠A
                                           ⎛W ⎞   I KQ 2 ⎛ W ⎞
                                           ⎜ ⎟ =         ⎜ ⎟
                                           ⎝ L ⎠C  IQ 2 ⎝ L ⎠B
                                                   ⎛ 100 ⎞
                                                  =⎜     ⎟ (19.5 ) = 7.81
                                                   ⎝ 250 ⎠
                    ′
          ⎛W ⎞ ⎛ kp ⎞
  I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSGA + VTP )
                                    2

          ⎝ L ⎠A ⎝ 2 ⎠
                ⎛ 0.04 ⎞
 0.25 = (19.5 ) ⎜      ⎟ (VSGA − 0.5 )
                                       2

                ⎝ 2 ⎠
VSGA = 1.30 V
(b)
VDA = 1.3 − 4 = −2.7 V
       −2.7 − ( −5 )
RD =                   ⇒ RD = 9.2 K
           0.25

3.50
      ⎛W          ′
            ⎞ ⎛ kn ⎞
            ⎟ ⎜ ⎟ (VDS 2 ( sat ) )
                                   2
 IQ = ⎜
      ⎝L    ⎠2 ⎝ 2⎠
      ⎛W    ⎞ ⎛ 0.06 ⎞              ⎛W ⎞       ⎛W ⎞
                      ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 53.3 = ⎜ ⎟
                               2
0.4 = ⎜     ⎟ ⎜
      ⎝L    ⎠2 ⎝ 2 ⎠                ⎝ L ⎠2     ⎝ L ⎠1
       ⎛ W ⎞ ⎛ k′ ⎞
 I Q = ⎜ ⎟ ⎜ n ⎟ (VGS 1 − VTN )
                                   2

       ⎝ L ⎠1 ⎝ 2 ⎠
               ⎛ 0.06 ⎞
0.4 = ( 53.3) ⎜       ⎟ (VGS 1 − 0.75 )
                                        2

               ⎝ 2 ⎠
VGS1 = 1.25 V VD1 = −1.25 + 4 = 2.75 V
       5 − 2.75
RD =              ⇒ RD = 5.625 K
          0.4

3.51
VDS ( sat ) = VGS − VP
So VDS > VDS ( sat ) = −VP , I D = I DSS

3.52
VDS ( sat ) = VGS − VP = VGS + 3 = VDS ( sat )
a.         VGS = 0 ⇒ I D = I DSS = 6 mA
                                 2
                       ⎛ V ⎞
                                                  2
                                      ⎛ −1 ⎞
b.         I D = I DSS ⎜ 1 − GS ⎟ = 6 ⎜ 1 − ⎟ ⇒ I D = 2.67 mA
                       ⎝    VP ⎠      ⎝ −3 ⎠
                             2
                   ⎛ −2 ⎞
c.         I D = 6 ⎜ 1 − ⎟ ⇒ I D = 0.667 mA
                   ⎝ −3 ⎠
d.         ID = 0
3.53
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                         2
            ⎛   1 ⎞
2.8 = I DSS ⎜1 − ⎟
            ⎝ VP ⎠
                             2
             ⎛   3 ⎞
0.30 = I DSS ⎜1 − ⎟
             ⎝ VP ⎠
                     2
      ⎛     1    ⎞
      ⎜1 −       ⎟
 2.8 ⎝ VP        ⎠ = 9.33
    =              2
0.30 ⎛      3    ⎞
      ⎜1 −       ⎟
      ⎝    VP    ⎠
⎛     1⎞
⎜1 −   ⎟
⎝    VP⎠ = 3.055
⎛     3⎞
⎜1 −   ⎟
⎝ VP   ⎠
    1           9.165
1−    = 3.055 −
   VP            VP
8.165
      = 2.055 ⇒ VP = 3.97 V
 VP
                                 2
            ⎛    1 ⎞
2.8 = I DSS ⎜1 −   ⎟ = I DSS ( 0.560 ) ⇒ I DSS = 5.0 mA
            ⎝ 3.97 ⎠

3.54
VS = −VGS , VSD = VS − VDD
Want VSD ≥ VSD ( sat ) = VP − VGS
VS − VDD ≥ VP − VGS − VGS − VDD ≥ VP − VGS ⇒ VDD ≤ −VP
So VDD ≤ −2.5 V
                                         2
                ⎛ V ⎞
I D = 2 = I DSS ⎜1 − GS ⎟
                ⎝   VP ⎠
                 2
      ⎛ V ⎞
2 = 6 ⎜ 1 − GS ⎟ ⇒ VGS = 1.06 V ⇒ VS = −1.06 V
      ⎝ 2.5 ⎠

3.55
I D = K n (VGS − VTN )
                             2



18.5 = K n ( 0.35 − VTN )
                                     2



86.2 = K n ( 0.5 − VTN )
                                 2


Then
                ( 0.35 − VTN )
                                                 2
18.5
     = 0.2146 =                  ⇒ VTN = 0.221 V
                ( 0.50 − VTN )
                               2
86.2

18.5 = K n ( 0.35 − 0.221) ⇒ K n = 1.11 mA / V 2
                                             2




3.56
I D = K (VGS − VTN )
                         2



250 = K ( 0.75 − 0.24 ) ⇒ K = 0.961 mA / V 2
                                     2
3.57
                            2
            ⎛ V ⎞       V     V
I D = I DSS ⎜ 1 − GS ⎟ = S = − GS
            ⎝    VP ⎠   RS     RS
                2
    ⎛ V ⎞        V
10 ⎜ 1 − GS ⎟ = − GS
    ⎝    −5 ⎠    0.2
  ⎛ 2V        V ⎞
               2
2 ⎜1 + GS + GS ⎟ = −VGS
  ⎝      5    25 ⎠
 2 2 9
   VGS + VGS + 2 = 0
25       5
2VGS + 45VGS + 50 = 0
   2



                    ( 45 ) − 4 ( 2 )( 50 )
                            2
        −45 ±
VGS =                                      ⇒ VGS   = −1.17 V
                       2 ( 2)
         VGS 1.17
ID = −      =     ⇒ I D = 5.85 mA
         RS   0.2
VD = 20 − ( 5.85 )( 2 ) = 8.3 V
VDS = VD − VS = 8.3 − 1.17 ⇒ VDS = 7.13 V

3.58
VDS = VDD − VS
8 = 10 − VS ⇒ VS = 2 V = I D RS = ( 5 ) RS ⇒ RS = 0.4 kΩ
                            2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝ VP ⎠
                        2
          ⎛ −1 ⎞
5 = I DSS ⎜1 − ⎟ Let I DSS = 10 mA
          ⎝ VP ⎠
                    2
       ⎛ −1 ⎞
5 = 10 ⎜ 1 − ⎟ ⇒ VP = −3.41 V
       ⎝ VP ⎠
VG = VGS + VS = −1 + 2 = 1 V
     ⎛ R2 ⎞           1
VG = ⎜         ⎟ VDD = ⋅ Rin ⋅ VDD
     ⎝ R1 + R2 ⎠      R1
    1
1 = ( 500 )(10 ) ⇒ R1 = 5 MΩ
   R1
 5R2
       = 0.5 ⇒ R2 = 0.556 MΩ
5 + R2

3.59
                            2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝ VP ⎠
                    2
      ⎛ V ⎞
5 = 8 ⎜ 1 − GS ⎟ ⇒ VGS = 0.838 V
      ⎝     4 ⎠
VSD = VDD − I D ( RS + RD )
    = 20 − ( 5 )( 0.5 + 2 ) ⇒ VSD = 7.5 V
VS = 20 − ( 5 )( 0.5 ) = 17.5 V
VG = VS + VGS = 17.5 + 0.838 = 18.3 V
     ⎛ R2 ⎞           1
VG = ⎜         ⎟ VDD = ⋅ Rin ⋅ VDD
     ⎝ R1 + R2 ⎠      R1
       1
18.3 = (100 ) ( 20 ) ⇒ R1 = 109 kΩ
       R1
 109 R2
         = 100 ⇒ R2 = 1.21 MΩ
109 + R2

3.60
                                2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                    2
      ⎛ V ⎞
5 = 7 ⎜ 1 − GS ⎟ ⇒ VGS = 0.465 V
      ⎝     3 ⎠
VSD = VDD − I D ( RS + RD )
6 = 12 − ( 5 )( 0.3 + RD ) ⇒ RD = 0.9 kΩ
VS = 12 − ( 5 )( 0.3) = 10.5 V
VG = VS + VGS = 10.5 + 0.465 = 10.965 V
     ⎛ R2 ⎞
VG = ⎜         ⎟ VDD
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
10.965 = ⎜ 2 ⎟ (12 ) ⇒ R2 = 91.4 kΩ ⇒ R1 = 8.6 kΩ
          ⎝ 100 ⎠

