SlideShare a Scribd company logo
1 of 11
Download to read offline
Chapter 16
Exercise Solutions

EX16.1
         ( 3.9 ) (8.85 Γ—10βˆ’14 )
COX =                              = 1.726 Γ—10βˆ’7 F / cm 2
              200 Γ— 10βˆ’8
        2 (1.6 Γ— 10βˆ’19 ) (11.7 ) ( 8.85 Γ—10 βˆ’14 )(1015 )              1
Ξ³ =                                                        = 0.1055 V 2
                          1.726 Γ— 10βˆ’7
Ξ”VTN = r ⎑ 0.576 + VSB βˆ’ 0.576 ⎀ = ( 0.1055 ) ⎑ 0.576 + 5 + 0.576 ⎀
         ⎣                     ⎦              ⎣                   ⎦
Ξ”VTN = 0.169 V

EX16.2
(a)
 vo = VDD βˆ’ I D RD
         βŽ› kβ€² βŽžβŽ› W       ⎞
vo = 3 βˆ’ ⎜ n ⎟ ⎜         ⎟ ⎣ 2 ( 3 βˆ’ 0.5 ) vo βˆ’ vo ⎦ RD
                           ⎑                       ⎀
                                                 2

         ⎝ 2 ⎠⎝ L        ⎠
vo = 0.1
          βŽ› 0.06 ⎞ ⎑
                 ⎟ ( 5 ) ⎣( 5 )( 0.1) βˆ’ ( 0.1) ⎀ RD
                                              2
0.1 = 3 βˆ’ ⎜
          ⎝ 2 ⎠                                 ⎦
0.1 = 3 βˆ’ 0.0735RD
 RD = 39.5 K
(b)
βŽ› 0.06 ⎞
       ⎟ ( 5 )( 39.5 )(VIt βˆ’ 0.5 ) + (VIt βˆ’ 0.5 ) βˆ’ 3 = 0
                                  2
⎜
⎝   2 ⎠
5.925 (VIt βˆ’ 0.5 ) + (VIt βˆ’ 0.5 ) βˆ’ 3 = 0
                     2



                         βˆ’1 Β± 1 + 4 ( 5.925 )( 3)
(VIt βˆ’ 0.5 ) = VOt   =
                                  2 ( 5.925 )
VOt = 0.632 V
VIt = 1.132 V

EX16.3
(a)
(i)
 vo = VDD βˆ’ VTNL = 3 βˆ’ 0.4
 vo = 2.6 V
(ii)
βŽ›W ⎞                             βŽ›W ⎞
⎜ ⎟ ⎑ 2 ( vI βˆ’ 0.4 ) vo βˆ’ vo ⎀ = ⎜ ⎟ [VDD βˆ’ vo βˆ’ 0.4]
                           2                         2
        ⎣                    ⎦
⎝ L ⎠D                           ⎝ L ⎠L
16 ⎑ 2 ( 2.6 βˆ’ 0.4 ) vo βˆ’ vo ⎀ = 2 [3 βˆ’ vo βˆ’ 0.4]
                           2                          2
   ⎣                         ⎦
35.2vo βˆ’ 8vo = 6.76 βˆ’ 5.2vo + vo
           2                   2


9vo βˆ’ 40.4vo + 6.76 = 0
  2


       40.4 Β± 1632.16 βˆ’ 4 ( 9 )( 6.76 )
vo =
                         2 (9)
vo = 0.174 V
(b)
     βŽ› 60 ⎞
iD = ⎜ ⎟ (2) [3 βˆ’ 0.174 βˆ’ 0.4]
                              2

     ⎝ 2 ⎠
iD = 353.1 ΞΌ A
P = iD β‹… VDD = 1.06 mW

EX16.4
(a)
βŽ›W ⎞                             βŽ›W ⎞
⎜ ⎟ ⎑ 2 ( vI βˆ’ 0.4 ) vo βˆ’ vo ⎀ = ⎜ ⎟ ( βˆ’ ( βˆ’0.8 ) )
                           2                        2

⎝ L ⎠D ⎣                     ⎦
                                 ⎝ L ⎠L
6 ⎑ 2 ( 3 βˆ’ 0.4 ) vo βˆ’ vo ⎀ = 2 ( 0.64 )
  ⎣
                        2
                          ⎦
6vo βˆ’ 31.2vo + 1.28 = 0
  2


       31.2 Β± 973.44 βˆ’ 4 ( 6 )(1.28 )
vo =
                        2(6)
 vo = 41.4 mV
(b)
βŽ›W ⎞                βŽ›W ⎞
⎜ ⎟ ( vIt βˆ’ 0.4 ) = ⎜ ⎟ ( βˆ’(βˆ’0.8) )
                 2                  2