3.61
     ⎛ R2 ⎞            ⎛ 60 ⎞
VG = ⎜         ⎟ VDD = ⎜          ⎟ ( 20 ) ⇒ VG = 6 V
     ⎝ R1 + R2 ⎠       ⎝ 140 + 60 ⎠
                                2
            ⎛ V ⎞       V   V − VGS
I D = I DSS ⎜ 1 − GS ⎟ = S = G
            ⎝    VP ⎠   RS     RS
                            2
          ⎛       VGS ⎞
(8 )( 2 ) ⎜1 −
          ⎜             ⎟ = 6 − VGS
          ⎝      ( −4 ) ⎟
                        ⎠
   ⎛ V       V2 ⎞
16 ⎜ 1 + GS + GS ⎟ = 6 − VGS
   ⎝     2    16 ⎠
VGS + 9VGS + 10 = 0
  2



                  (9)       − 4 (10 )
                        2
         −9 ±
VGS =                                   ⇒ VGS = −1.30
                     2
        ⎛ ( −1.30 ) ⎞
                                    2

I D = 8 ⎜1 −
        ⎜            ⎟ ⇒ I D = 3.65 mA
        ⎝    ( −4 ) ⎟⎠
VDS = VDD − I D ( RS + RD )
       = 20 − ( 3.65 )( 2 + 2.7 )
VDS = 2.85 V
VDS > VDS ( sat ) = VGS − VP
       = −1.30 − ( −4 )
       = 2.7 V (Yes)

3.62
VDS = VDD − I D ( RS + RD )
5 = 12 − I D ( 0.5 + 1) ⇒ I D = 4.67 mA
VS = I D RS = ( 4.67 ) ( 0.5 ) ⇒ VS = 2.33 V
     ⎛ R2 ⎞            ⎛ 20 ⎞
VG = ⎜         ⎟ VDD = ⎜          ⎟ (12 ) ⇒ VG = 0.511 V
     ⎝ R1 + R2 ⎠       ⎝ 450 + 20 ⎠
VGS = VG − VS = 0.511 − 2.33 ⇒ VGS = −1.82 V
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
          ⎛ ( −1.82 ) ⎞
                             2

4.67 = 10 ⎜ 1 −
          ⎜           ⎟ ⇒ VP = −5.75 V
          ⎝     VP ⎟  ⎠

3.63
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟ , VGS = 0
            ⎝    VP ⎠
I D = I DSS = 4 mA
       VDD − VDS 10 − 3
RD =            =       ⇒ RD = 1.75 kΩ
          ID       4

3.64
VSD = VDD − I D RS
10 = 20 − (1) RS ⇒ RS = 10 kΩ
            VDD 20
R1 + R2 =      =     = 200 kΩ
             I   0.1
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                2
      ⎛ V ⎞
1 = 2 ⎜1 − GS ⎟ ⇒ VGS = 0.586 V
      ⎝    2 ⎠
VG = VS + VGS = 10 + 0.586 = 10.586
     ⎛ R2 ⎞
VG = ⎜         ⎟ VDD
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
10.586 = ⎜ 2 ⎟ ( 20 ) ⇒ R2 = 106 kΩ
          ⎝ 200 ⎠
R1 = 94 kΩ

3.65
VDS = VDD − I D ( RS + RD )
2 = 3 − ( 0.040 )(10 + RD ) ⇒ RD = 15 kΩ
I D = K (VGS − VTN )
                       2



40 = 250 (VGS − 0.20 ) ⇒ VGS = 0.60 V
                           2



VG = VGS + VS = 0.60 + ( 0.040 )(10 ) = 1.0 V
      ⎛ R2 ⎞
VG = ⎜          ⎟ VDD
      ⎝ R1 + R2 ⎠
    ⎛ R ⎞
1 = ⎜ 2 ⎟ ( 3) ⇒ R2 = 50 kΩ
    ⎝ 150 ⎠
R1 = 100 kΩ

3.66
For VO = 0.70 V ⇒ VDS = 0.70 > VDS ( sat ) = VGS − VTN
     0.75 − 0.15 = 0.6
Biased in the saturation region
      V − VDS 3 − 0.7
I D = DD         =        ⇒ I D = 46 μ A
         RD          50
I D = K (VGS − VTN ) ⇒ 46 = K ( 0.75 − 0.15 ) ⇒ K = 128 μ A / V 2
                       2                        2

More Related Content

What's hot

Fast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodFast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodIAEME Publication
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...SEENET-MTP
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problemMohammed Imran
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSLUIS POWELL
 
Mhd flow of a third grade fluid with heat transfer and
Mhd flow of a third grade fluid with heat transfer andMhd flow of a third grade fluid with heat transfer and
Mhd flow of a third grade fluid with heat transfer andAlexander Decker
 
D03402029035
D03402029035D03402029035
D03402029035theijes
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlineareSAT Publishing House
 
i(G)-Graph - G(i) Of Some Special Graphs
i(G)-Graph - G(i) Of Some Special Graphsi(G)-Graph - G(i) Of Some Special Graphs
i(G)-Graph - G(i) Of Some Special Graphsiosrjce
 
The magnetic structure of NiS2
The magnetic structure of NiS2The magnetic structure of NiS2
The magnetic structure of NiS2Shinichiro Yano
 
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...Alexander Decker
 
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...Alexander Decker
 

What's hot (20)

Fast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodFast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s method
 
Ch01p
Ch01pCh01p
Ch01p
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Solution homework2
Solution homework2Solution homework2
Solution homework2
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
Topic 6 kft 131
Topic 6 kft 131Topic 6 kft 131
Topic 6 kft 131
 
Topic 4 kft 131
Topic 4 kft 131Topic 4 kft 131
Topic 4 kft 131
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem
 
Topic 7 kft 131
Topic 7 kft 131Topic 7 kft 131
Topic 7 kft 131
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
Topic 9 kft 131
Topic 9 kft 131Topic 9 kft 131
Topic 9 kft 131
 
Mhd flow of a third grade fluid with heat transfer and
Mhd flow of a third grade fluid with heat transfer andMhd flow of a third grade fluid with heat transfer and
Mhd flow of a third grade fluid with heat transfer and
 
D03402029035
D03402029035D03402029035
D03402029035
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
i(G)-Graph - G(i) Of Some Special Graphs
i(G)-Graph - G(i) Of Some Special Graphsi(G)-Graph - G(i) Of Some Special Graphs
i(G)-Graph - G(i) Of Some Special Graphs
 
The magnetic structure of NiS2
The magnetic structure of NiS2The magnetic structure of NiS2
The magnetic structure of NiS2
 
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
 
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
 

Similar to Ch03s

Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdftajechop
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition명중 김
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition명중 김
 
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway.. ..
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 

Similar to Ch03s (20)

Ch11p
Ch11pCh11p
Ch11p
 
Ch16p
Ch16pCh16p
Ch16p
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdf
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch02s
Ch02sCh02s
Ch02s
 
Ch10p
Ch10pCh10p
Ch10p
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch06s
Ch06sCh06s
Ch06s
 
Tutorial no. 3(1)
Tutorial no. 3(1)Tutorial no. 3(1)
Tutorial no. 3(1)
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
G e hay's
G e hay'sG e hay's
G e hay's
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Ch08s
Ch08sCh08s
Ch08s
 

More from Bilal Sarwar (18)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch05p
Ch05pCh05p
Ch05p
 

Recently uploaded

Do You Think it is a Small Matter- David’s Men.pptx
Do You Think it is a Small Matter- David’s Men.pptxDo You Think it is a Small Matter- David’s Men.pptx
Do You Think it is a Small Matter- David’s Men.pptxRick Peterson
 
Sawwaf Calendar, 2024
Sawwaf Calendar, 2024Sawwaf Calendar, 2024
Sawwaf Calendar, 2024Bassem Matta
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Naveed Bangali
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Mangal Maseeh
 
شرح الدروس المهمة لعامة الأمة للشيخ ابن باز
شرح الدروس المهمة لعامة الأمة  للشيخ ابن بازشرح الدروس المهمة لعامة الأمة  للشيخ ابن باز
شرح الدروس المهمة لعامة الأمة للشيخ ابن بازJoEssam
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachiamil baba kala jadu
 
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》2tofliij
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhisoniya singh
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhisoniya singh
 
madina book to learn arabic part1
madina   book   to  learn  arabic  part1madina   book   to  learn  arabic  part1
madina book to learn arabic part1JoEssam
 
A Costly Interruption: The Sermon On the Mount, pt. 2 - Blessed
A Costly Interruption: The Sermon On the Mount, pt. 2 - BlessedA Costly Interruption: The Sermon On the Mount, pt. 2 - Blessed
A Costly Interruption: The Sermon On the Mount, pt. 2 - BlessedVintage Church
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Mangal Maseeh
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Mangal Maseeh
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Naveed Bangali
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiAmil Baba Mangal Maseeh
 

Recently uploaded (20)

Do You Think it is a Small Matter- David’s Men.pptx
Do You Think it is a Small Matter- David’s Men.pptxDo You Think it is a Small Matter- David’s Men.pptx
Do You Think it is a Small Matter- David’s Men.pptx
 
Sawwaf Calendar, 2024
Sawwaf Calendar, 2024Sawwaf Calendar, 2024
Sawwaf Calendar, 2024
 
young Whatsapp Call Girls in Adarsh Nagar🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Adarsh Nagar🔝 9953056974 🔝 escort serviceyoung Whatsapp Call Girls in Adarsh Nagar🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Adarsh Nagar🔝 9953056974 🔝 escort service
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
شرح الدروس المهمة لعامة الأمة للشيخ ابن باز
شرح الدروس المهمة لعامة الأمة  للشيخ ابن بازشرح الدروس المهمة لعامة الأمة  للشيخ ابن باز
شرح الدروس المهمة لعامة الأمة للشيخ ابن باز
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》
肄业证书结业证书《德国汉堡大学成绩单修改》Q微信741003700提供德国文凭照片可完整复刻汉堡大学毕业证精仿版本《【德国毕业证书】{汉堡大学文凭购买}》
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Chirag Delhi | Delhi
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Punjabi Bagh | Delhi
 
madina book to learn arabic part1
madina   book   to  learn  arabic  part1madina   book   to  learn  arabic  part1
madina book to learn arabic part1
 
young Call girls in Dwarka sector 3🔝 9953056974 🔝 Delhi escort Service
young Call girls in Dwarka sector 3🔝 9953056974 🔝 Delhi escort Serviceyoung Call girls in Dwarka sector 3🔝 9953056974 🔝 Delhi escort Service
young Call girls in Dwarka sector 3🔝 9953056974 🔝 Delhi escort Service
 
🔝9953056974🔝!!-YOUNG BOOK model Call Girls In Pushp vihar Delhi Escort service
🔝9953056974🔝!!-YOUNG BOOK model Call Girls In Pushp vihar  Delhi Escort service🔝9953056974🔝!!-YOUNG BOOK model Call Girls In Pushp vihar  Delhi Escort service
🔝9953056974🔝!!-YOUNG BOOK model Call Girls In Pushp vihar Delhi Escort service
 
A Costly Interruption: The Sermon On the Mount, pt. 2 - Blessed
A Costly Interruption: The Sermon On the Mount, pt. 2 - BlessedA Costly Interruption: The Sermon On the Mount, pt. 2 - Blessed
A Costly Interruption: The Sermon On the Mount, pt. 2 - Blessed
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
🔝9953056974 🔝young Delhi Escort service Vinay Nagar
🔝9953056974 🔝young Delhi Escort service Vinay Nagar🔝9953056974 🔝young Delhi Escort service Vinay Nagar
🔝9953056974 🔝young Delhi Escort service Vinay Nagar
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 
Rohini Sector 21 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 21 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 21 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 21 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
 
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in KarachiNo.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Karachi
 