⎝  L ⎠D             ⎝ L ⎠L
6 ( vIt βˆ’ 0.4 ) = 2 ( 0.64 )
                2


β‡’ vIt = 0.862 V               ⎫
                              ⎬ Driver
 vOt = 0.862 βˆ’ 0.4 = 0.462 V ⎭
 vIt = 0.862 V                      ⎫
                                    ⎬ Load
 vOt = VDD + VTNL = 3 βˆ’ 0.8 = 2.2 V ⎭
(c)
      βŽ› 60 ⎞
iD = ⎜ ⎟ (2) ( βˆ’ ( βˆ’0.8 ) ) = 38.4 ΞΌ A
                           2

      ⎝ 2 ⎠
 P = iD β‹… VDD = 115.2 ΞΌ W

EX16.5
We have
                    {
VOH = VDD βˆ’ VTNLO + r ⎑ 2Ο† fP + VSB βˆ’ 2Ο† fP ⎀
                      ⎣                     ⎦     }
            {
VOH = 5 βˆ’ 0.8 + 0.35 ⎑ 0.73 + VOH βˆ’
                     ⎣                     0.73 ⎀}
                                                ⎦
VOH βˆ’ 4.499 = βˆ’0.35 0.73 + VOH
Squaring both sides
VOH βˆ’ 8.998VOH + 20.241 = 0.1225(0.73 + VOH )
  2


VOH βˆ’ 9.1205VOH + 20.15 = 0
  2


         9.1205 Β± 83.1835 βˆ’ 4(20.15)
VOH =
                     2
VOH    = 3.76 V

EX16.6
a.
i.     A = logic 1 = 10 V, B = logic 0 β€œA” driver in nonsaturation. β€œB” driver off
β€²
βŽ› kn ⎞ βŽ› W ⎞            βŽ› kβ€² βŽžβŽ› W ⎞
⎜ 2 ⎟ ⎜ L ⎟ ( βˆ’VTNL ) = ⎜ 2 ⎟ ⎜ L ⎟ ⎑ 2 ( vI βˆ’ vTND ) VOL βˆ’ VOL ⎀
                     2                                        2
                                    ⎣                           ⎦
⎝ ⎠ ⎝ ⎠L                ⎝ ⎠ ⎝ ⎠D
2 ( 3) = (10 ) ⎑ 2 (10 βˆ’ 1.5 ) V0 L βˆ’ V02L ⎀
      2
               ⎣                           ⎦
9 = 5 (17V0 L βˆ’ V02L )
5V02L βˆ’ 85V0 L + 9 = 0

                  (85 )       βˆ’ 4 ( 5 )( 9 )
                          2
          85 Β±
V0 L =                          β‡’ V0 L = 0.107 V
                 2(5)
ii.        A = B = logic 1
    β€²
 βŽ› kn ⎞ βŽ› W ⎞              βŽ› kβ€² βŽžβŽ› W ⎞
 ⎜ 2 ⎟ ⎜ L ⎟ ( βˆ’VTNL ) = 2 ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 ( vI βˆ’ vTND )VOL βˆ’ VOL ⎀
                                        ⎑
                      2                                         2
                                                                  ⎦
 ⎝ ⎠ ⎝ ⎠L                  ⎝ ⎠ ⎝ ⎠D
2 ( 3) = ( 2 )(10 ) ⎑ 2 (10 βˆ’ 1.5 ) V0 L βˆ’ V02L ⎀
      2
                    ⎣                           ⎦
9 = 10 (17V0 L βˆ’ V02L )
10V02L βˆ’ 170V0 L + 9 = 0

                   (170 ) βˆ’ 4 (10 )( 9 )
                               2
          170 Β±
V0 L =                                   β‡’ V0 L = 0.0531 V
                     2 (10 )
b.     Both cases.
    35
iD = β‹… ( 2 )( 3) = 315 ΞΌ A β‡’ P = iD β‹… VDD β‡’ P = 3.15 mW
                2

     2

EX16.7
                  800
P = iD β‹… VDD β‡’ iD =   = 160 ΞΌ A
                    5
          35 βŽ› W ⎞              βŽ›W ⎞   βŽ›W ⎞
iD = 160 = β‹… ⎜ ⎟ (1.4 ) = 34.3 ⎜ ⎟ β‡’ ⎜ ⎟ = 4.66
                        2

           2 ⎝ L ⎠L             ⎝ L ⎠L ⎝ L ⎠L
                 35 βŽ› W ⎞ ⎑                                    βŽ›W ⎞
                    β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.12 ) βˆ’ ( 0.12 ) ⎀ β‡’ ⎜ ⎟ = 9.20
                                                          2
iD = 160 =
                  2 ⎝ L ⎠D ⎣                                ⎦ ⎝ L ⎠D