Ch03s

  • 1. Chapter 3 Problem Solutions 3.1 ⎛ W ⎞ ⎛ k ′ ⎞ ⎛ 10 ⎞ ⎛ 0.08 ⎞ Kn = ⎜ ⎟ ⎜ n ⎟ = ⎜ ⎟⎜ ⎟ = 0.333 mA/V 2 ⎝ L ⎠ ⎝ 2 ⎠ ⎝ 1.2 ⎠ ⎝ 2 ⎠ For VDS = 0.1 V ⇒ Non Sat Bias Region (a) VGS = 0 ⇒ I D = 0 VGS = 1 V I D = 0.333 ⎡ 2 (1 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.01 mA 2 (b) ⎣ ⎦ I D = 0.333 ⎡ 2 ( 2 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.0767 mA 2 (c) VGS = 2 V ⎣ ⎦ I D = 0.333 ⎡ 2 ( 3 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.143 mA 2 (d) VGS = 3 V ⎣ ⎦ 3.2 All in Sat region ⎛ 10 ⎞⎛ 0.08 ⎞ Kn = ⎜ ⎟⎜ ⎟ = 0.333 mA/V 2 ⎝ 1.2 ⎠⎝ 2 ⎠ (a) ID = 0 I D = 0.333[1 − 0.8] = 0.0133 mA 2 (b) I D = 0.333[ 2 − 0.8] = 0.480 mA 2 (c) I D = 0.333[3 − 0.8] = 1.61 mA 2 (d) 3.3 (a) Enhancement-mode (b) From Graph VT = 1.5 V Now 0.03 = K n ( 2 − 1.5 ) = 0.25 K n ⇒ K n = 0.12 2 0.15 = K n ( 3 − 1.5 ) = 2.25 K n 2 K n = 0.0666 0.39 = K n ( 4 − 1.5 ) = 6.25 K n 2 K n = 0.0624 0.77 = K n ( 5 − 1.5 ) = 12.25 K n 2 K n = 0.0629 From last three, K n (Avg) = 0.0640 mA/V 2 (c) iD (sat) = 0.0640(3.5 − 1.5) 2 ⇒ iD (sat) = 0.256 mA for VGS = 3.5 V iD (sat) = 0.0640(4.5 − 1.5) 2 ⇒ iD (sat) = 0.576 mA for VGS = 4.5 V 3.4 a. VGS = 0 VDS ( sat ) = VGS − VTN = 0 − ( −2.5 ) = 2.5 V i. VDS = 0.5 V ⇒ Biased in nonsaturation I D = (1.1) ⎡ 2 ( 0 − (−2.5) )( 0.5 ) − ( 0.5 ) ⎤ ⇒ I D = 2.48 mA 2 ⎣ ⎦ ii. VDS = 2.5 V ⇒ Biased in saturation I D = (1.1) ( 0 − ( −2.5 ) ) ⇒ I D = 6.88 mA 2 iii. VDS = 5 V Same as (ii) ⇒ I D = 6.88 mA b. VGS = 2 V VDS ( sat ) = 2 − ( −2.5 ) = 4.5 V i. VDS = 0.5 V ⇒ Nonsaturation I D = (1.1) ⎡ 2(2 − (−2.5))(0.5) − (0.5) 2 ⎤ ⇒ I D = 4.68 mA ⎣ ⎦
  • 2. ii. VDS = 2.5 V ⇒ Nonsaturation I D = (1.1) ⎡ 2(2 − (−2.5))(2.5) − (2.5) 2 ⎤ ⇒ I D = 17.9 mA ⎣ ⎦ iii. VDS = 5 V ⇒ Saturation I D = (1.1) ( 2 − ( −2.5 ) ) ⇒ I D = 22.3 mA 2 3.5 VDS > VGS − VTN = 0 − ( −2 ) = 2 V Biased in the saturation region k′ W I D = n ⋅ (VGS − VTN ) 2 2 L ⎛ 0.080 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ⎡ 0 − ( −2 ) ⎤ ⇒ 2 1.5 = ⎜ ⎣ ⎦ = 9.375 ⎝ 2 ⎠⎝ L ⎠ L 3.6 μ n ∈ox ( 600 )( 3.9 ) (8.85 ×10−14 ) 2.071× 10−10 ′ kn = μ n Cox = = = tox tox tox (a) 500 A ′ kn = 41.4 μ A/V 2 (b) 250 ′ kn = 82.8 μ A/V 2 (c) 100 ′ kn = 207 μ A/V 2 (d) 50 ′ kn = 414 μ A/V 2 (e) 25 ′ kn = 828 μ A/V 2 3.7 a. ∈ox ( 3.9 ) ( 8.85 × 10 )⇒∈ −14 Cox = = ox = 7.67 ×10−8 F/cm 2 t0 x 450 × 10−8 t0 x μ n Cox W Kn = ⋅ 2 L ( 650 ) ( 7.67 ×10−8 ) ⎛ ⎞ 1 64 = ⎜ ⎟ 2 ⎝ 4 ⎠ K n = 0.399 mA / V 2 b. VGS = VDS = 3 V ⇒ Saturation I D = K n (VGS − VTN ) = ( 0.399 )( 3 − 0.8 ) ⇒ I D = 1.93 mA 2 2 3.8 ⎛ ω ⎞⎛ k′ ⎞ I D = ⎜ ⎟ ⎜ n ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ 2 ⎠ ⎛ ω ⎞ ⎛ 0.08 ⎞ ⎟ ( 2.5 − 1.2 ) ⇒ ω = 23.1 μ m 2 1.25 ⎜ ⎟⎜ ⎝ 1.25 ⎠ ⎝ 2 ⎠ 3.9 ∈ ( 3.9 ) (8.85 ×10−14 ) Cox = ox = t0 x 400 × 10−8 = 8.63 × 10−8 F/cm 2
  • 3. μ n Cox W Kn = ⋅ 2 L ⎛W ⎞ = ( 600 ) ( 8.63 × 10−8 ) ⎜ 1 ⎟ 2 ⎝ 2.5 ⎠ K n = (1.036 × 10−5 ) W I D = K n (VGS − VTN ) 2 1.2 × 10 −3 = (1.036 × 10 −5 ) W ( 5 − 1) ⇒ W = 7.24 μ m 2 3.10 Biased in the saturation region in both cases. ′ kp W I D = ⋅ (VSG + VTP ) 2 2 L ⎛ 0.040 ⎞⎛ W ⎞ ⎟⎜ ⎟ ( 3 + VTP ) 2 (1) 0.225 = ⎜ ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ ( 4 + VTP ) 2 (2) 1.40 = ⎜ ⎝ 2 ⎠⎝ L ⎠ Take ratio of (2) to (1): 1.40 (4 + VTP ) 2 = 6.222 = 0.225 (3 + VTP ) 2 4 + VTP 6.222 = 2.49 = ⇒ VTP = −2.33 V 3 + VTP ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ( 3 − 2.33) ⇒ 2 Then 0.225 = ⎜ = 25.1 ⎝ 2 ⎠⎝ L ⎠ L 3.11 VS = 5 V, VG = 0 ⇒ VSG = 5 V VTP = −0.5 V ⇒ VSD ( sat ) = VSG + VTP = 5 − 0.5 = 4.5 V a. VD = 0 ⇒ VSD = 5 V ⇒ Biased in saturation I D = 2 ( 5 − 0.5 ) ⇒ I D = 40.5 mA 2 b. VD = 2 V ⇒ VSD = 3 V ⇒ Nonsaturation I D = 2 ⎡ 2 ( 5 − 0.5 )( 3) − ( 3) ⎤ ⇒ I D = 36 mA 2 ⎣ ⎦ c. VD = 4 V ⇒ VSD = 1 V ⇒ Nonsaturation I D = 2 ⎡ 2 ( 5 − 0.5 )(1) − (1) ⎤ ⇒ I D = 16 mA 2 ⎣ ⎦ d. VD = 5 V ⇒ VSD = 0 ⇒ I D = 0 3.12 (a) Enhancement-mode (b) From Graph VTP = + 0.5 V 0.45 = k p ( 2 − 0.5 ) = 2.25 K p ⇒ K p = 2 0.20 1.25 = k p ( 3 − 0.5 ) = 6.25 K p 2 0.20 2.45 = k p ( 4 − 0.5 ) = 12.25 K p 2 0.20 4.10 = k p ( 5 − 0.5 ) = 20.25 K p 2 0.202 Avg K p = 0.20 mA/V 2 (c) iD (sat) = 0.20 (3.5 − 0.5) 2 = 1.8 mA iD (sat) = 0.20 (4.5 − 0.5) 2 = 3.2 mA
  • 4. 3.13 VSD ( sat ) = VSG + VTP (a) VSD ( sat ) = −1 + 2 ⇒ VSD ( sat ) = 1 V (b) VSD ( sat ) = 0 + 2 ⇒ VSD ( sat ) = 2 V (c) VSD ( sat ) = 1 + 2 ⇒ VSD ( sat ) = 3 V ′ kp W k′ W ⋅ (VSG + VTP ) = ⋅ ⋅ ⎡VSD ( sat ) ⎤ 2 2 ID = p 2 L 2 L ⎣ ⎦ ⎛ 0.040 ⎞ ⎟ ( 6 )(1) ⇒ I D = 0.12 mA 2 (a) ID = ⎜ ⎝ 2 ⎠ ⎛ 0.040 ⎞ ⎟ ( 6 )( 2 ) ⇒ I D = 0.48 mA 2 (b) ID = ⎜ ⎝ 2 ⎠ ⎛ 0.040 ⎞ ⎟ ( 6 )( 3) ⇒ I D = 1.08 mA 2 (c) ID = ⎜ ⎝ 2 ⎠ 3.14 VSD (sat) = VSG + VTP = 3 − 0.8 = 2.2 V ⎛ 15 ⎞⎛ 0.04 ⎞ KP = ⎜ ⎟⎜ ⎟ = 0.25 mA/V 2 ⎝ 1.2 ⎠⎝ 2 ⎠ VSD = 0.2 Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = 0.21 mA 2 a) ⎣ ⎦ VSD = 1.2 V Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )(1.2 ) − (1.2 ) ⎤ = 0.96 mA 2 b) ⎣ ⎦ c) VSD = 2.2 V Sat I D = 0.25(3 − 0.8) = 1.21 mA 2 d) VSD = 3.2 V Sat ID = 1.21 mA e) VSD = 4.2 V Sat ID = 1.21 mA 3.15 μ p ∈ox ( 250 )( 3.9 ) (8.85 ×10−14 ) 8.629 × 10−11 ′ k p = μ p Cox = = = t0 x t0 x t0 x (a) tox = 500Å ⇒ k ′ = 17.3 μ A/V 2 p (b) 250Å ⇒ k ′ = 34.5 μ A/V 2 p (c) 100Å ⇒ k ′ = 86.3 μ A/V 2 p (d) ′ 50Å ⇒ k p = 173 μ A/V 2 (e) 25Å ⇒ k ′ = 345 μ A/V 2 p 3.16 ∈ox ( 3.9 ) ( 8.85 × 10 ) −14 Cox = = −8 = 6.90 × 10−8 F/cm 2 t0 x 500 × 10 kn = ( μ n Cox ) = ( 675 ) ( 6.90 × 10−8 ) ⇒ 46.6 μ A/V 2 ′ k ′ = ( μ p Cox ) = ( 375 ) ( 6.90 × 10−8 ) ⇒ 25.9 μ A/V 2 p PMOS:
  • 5. k′ ⎛ W ⎞ ⎜ ⎟ (VSG + VTP ) 2 ID = p 2 ⎝ L ⎠p ⎛ 0.0259 ⎞⎛ W ⎞ ⎛W ⎞ ⎟⎜ ⎟ ( 5 − 0.6 ) ⇒ ⎜ ⎟ = 3.19 2 0.8 = ⎜ ⎝ 2 ⎠⎝ L ⎠ p ⎝ L ⎠p L = 4 μ m ⇒ W p = 12.8 μ m ⎛ 0.0259 ⎞ Kp = ⎜ ⎟ ( 3.19 ) ⇒ K p = 41.3 μ A/V = K n 2 ⎝ 2 ⎠ Want Kn = Kp ′ kn ⎛ W ⎞ k′ ⎛ W ⎞ ⎜ ⎟ = ⎜ ⎟ = 41.3 p 2 ⎝ L ⎠N 2 ⎝ L ⎠p ⎛ 46.6 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎜ ⎟ ⎜ ⎟ = 41.3 ⇒ ⎜ ⎟ = 1.77 ⎝ 2 ⎠ ⎝ L ⎠N ⎝ L ⎠N L = 4 μ m ⇒ WN = 7.09 μ m 3.17 VGS = 2 V, I D = ( 0.2 )( 2 − 1.2 ) = 0.128 mA 2 1 1 r0 = = ⇒ r0 = 781 kΩ λ I D ( 0.01)( 0.128 ) VGS = 4 V, I D = ( 0.2 )( 4 − 1.2 ) = 1.57 mA 2 1 r0 = ⇒ r = 63.7 kΩ ( 0.01)(1.57 ) 0 1 1 VA = = ⇒ VA = 100 V λ ( 0.01) 3.18 ⎛ 0.080 ⎞ ⎟ ( 4 )( 3 − 0.8 ) = ( 0.16 )( 3 − 0.8 ) ⇒ I D = 0.774 mA 2 2 ID = ⎜ ⎝ 2 ⎠ 1 1 1 r0 = ⇒λ = = ⇒ λ (max) = 0.00646 V −1 λ ID r0 I D ( 200 )( 0.774 ) 1 1 VA ( min ) = = ⇒ VA ( min ) = 155 V λ ( max ) 0.00646 3.19 VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ ΔVTN = 2 = ( 0.8 ) ⎡ 2φ f + VSB − 2 ( 0.35 ) ⎤ ⎣ ⎦ 2.5 + 0.837 = 2 ( 0.35 ) + VSB ⇒ VSB = 10.4 V 3.20 VTN = VTNo + r ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ = 0.75 + 0.6 ⎡ 2 ( 0.37 ) + 3 − 2 ( 0.37 ) ⎤ ⎣ ⎦ = 0.75 + 0.6 [1.934 − 0.860] VTN = 1.39 V VDS (sat) = 2.5 − 1.39 = 1.11 V
  • 6. ⎛ 0.08 ⎞ Sat Region I D = (15 ) ⎜ ⎟ ( 2.5 − 1.39 ) 2 (a) ⎝ 2 ⎠ I D = 0.739 mA ⎛ 0.08 ⎞ ⎡ Non-Sat I D = (15 ) ⎜ ⎟ 2 ( 2.5 − 1.39 )( 0.25 ) − ( 0.25 ) ⎤ 2 (b) ⎝ 2 ⎠⎣ ⎦ I D = 0.296 mA 3.21 a. VG = %ox t0 x = ( 6 × 106 )( 275 × 10−8 ) VG = 16.5 V 16.5 b. VG = ⇒ VG = 5.5 V 3 3.22 Want VG = ( 3)( 24 ) = %ox t0 x = ( 6 × 106 ) t0 x t0 x = 1.2 ×10−5 cm = 1200 Angstroms 3.23 ⎛ R2 ⎞ ⎛ 18 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ (10 ) = 3.6 V ⎝ R1 + R2 ⎠ ⎝ 18 + 32 ⎠ Assume transistor biased in saturation region V V − VGS = K n (VGS − VTN ) 2 ID = S = G RS RS 3.6 − VGS = ( 0.5 )( 2 )(VGS − 0.8 ) 2 = VGS − 1.6VGS + 0.64 2 VGS − 0.6VGS − 2.96 = 0 2 ( 0.6 ) + 4 ( 2.96 ) 2 0.6 ± VGS = ⇒ VGS = 2.046 V 2 VG − VGS 3.6 − 2.046 ID = = ⇒ I D = 0.777 mA RS 2 VDS = VDD − I D ( RD + RS ) = 10 − ( 0.777 )( 4 + 2 ) ⇒ VDS = 5.34 V VDS > VDS ( sat ) 3.24
  • 7. ID(mA) 4 (a) Q-pt Q-pt 1.67 (b) 4 5 V (V) DS (a) VGS = 4 V VDS (sat) = 4 − 0.8 = 3.2 V If Sat I D = 0.25 ( 4 − 0.8 ) = 2.56 2 VDS = 1.44 × Non-Sat 4 = I D RD + VDS = K n RD ⎣ 2 (VGS − VT ) VDS − VDS ⎦ + VDS ⎡ 2 ⎤ 4 = ( 0.25 )(1) ⎡ 2 ( 4 − 0.8 ) VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 4 = 2.6VDS − 0.25VDS 2 0.25VDS − 2.6VDS + 4 = 0 2 2.6 ± 6.76 − 4 VDS = = 1.88 V 2 ( 0.25 ) 4 − 1.88 ID = = 2.12 mA 1 (b) Non-Sat region 5 = I D RD + VDS = K n RD ⎡ 2 (VGS − VT )VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 5 = ( 0.25 )( 3) ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 5 = 7.3VDS − 0.75VDS 2 0.75 VDS − 7.3VDS + 5 = 0 2 7.3 ± 53.29 − 15 VDS = 2 ( 0.75 ) VDS = 0.741 V 5 − 0.741 ID = = 1.42 mA 3 3.25 ID(mA) 2.92 (a) Q-pt 1.25 (b) 3.5 5 V (V) SD
  • 8. (a) VSG = VDD = 3.5 VSD ( sat ) = 3.5 − 0.8 = 2.7 V If biased in Sat region, I D = ( 0.2 )( 3.5 − 0.8 ) 2 = 1.46 mA VSD = 3.5 − (1.46 )(1.2 ) = 1.75 V × Biased in Non-Sat Region. 3.5 = VSD + I D RD = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤ ⎣ 2 ⎦ 3.5 = VSD + ( 0.2 )(1.2 ) ⎡ 2 ( 3.5 − 0.8 ) VSD − VSD ⎤ ⎣ 2 ⎦ 3.5 = VSD + 1.296 VSD − 0.24 VSD 2 0.24 VSD − 2.296 VSD + 3.5 = 0 2 +2.296 ± 5.272 − 3.36 VSD = use − sign VSD = 1.90 V 2 ( 0.24 ) I D = ( 0.2 ) ⎡ 2 ( 3.5 − 0.8 )(1.9 ) − (1.9 ) ⎤ = 0.2 [10.26 − 3.61] 2 ⎣ ⎦ 3.5 − 1.90 ID = = 1.33 mA 1.2 I D = 1.33 mA (b) VSG = VDD = 5 V VSD ( sat ) = 5 − 0.8 = 4.2 V If Sat Region I D = ( 0.2 )( 5 − 0.8 ) = 3.53 mA, VSD < 0 2 Non-Sat Region. 5 = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤ ⎣ 2 ⎦ 5 = VSD + ( 0.2 )( 4 ) ⎡ 2 ( 5 − 0.8 ) VSD − VSD ⎤ ⎣ 2 ⎦ 5 = VSD + 6.72 VSD − 0.8 VSD 2 0.8 VSD − 7.72 VSD + 5 = 0 2 7.72 ± 59.598 − 16 VSD = use − sign VSD = 0.698 V 2 ( 0.8 ) 5 − 0.698 ID = ⇒ I D = 1.08 mA 4 3.26 10 − VS = K p (VSG + VTP ) 2 ID = RS Assume transistor biased in saturation region ⎛ R2 ⎞ VG = ⎜ ⎟ ( 20 ) − 10 ⎝ R1 + R2 ⎠ ⎛ 22 ⎞ =⎜ ⎟ ( 20 ) − 10 ⇒ VG = 4.67 V ⎝ 8 + 22 ⎠ VS = VG + VSG 10 − ( 4.67 + VSG ) = (1)( 0.5 )(VSG − 2 ) 2 5.33 − VSG = 0.5 (VSG − 4VSG + 4 ) 2 0.5VSG − VSG − 3.33 = 0 2 (1) + 4 ( 0.5 )( 3.33) 2 1± VSG = ⇒ VSG = 3.77 V 2 ( 0.5 )