EX16.8
                   VDD 2.1
(a)         VIt =        =     = 1.05 V
                     2       2
            VOPt   = VIt βˆ’ VTD = 1.05 βˆ’ (βˆ’0.4) = 1.45 V
            VONt   = VIt βˆ’ VTN = 1.05 βˆ’ 0.4 = 0.65 V
                    2.1 + (βˆ’0.4) + 0.5(0.4)
(b)         VIt =                                   = 1.16 V
                            1 + 0.5
            VOPt   = 1.16 + 0.4 = 1.56 V
            VONt = 1.16 βˆ’ 0.4 = 0.76 V
                    2.1 + (βˆ’0.4) + 2(0.4)
(c)         VIt =                         = 0.938 V
                           1+ 2
            VOPt   = 0.938 + 0.4 = 1.338 V
            VONt   = 0.538 V

EX16.9
P = f β‹… CL β‹… VDD
              2



( 0.10 Γ—10 ) = f ( 0.5 Γ—10 ) ( 3)
            βˆ’6                βˆ’12    2



 f = 2.22 Γ— 104 Hz β‡’ f = 22.2 kHz

EX16.10
a.
                                     10 βˆ’ 2 + 2.5(2)
K n / K p = 200 / 80 = 2.5 β‡’ VIt =                     β‡’ VIt = 4.32 V
                                         1 + 2.5
                                                        V0 Pt = 6.32 V
                                                        V0 Nt = 2.32 V
b.
            10 βˆ’ 2 βˆ’ 2 ⎑   2.5    ⎀
VIL = 2 +             β‹… ⎒2     βˆ’ 1βŽ₯ β‡’ VIL = 3.39 V
             2.5 βˆ’ 1 ⎣ 2.5 + 3 ⎦
          1
V0 HU =     {(1 + 2.5)(3.39) + 10 βˆ’ (2.5)(2) + 2}
          2
V0 HU   = 9.43 V
            10 βˆ’ 2 βˆ’ 2 ⎑ 2(2.5)     ⎀
VIH = 2 +             β‹…βŽ’         βˆ’ 1βŽ₯ β‡’ VIH = 4.86 V
             2.5 βˆ’ 1 ⎒ 3(2.5) + 1 βŽ₯
                       ⎣            ⎦
          (4.86)(1 + 2.5) βˆ’ 10 βˆ’ (2.5)(2) + 2
V0 LU =
                        2(2.5)
V0 LU   = 0.802 V
c.
 NM L = VIL βˆ’ V0 LU = 3.39 βˆ’ 0.802 β‡’ NM L = 2.59 V
NM H = V0 HU βˆ’ VIH = 9.43 βˆ’ 4.86 β‡’ NM H = 4.57 V

EX16.11
3 PMOS in series and 3 NMOS in parallel.
Worst Case: Only one NMOS is ON in Pull-down mode β‡’ same as the CMOS inverter β‡’ Wn = W .
All 3 PMOS are on during pull-up mode β‡’ W p = 3(2W ) = 6W .

EX16.12
NMOS: Worst Case, M NA , M NB on, Wn = 2(W ) or M NC , M ND or M NC , M NE on β‡’ Wn = 2(W ).
PMOS: M PA and M PC on or M PA and M PB on β‡’ WP = 2(2W ) = 4W
If M PD and M PE on, need WP = 2(4W ) = 8W

EX16.13
a.      vI = Ο† = 5 V β‡’ v0 = 4 V
b.          vI = 3 V, Ο† = 5 V β‡’ v0 = 3 V
c.          vI = 4.2 V, Ο† = 5 V β‡’ v0 = 4 V
d.          vI = 5 V, Ο† = 3 V β‡’ v0 = 2 V

EX16.14
(a)      vI = 8V , Ο† = 10V β‡’ vGSD = 8 V
 M D in nonsaturation
K D ⎑ 2(vGSD βˆ’ VTND )vO βˆ’ vO ⎀
    ⎣
                           2
                             ⎦
K L [VDD βˆ’ vO βˆ’ VTNL ]
                       2


 KD ⎑                                                   K
       2 ( 8 βˆ’ 2 )( 0.5 ) βˆ’ ( 0.5 ) ⎀ = [10 βˆ’ 0.5 βˆ’ 2] β‡’ D = 9.78
                                   2                  2

 KL ⎣                                ⎦                  KL
(b)
 vI = Ο† = 8V β‡’ vGSD = 6 V
KD ⎑                                                K
     2 6 βˆ’ 2 )( 0.5 ) βˆ’ ( 0.5 ) ⎀ = [10 βˆ’ 0.5 βˆ’ 2] β‡’ D = 15
   ⎣ (
                               2                  2