  • 9. 10 − ( 4.67 + 3.77 ) ID = ⇒ I D = 3.12 mA 0.5 VSD = 20 − I D ( RS + RD ) = 20 − ( 3.12 )( 0.5 + 2 ) ⇒ VSD = 12.2 V VSD > VSD ( sat ) 3.27 VG = 0, VSG = VS Assume saturation region I D = 0.4 = K p (VSG + VTP ) 2 0.4 = ( 0.2 )(VS − 0.8 ) 2 0.4 VS = + 0.8 ⇒ VS = 2.21 V 0.2 VD = I D RD − 5 = ( 0.4 )( 5 ) − 5 = −3 V VSD = VS − VD = 2.21 − ( −3) ⇒ VSD = 5.21 V VSD > VSD ( sat ) 3.28 VDD = I DQ RD + VDSQ + I DQ RS ⎛ k ′ ⎞⎛ W ⎞ (1) 10 = I DQ ( 5 ) + 5 + VGS and I DQ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.060 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (VGS − 1.2 ) 2 or (2) I DQ = ⎜ ⎝ 2 ⎠⎝ L ⎠ Let VGS = 2.5 V Then from (1), 10 = I DQ ( 5 ) + 5 + 2.5 ⇒ I D = 0.5 mA ⎛ 0.060 ⎞⎛ W ⎞ W ⎟⎜ ⎟ ( 2.5 − 1.2 ) ⇒ 2 Then from (2), 0.5 = ⎜ = 9.86 ⎝ 2 ⎠⎝ L ⎠ L V 2.5 I DQ RS = VGS ⇒ RS = GS = ⇒ RS = 5 k Ω I DQ 0.5 10 IR = = ( 0.5 )( 0.05 ) = 0.025 mA R1 + R2 10 Then R1 + R2 = = 400 k Ω 0.025 ⎛ R2 ⎞ ⎛ R2 ⎞ ⎜ ⎟ (VDD ) = 2VGS ⇒ ⎜ ⎟ (10 ) = 2 ( 2.5 ) ⇒ R1 = R2 = 200 k Ω ⎝ R1 + R2 ⎠ ⎝ 400 ⎠ 3.29 ⎛ 75 ⎞ K n = ( 25 ) ⎜ ⎟ ⇒ 0.9375 mA/V 2 ⎝ 2⎠ ⎛ 6 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −2 V ⎝ 6 + 14 ⎠ (VG − VGS ) − ( −5) = I D = K n (VGS − VTN ) 2 RS −2 − VGS + 5 = ( 0.9375 )( 0.5 )(VGS − 1) 2 3 − VGS = 0.469 (VGS − 2VGS + 1) 2
  • 10. 0.469 VGS + 0.0625 VGS − 2.53 = 0 2 −0.0625 ± 0.003906 + 4.746 VGS = ⇒ VGS = 2.26 V 2 ( 0.469 ) I D = 0.9375 ( 2.26 − 1) ⇒ I D = 1.49 mA 2 VDS = 10 − (1.49 )(1.7 ) ⇒ VDS = 7.47 V 3.30 20 = I DQ RS + VSDQ + I DQ RD (1) 20 = VSG + 10 + I DQ RD ⎛ k′ ⎞⎛ W ⎞ I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (VSG − 2 ) 2 (2) I DQ = ⎜ ⎝ 2 ⎠⎝ L ⎠ For example, let I DQ = 0.8 mA and VSG = 4 V ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ( 4 − 2) ⇒ 2 Then 0.8 = ⎜ ⎟⎜ = 10 ⎝ 2 ⎠⎝ L ⎠ L I DQ RS = VSG ⇒ ( 0.8 ) RS = 4 ⇒ RS = 5 k Ω From (1) 20 = 4 + 10 + ( 0.8 ) RD ⇒ RD = 7.5 k Ω 20 IR = = ( 0.8 )( 0.1) ⇒ R1 + R2 = 250 k Ω R1 + R2 ⎛ R1 ⎞ ⎜ ⎟ ( 20 ) = 2VSG = ( 2 )( 4 ) ⎝ R1 + R2 ⎠ R1 ( 20 ) = 8 ⇒ R1 = 100 k Ω, R2 = 150 k Ω 250 3.31 I Q = 50 = 500 (VGS − 1.2 ) ⇒ VGS = 1.516 V 2 (a) (i) VDS = 5 − ( −1.516 ) =⇒ VDS = 6.516 V I Q = 1 = ( 0.5 )(VGS − 1.2 ) ⇒ VGS = 2.61 V 2 (ii) VDS = 5 − ( −2.61) ⇒ VDS = 7.61 V (b) (i) Same as (a) VGS = VDS = 1.516 V (ii) VGS = VDS = 2.61 V 3.32 I D = K n (VGS − VTN ) 2 0.25 = ( 0.2 )(VGS − 0.6 ) 2 0.25 VGS = + 0.6 ⇒ VGS = 1.72 V ⇒ VS = −1.72 V 0.2 VD = 9 − ( 0.25 )( 24 ) ⇒ VD = 3 V 3.33 (a)
  • 11. ID(mA) 1.0 0.808 Q-pt 0.5 3.81 10 V (V) DS 5 −1 RD = ⇒ RD = 8 K 0.5 I DQ = 0.5 = 0.25 (VGS − 1.4 ) ⇒ VGS = 2.81 V 2 −2.81 − ( −5 ) RS = ⇒ RS = 4.38 K 0.5 (b) Let RD = 8.2 K, RS = 4.3 K −VGS − ( −5 ) = I D = 0.25 (VGS − 1.4 ) 2 Now 4.3 5 − VGS = 1.075 (VGS − 2.8 VGS + 1.96 ) 2 1.075 VGS − 2.01 VGS − 2.89 = 0 2 2.01 ± 4.04 + 12.427 VGS = ⇒ VGS = 2.82 V 2 (1.075 ) I D = 0.25 ( 2.82 − 1.4 ) ⇒ I D = 0.504 mA 2 VDS = 10 − ( 0.504 )( 8.2 + 4.3) ⇒ VDS = 3.70 V (c) If RS = 4.3 + 10% = 4.73 K 5 − VGS = 1.18 (VGS − 2.8VGS + 1.96 ) 2 1.18 VGS − 2.31 VGS − 2.68 = 0 2 2.31 ± 5.336 + 12.65 VGS = = 2.78 V 2 (1.18 ) I D = ( 0.25 )( 2.78 − 1.4 ) ⇒ I D = 0.476 mA 2 If Rs = 4.3 − 10% = 3.87 K 5 − VGS = ( 0.9675 ) (VGS − 2.8VGS + 1.96 ) 2 0.9675VGS − 1.71VGS − 3.10 = 0 2 1.71 ± 2.924 + 12.0 VGS = = 2.88 V 2 ( 0.9675 ) I D = ( 0.25 )( 2.88 − 1.4 ) = 0.548 mA 2 3.34 VDD = VSD + I DQ R 9 = 2.5 + ( 0.1) R ⇒ R = 65 k Ω ⎛ k′ ⎞⎛ W ⎞ I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.025 ⎞ ⎛ W ⎞ W ( 0.1) = ⎜ ⎟ ⎜ ⎟ ( 2.5 − 1.5 ) ⇒ 2 =8 ⎝ 2 ⎠⎝ L⎠ L Then for L = 4 μ m, W = 32 μ m
  • 12. 3.35 5 = I DQ RS + VSDQ = I DQ ( 2 ) + 2.5 I DQ = 1.25 mA 10 IR = = (1.25 )( 0.1) ⇒ R1 + R2 = 80 k Ω R1 + R2 I DQ = K p (VSG + VTP ) 2 1.25 1.25 = 0.5 (VSG + 1.5 ) ⇒ 2 − 1.5 = VSG 0.5 VSG = 0.0811 V VG = VS − VSG = 2.5 − 0.0811 = 2.42 V ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛R ⎞ 2.42 = ⎜ 2 ⎟ (10 ) − 5 ⇒ R2 = 59.4 k Ω, R1 = 20.6 k Ω ⎝ 80 ⎠ 3.36 (a) ID(mA) 0.429 Q-pt 5 V (V) SD VD − ( −5 ) 5−2 RD = = ⇒ RD = 12 K I DQ 0.25 ⎛W ⎞⎛ k′ ⎞ ⎟ ⎜ ⎟ (VSG + VTP ) 2 ID = ⎜ p ⎝L ⎠⎝ 2 ⎠ ⎛ 0.035 ⎞ 0.25 = (15 ) ⎜ ⎟ (VSG − 1.2 ) ⇒ VSG = 2.18 V 2 ⎝ 2 ⎠ 5 − 2.18 RS = ⇒ RS = 11.3 K 0.25 VSD = 2.18 − ( −2 ) = 4.18 V (b) k ′ = 35 + 5% = 36.75 μ A/V 2 p ⎛ 0.03675 ⎞ 5 − VSG I D = (15 ) ⎜ ⎟ (VSG − 1.2 ) = 2 ⎝ 2 ⎠ 11.3 3.11(VSG − 2.4VSG + 1.44 ) = 5 − VSG 2 3.11VSG − 6.46VSG − 0.522 = 0 2
  • 13. 6.46 ± 41.73 + 6.49 VSG = = 2.155 V 2 ( 3.11) 5 − 2.155 ID = = 0.252 mA 11.3 VSD = 10 − ( 0.252 )(12 + 11.3) = 4.13 V k ′ = 35 − 5% = 33.25 μ A/V 2 p ⎛ 0.03325 ⎞ 5 − VSG I D = (15 ) ⎜ ⎟ (VSG − 1.2 ) = 2 ⎝ 2 ⎠ 11.3 2.82 (VSG − 2.4VSG + 1.44 ) = 5 − VSG 2 2.82VSG − 5.77VSG − 0.939 = 0 2 5.77 ± 33.29 + 10.59 VSG = = 2.198 V 2 ( 2.82 ) 5 − 2.198 ID = = 0.248 mA 11.3 VSD = 10 − ( 0.248 )(12 + 11.3) = 4.22 V 3.37 −VSD − ( −10 ) −6 + 10 ID = ⇒5= ⇒ RD = 0.8 kΩ RD RD I D = K P (VSG + VTP ) ⇒ 5 = 3 (VSG − 1.75 ) 2 2 5 VSG = + 1.75 = 3.04 V ⇒ VG = −3.04 3 ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −3.04 ⎝ R1 + R2 ⎠ Rin = R1 || R2 = 80 kΩ 1 ⋅ ( 80 )(10 ) = 5 − 3.04 ⇒ R1 = 408 kΩ R1 408 R2 = 80 ⇒ R2 = 99.5 kΩ 408 + R2 3.38 ⎛ 60 ⎞ (a) K n1 = ⎜ ⎟ ( 4 ) = 120 μ A/V 2 ⎝ 2 ⎠ ⎛ 60 ⎞ K n 2 = ⎜ ⎟ (1) = 30 μ A/V 2 ⎝ 2 ⎠ For vI = 1 V , M1 Sat. region, M2 Non-sat region. I D 2 = I D1 30 ⎡ 2 ( −VTNL )( 5 − vO ) − ( 5 − vO ) ⎤ = 120 (1 − 0.8 ) 2 2 ⎣ ⎦ We find vO − 6.4vO + 7.16 = 0 ⇒ vO = 4.955 V 2 (b) For vI = 3 V , M1 Non-sat region, M2 Sat. region. I D 2 = I D1 30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 3 − 0.8 ) vO − vO ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ We find 4vO − 17.6vO + 3.24 = 0 ⇒ vO = 0.193 V 2 (c) For vI = 5 V , biasing same as (b) 30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 5 − 0.8 ) vO − vO ⎤ 2 2 ⎣ ⎦ ⎣ ⎦
  • 14. We find 4vO − 33.6vO + 3.24 = 0 ⇒ vO = 0.0976 V 2 3.39 For vI = 5 V , M1 Non-sat region, M2 Sat. region. I D1 = I D 2 ′ ⎛ kn ⎞ ⎛ W ⎞ ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 (VGS1 − VTN 1 ) VDS 1 − VDS 1 ⎦ = ⎜ 2 ⎟ ⎜ L ⎟ (VGS 2 − VTN 2 ) ⎡ ⎤ 2 2 ⎝ ⎠ ⎝ ⎠1 ⎝ ⎠ ⎝ ⎠2 ⎛ W⎞ ⎡ ⎜ ⎟ ⎣ 2 ( 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = (1) ⎡0 − ( −2 ) ⎤ 2 2 ⎦ ⎣ ⎦ ⎝ L ⎠1 ⎛W ⎞ which yields ⎜ ⎟ = 3.23 ⎝ L ⎠1 3.40 a. M1 and M2 in saturation K n1 (VGS 1 − VTN 1 ) = K n 2 (VGS 2 − VTN 2 ) 2 2 K n1 = K n 2 , VTN 1 = VTN 2 ⇒ VGS1 = VGS 2 = 2.5 V, V0 = 2.5 V I D = (15 )( 40 )( 2.5 − 0.8 ) ⇒ I D = 1.73 mA 2 b. ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ > ⎜ ⎟ ⇒ VGS1 < VGS 2 ⎝ L ⎠1 ⎝ L ⎠ 2 40 (VGS1 − 0.8 ) = (15 )(VGS 2 − 0.8 ) 2 2 VGS 2 = 5 − VGS 1 1.633 (VGS 1 − 0.8 ) = ( 5 − VGS1 − 0.8 ) 2.633VGS 1 = 5.506 ⇒ VGS 1 = 2.09 V VGS 2 = 2.91 V, V0 = VGS1 = 2.91 V I D = (15 )(15 )( 2.91 − 0.8 ) ⇒ I D = 1.0 mA 2 3.41 (a) V1 = VGS 3 = 2.5 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎟ ( 2.5 − 1.2 ) 2 I D = 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠3 ⎝ 2 ⎠ ⎛W ⎞ ⎜ ⎟ = 9.86 ⎝ L ⎠3 V2 = 6 V ⇒ VGS 2 = V2 − V1 = 6 − 2.5 = 3.5 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎟ ( 3.5 − 1.2 ) ⇒ ⎜ ⎟ = 3.15 2 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 VGS1 = 10 − V2 = 10 − 6 = 4 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎟ ( 4 − 1.2 ) ⇒ ⎜ ⎟ = 2.13 2 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠1 ⎝ 2 ⎠ ⎝ L ⎠1 (b) ′ kn1 = 0.06 + 5% = 0.063 mA/V 2 ′ ′ kn 2 = k n3 = 0.6 − 5% = 0.057 mA/V 2 ⎛ 0.057 ⎞ For M3: I D = ( 9.86 ) ⎜ ⎟ (V1 − 1.2 ) 2 ⎝ 2 ⎠ ⎛ 0.057 ⎞ For M2: I D = ( 3.15 ) ⎜ ⎟ (V2 − V1 − 1.2 ) 2 ⎝ 2 ⎠
  • 15. ⎛ 0.063 ⎞ For M1: I D = ( 2.13) ⎜ ⎟ (10 − V2 − 1.2 ) 2 ⎝ 2 ⎠ 0.281(V1 − 1.2 ) = 0.0898 (V2 − V1 − 1.2 ) = 0.0671( 8.8 − V2 ) 2 2 2 Take square root. 0.530 (V1 − 1.2 ) = 0.300 (V2 − V1 − 1.2 ) = 0.259 ( 8.8 − V2 ) (1) 0.830V1 = 0.300V2 + 0.276 (2) 0.559V2 = 0.300V1 + 2.64 From (2) ⇒ V2 = 0.537V1 + 4.72 Substitute into (1) 0.830V1 = 0.300 [ 0.537V1 + 4.72] + 0.276 = 0.161V1 + 1.69 V1 = 2.53 V Then V2 = 0.537 ( 2.53) + 4.72 V2 = 6.08 V 3.42 ML in saturation MD in nonsaturation ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦ ⎡ ⎤ 2 2 ⎝ L ⎠L ⎝ L ⎠D ⎛W ⎞ (1)( 5 − 0.1 − 0.8) = ⎜ ⎟ ⎡ 2 ( 5 − 0.8)( 0.1) − ( 0.1) ⎤ 2 2 ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ 16.81 = ⎜ ⎟ [ 0.83] ⎝ L ⎠D ⎛W ⎞ ⎜ ⎟ = 20.3 ⎝ L ⎠D 3.43 ML in saturation MD in nonsaturation ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦ ⎡ ⎤ 2 2 ⎝ L ⎠L ⎝ L ⎠D (1)(1.8 ) = ⎛ ⎞ ⎡ 2 ( 5 − 0.8 )( 0.05) − ( 0.05) ⎤ 2 W 2 ⎜ ⎟ ⎣ ⎦ ⎝ L ⎠D ⎛W ⎞ 3.24 = ⎜ ⎟ [ 0.4175] ⎝ L ⎠D ⎛W ⎞ ⎜ ⎟ = 7.76 ⎝ L ⎠D 3.44 VDD − V0 5 − 0.1 ID = = = 0.49 mA RD 10 Transistor biased in nonsaturation I D = 0.49 ⎛W ⎞ = ( 0.015 ) ⎜ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ 2 ⎝L⎠ ⎣ ⎦ ⎛W ⎞ W 0.49 = ⎜ ⎟ 0.01005 ⇒ = 48.8 ⎝L⎠ L 3.45
  • 16. 5 = I D RD + Vγ + VDS 5 = (12 ) RD + 1.6 + 0.2 ⇒ RD = 267 Ω ⎛ k′ ⎞⎛ W ⎞ I D = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ( 5 − 0.8 ) ⇒ 2 12 = ⎜ = 34 ⎝ 2 ⎠⎝ L ⎠ L 3.46 5 = VSD + I D RD + Vγ 5 = 0.15 + (15 ) RD + 1.6 ⇒ RD = 217 Ω ⎛ k′ ⎞⎛ W ⎞ I D = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.020 ⎞⎛ W ⎞ W ⎟⎜ ⎟ ( 5 − 0.8 ) ⇒ 2 15 = ⎜ = 85 ⎝ 2 ⎠⎝ L ⎠ L 3.47 (a) VDD − VO ⎛W ⎞⎛ 0.060 ⎞ = 2⎜ ⎟ ⎡( 2 )(VGS − VTN ) VO − VO ⎤ 2 ⎟⎜ ⎣ ⎦ RD ⎝L ⎠⎝ 2 ⎠ 5 − 0.2 ⎛W ⎞ ⎟ ( 0.030 ) ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ 2 = 2⎜ 20 ⎝L ⎠ ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ 0.24 = 0.0984 ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 2.44 ⎝ L ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2 (b) 5 − VO ⎛ 0.06 ⎞ = ( 2.44 ) ⎜ ⎟ ⎡ 2 ( 5 − 0.8 ) VO − VO ⎤ 2 20 ⎝ 2 ⎠⎣ ⎦ 5 − VO = 12.30VO − 1.464VO2 1.464VO2 − 13.30VO + 5 = 0 13.30 ± 176.89 − 29.28 VO = 2 (1.464 ) VO = 0.393 V 3.48 ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VGS 1 − VTN ) 2 I Q1 = ⎜ ⎝L ⎠1 ⎝ 2⎠ ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VDS 2 ( sat ) ) 2 I Q1 = ⎜ ⎝L ⎠2 ⎝ 2 ⎠ ⎛ W ⎞ ⎛ 0.08 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 10 = ⎜ ⎟ 2 0.1 = ⎜ ⎟ ⎜ ⎝ L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 ⎝ L ⎠1 ⎛ W ⎞ ⎛ 200 ⎞ ⎛ W ⎞ ⎜ ⎟ =⎜ ⎟ ⎜ ⎟ = 20 ⎝ L ⎠3 ⎝ 100 ⎠ ⎝ L ⎠ 2 M1 & M2 matched. ⎛ 0.08 ⎞ Then 0.1 = (10 ) ⎜ ⎟ (VGS 1 − 0.25 ) 2 ⎝ 2 ⎠ VGS1 = 0.75 V VD1 = −0.75 + 2 = 1.25 V 2.5 − 1.25 RD = ⇒ RD = 12.5 K 0.1
  • 17. 3.49 (a) ⎛ W ⎞ ⎛ k′ ⎞ I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSDB ( sat ) ) p 2 ⎝ L ⎠B ⎝ 2 ⎠ ⎛ W ⎞ ⎛ 0.04 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.8 ) ⇒ 2 0.25 = ⎜ ⎟ ⎜ ⎜ ⎟ = 19.5 = ⎜ ⎟ ⎝ L ⎠B ⎝ 2 ⎠ ⎝ L ⎠B ⎝ L ⎠A ⎛W ⎞ I KQ 2 ⎛ W ⎞ ⎜ ⎟ = ⎜ ⎟ ⎝ L ⎠C IQ 2 ⎝ L ⎠B ⎛ 100 ⎞ =⎜ ⎟ (19.5 ) = 7.81 ⎝ 250 ⎠ ′ ⎛W ⎞ ⎛ kp ⎞ I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSGA + VTP ) 2 ⎝ L ⎠A ⎝ 2 ⎠ ⎛ 0.04 ⎞ 0.25 = (19.5 ) ⎜ ⎟ (VSGA − 0.5 ) 2 ⎝ 2 ⎠ VSGA = 1.30 V (b) VDA = 1.3 − 4 = −2.7 V −2.7 − ( −5 ) RD = ⇒ RD = 9.2 K 0.25 3.50 ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VDS 2 ( sat ) ) 2 IQ = ⎜ ⎝L ⎠2 ⎝ 2⎠ ⎛W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 53.3 = ⎜ ⎟ 2 0.4 = ⎜ ⎟ ⎜ ⎝L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 ⎝ L ⎠1 ⎛ W ⎞ ⎛ k′ ⎞ I Q = ⎜ ⎟ ⎜ n ⎟ (VGS 1 − VTN ) 2 ⎝ L ⎠1 ⎝ 2 ⎠ ⎛ 0.06 ⎞ 0.4 = ( 53.3) ⎜ ⎟ (VGS 1 − 0.75 ) 2 ⎝ 2 ⎠ VGS1 = 1.25 V VD1 = −1.25 + 4 = 2.75 V 5 − 2.75 RD = ⇒ RD = 5.625 K 0.4 3.51 VDS ( sat ) = VGS − VP So VDS > VDS ( sat ) = −VP , I D = I DSS 3.52 VDS ( sat ) = VGS − VP = VGS + 3 = VDS ( sat ) a. VGS = 0 ⇒ I D = I DSS = 6 mA 2 ⎛ V ⎞ 2 ⎛ −1 ⎞ b. I D = I DSS ⎜ 1 − GS ⎟ = 6 ⎜ 1 − ⎟ ⇒ I D = 2.67 mA ⎝ VP ⎠ ⎝ −3 ⎠ 2 ⎛ −2 ⎞ c. I D = 6 ⎜ 1 − ⎟ ⇒ I D = 0.667 mA ⎝ −3 ⎠ d. ID = 0
  • 18. 3.53 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ 1 ⎞ 2.8 = I DSS ⎜1 − ⎟ ⎝ VP ⎠ 2 ⎛ 3 ⎞ 0.30 = I DSS ⎜1 − ⎟ ⎝ VP ⎠ 2 ⎛ 1 ⎞ ⎜1 − ⎟ 2.8 ⎝ VP ⎠ = 9.33 = 2 0.30 ⎛ 3 ⎞ ⎜1 − ⎟ ⎝ VP ⎠ ⎛ 1⎞ ⎜1 − ⎟ ⎝ VP⎠ = 3.055 ⎛ 3⎞ ⎜1 − ⎟ ⎝ VP ⎠ 1 9.165 1− = 3.055 − VP VP 8.165 = 2.055 ⇒ VP = 3.97 V VP 2 ⎛ 1 ⎞ 2.8 = I DSS ⎜1 − ⎟ = I DSS ( 0.560 ) ⇒ I DSS = 5.0 mA ⎝ 3.97 ⎠ 3.54 VS = −VGS , VSD = VS − VDD Want VSD ≥ VSD ( sat ) = VP − VGS VS − VDD ≥ VP − VGS − VGS − VDD ≥ VP − VGS ⇒ VDD ≤ −VP So VDD ≤ −2.5 V 2 ⎛ V ⎞ I D = 2 = I DSS ⎜1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 2 = 6 ⎜ 1 − GS ⎟ ⇒ VGS = 1.06 V ⇒ VS = −1.06 V ⎝ 2.5 ⎠ 3.55 I D = K n (VGS − VTN ) 2 18.5 = K n ( 0.35 − VTN ) 2 86.2 = K n ( 0.5 − VTN ) 2 Then ( 0.35 − VTN ) 2 18.5 = 0.2146 = ⇒ VTN = 0.221 V ( 0.50 − VTN ) 2 86.2 18.5 = K n ( 0.35 − 0.221) ⇒ K n = 1.11 mA / V 2 2 3.56 I D = K (VGS − VTN ) 2 250 = K ( 0.75 − 0.24 ) ⇒ K = 0.961 mA / V 2 2
  • 19. 3.57 2 ⎛ V ⎞ V V I D = I DSS ⎜ 1 − GS ⎟ = S = − GS ⎝ VP ⎠ RS RS 2 ⎛ V ⎞ V 10 ⎜ 1 − GS ⎟ = − GS ⎝ −5 ⎠ 0.2 ⎛ 2V V ⎞ 2 2 ⎜1 + GS + GS ⎟ = −VGS ⎝ 5 25 ⎠ 2 2 9 VGS + VGS + 2 = 0 25 5 2VGS + 45VGS + 50 = 0 2 ( 45 ) − 4 ( 2 )( 50 ) 2 −45 ± VGS = ⇒ VGS = −1.17 V 2 ( 2) VGS 1.17 ID = − = ⇒ I D = 5.85 mA RS 0.2 VD = 20 − ( 5.85 )( 2 ) = 8.3 V VDS = VD − VS = 8.3 − 1.17 ⇒ VDS = 7.13 V 3.58 VDS = VDD − VS 8 = 10 − VS ⇒ VS = 2 V = I D RS = ( 5 ) RS ⇒ RS = 0.4 kΩ 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ −1 ⎞ 5 = I DSS ⎜1 − ⎟ Let I DSS = 10 mA ⎝ VP ⎠ 2 ⎛ −1 ⎞ 5 = 10 ⎜ 1 − ⎟ ⇒ VP = −3.41 V ⎝ VP ⎠ VG = VGS + VS = −1 + 2 = 1 V ⎛ R2 ⎞ 1 VG = ⎜ ⎟ VDD = ⋅ Rin ⋅ VDD ⎝ R1 + R2 ⎠ R1 1 1 = ( 500 )(10 ) ⇒ R1 = 5 MΩ R1 5R2 = 0.5 ⇒ R2 = 0.556 MΩ 5 + R2 3.59 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 5 = 8 ⎜ 1 − GS ⎟ ⇒ VGS = 0.838 V ⎝ 4 ⎠ VSD = VDD − I D ( RS + RD ) = 20 − ( 5 )( 0.5 + 2 ) ⇒ VSD = 7.5 V
  • 20. VS = 20 − ( 5 )( 0.5 ) = 17.5 V VG = VS + VGS = 17.5 + 0.838 = 18.3 V ⎛ R2 ⎞ 1 VG = ⎜ ⎟ VDD = ⋅ Rin ⋅ VDD ⎝ R1 + R2 ⎠ R1 1 18.3 = (100 ) ( 20 ) ⇒ R1 = 109 kΩ R1 109 R2 = 100 ⇒ R2 = 1.21 MΩ 109 + R2 3.60 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 5 = 7 ⎜ 1 − GS ⎟ ⇒ VGS = 0.465 V ⎝ 3 ⎠ VSD = VDD − I D ( RS + RD ) 6 = 12 − ( 5 )( 0.3 + RD ) ⇒ RD = 0.9 kΩ VS = 12 − ( 5 )( 0.3) = 10.5 V VG = VS + VGS = 10.5 + 0.465 = 10.965 V ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 10.965 = ⎜ 2 ⎟ (12 ) ⇒ R2 = 91.4 kΩ ⇒ R1 = 8.6 kΩ ⎝ 100 ⎠ 3.61 ⎛ R2 ⎞ ⎛ 60 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ ( 20 ) ⇒ VG = 6 V ⎝ R1 + R2 ⎠ ⎝ 140 + 60 ⎠ 2 ⎛ V ⎞ V V − VGS I D = I DSS ⎜ 1 − GS ⎟ = S = G ⎝ VP ⎠ RS RS 2 ⎛ VGS ⎞ (8 )( 2 ) ⎜1 − ⎜ ⎟ = 6 − VGS ⎝ ( −4 ) ⎟ ⎠ ⎛ V V2 ⎞ 16 ⎜ 1 + GS + GS ⎟ = 6 − VGS ⎝ 2 16 ⎠ VGS + 9VGS + 10 = 0 2 (9) − 4 (10 ) 2 −9 ± VGS = ⇒ VGS = −1.30 2 ⎛ ( −1.30 ) ⎞ 2 I D = 8 ⎜1 − ⎜ ⎟ ⇒ I D = 3.65 mA ⎝ ( −4 ) ⎟⎠ VDS = VDD − I D ( RS + RD ) = 20 − ( 3.65 )( 2 + 2.7 ) VDS = 2.85 V VDS > VDS ( sat ) = VGS − VP = −1.30 − ( −4 ) = 2.7 V (Yes) 3.62
  • 21. VDS = VDD − I D ( RS + RD ) 5 = 12 − I D ( 0.5 + 1) ⇒ I D = 4.67 mA VS = I D RS = ( 4.67 ) ( 0.5 ) ⇒ VS = 2.33 V ⎛ R2 ⎞ ⎛ 20 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ (12 ) ⇒ VG = 0.511 V ⎝ R1 + R2 ⎠ ⎝ 450 + 20 ⎠ VGS = VG − VS = 0.511 − 2.33 ⇒ VGS = −1.82 V 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎛ ( −1.82 ) ⎞ 2 4.67 = 10 ⎜ 1 − ⎜ ⎟ ⇒ VP = −5.75 V ⎝ VP ⎟ ⎠ 3.63 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ , VGS = 0 ⎝ VP ⎠ I D = I DSS = 4 mA VDD − VDS 10 − 3 RD = = ⇒ RD = 1.75 kΩ ID 4 3.64 VSD = VDD − I D RS 10 = 20 − (1) RS ⇒ RS = 10 kΩ VDD 20 R1 + R2 = = = 200 kΩ I 0.1 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 1 = 2 ⎜1 − GS ⎟ ⇒ VGS = 0.586 V ⎝ 2 ⎠ VG = VS + VGS = 10 + 0.586 = 10.586 ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 10.586 = ⎜ 2 ⎟ ( 20 ) ⇒ R2 = 106 kΩ ⎝ 200 ⎠ R1 = 94 kΩ 3.65
  • 22. VDS = VDD − I D ( RS + RD ) 2 = 3 − ( 0.040 )(10 + RD ) ⇒ RD = 15 kΩ I D = K (VGS − VTN ) 2 40 = 250 (VGS − 0.20 ) ⇒ VGS = 0.60 V 2 VG = VGS + VS = 0.60 + ( 0.040 )(10 ) = 1.0 V ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 1 = ⎜ 2 ⎟ ( 3) ⇒ R2 = 50 kΩ ⎝ 150 ⎠ R1 = 100 kΩ 3.66 For VO = 0.70 V ⇒ VDS = 0.70 > VDS ( sat ) = VGS − VTN 0.75 − 0.15 = 0.6 Biased in the saturation region V − VDS 3 − 0.7 I D = DD = ⇒ I D = 46 μ A RD 50 I D = K (VGS − VTN ) ⇒ 46 = K ( 0.75 − 0.15 ) ⇒ K = 128 μ A / V 2 2 2