KL                               ⎦                  KL

EX16.15
16 K β‡’ 16384 cells
Total Power = 125 mW = (2.5) IT β‡’ IT = 50 mA
                        50 mA
Then, for each cell, I =       β‡’ I = 3.05 ΞΌ A
                        16384
           VDD         V      2.5
Now, I β‰…         or R = DD =      β‡’ R = 0.82 M Ξ©
            R            I   3.05

TYU16.1
                       750
P = iD β‹… VDD β‡’ iD =        = 150 ΞΌ A
                        5
      35 βŽ› W ⎞
150 =    ⎜ ⎟ (5 βˆ’ 0.2 βˆ’ 0.8)
                             2

       2 ⎝ L ⎠L
          βŽ›W ⎞    βŽ›W ⎞
150 = 280 ⎜ ⎟ β‡’ ⎜ ⎟ = 0.536
          ⎝ L ⎠L  ⎝ L ⎠L
     βŽ› kβ€² βŽžβŽ› W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ⎑ 2(vI βˆ’ VTND )vO βˆ’ vO ⎀
                                    2

     ⎝ 2 ⎠ ⎝ L ⎠D ⎣                   ⎦
       35 βŽ› W ⎞
150 = ⎜ ⎟ ⎑ 2(4.2 βˆ’ 0.8)(0.2) βˆ’ (0.2) 2 ⎀
        2 ⎝ L ⎠D ⎣                      ⎦

             βŽ›W ⎞   βŽ›W ⎞
150 = 23.1 β‹… ⎜ ⎟ β‡’ ⎜ ⎟ = 6.49
             ⎝ L ⎠D ⎝ L ⎠D

TYU16.2
                         350
P = iD β‹… VDD β‡’ I D =         = 70 ΞΌ A
                          5
     βŽ› kβ€² βŽžβŽ› W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ( βˆ’VTNL )
                         2

     ⎝ 2 ⎠ ⎝ L ⎠L
      35 βŽ› W ⎞         βŽ›W ⎞
70 = β‹… ⎜ ⎟ ( 2 ) β‡’ ⎜ ⎟ = 1
                  2

       2 ⎝ L ⎠L        ⎝ L ⎠L
     35 βŽ› W ⎞ ⎑
        β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.05 ) βˆ’ ( 0.05 ) ⎀
                                              2
iD =
      2 ⎝ L ⎠D ⎣                                ⎦
            βŽ›W ⎞    βŽ›W ⎞
70 = 7.31 β‹… ⎜ ⎟ β‡’ ⎜ ⎟ = 9.58
            ⎝ L ⎠D  ⎝ L ⎠D

TYU16.3
800
P = iD β‹… VDD β‡’ iD =   = 160 ΞΌ A
                    5
          35 βŽ› W ⎞          βŽ›W ⎞
iD = 160 = β‹… ⎜ ⎟ (1.4 ) β‡’ ⎜ ⎟ = 4.66
                        2

           2 ⎝ L ⎠L         ⎝ L ⎠L
                  35 1 βŽ› W ⎞ ⎑                                   βŽ›W ⎞
iD = 160 ΞΌ A =      β‹… β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.12 ) βˆ’ ( 0.12 ) ⎀ β‡’ ⎜ ⎟ = 27.6
                                                            2

                   2 3 ⎝ L ⎠D ⎣                               ⎦ ⎝ L ⎠D


TYU16.4
a.        From the load transistor:
       βŽ› β€²
         kn ⎞ βŽ› W ⎞                 35
I DL = ⎜ ⎟ ⎜ ⎟ (VGSL βˆ’ VTNL ) = ( 0.5 )( 5 βˆ’ 0.15 βˆ’ 0.7 )
                                2                         2

       ⎝ 2 ⎠ ⎝ L ⎠L                  2
or
I DL = 150.7 ΞΌ A
Maximum v0 occurs when either A or B is high and C is high. For the two NMOS is series, the effective
k N is cut in half, so
         1 βŽ‘βŽ› k n ⎞ βŽ› W ⎞ ⎀
                β€²
I DL =     ⎒⎜ ⎟ ⎜ ⎟ βŽ₯ ⎑ 2 (VGSD βˆ’ VTND ) VDS βˆ’ VDS ⎀
                                                2

         2 ⎣⎝ 2 ⎠ ⎝ L ⎠ D ⎦ ⎣                      ⎦
or
        1 ⎑ 35 βŽ› W ⎞ ⎀ ⎑
          ⎒ β‹… ⎜ ⎟ βŽ₯ 2 ( 5 βˆ’ 0.7 )( 0.15 ) βˆ’ ( 0.15 ) ⎀
                                                    2
150.7 =
        2 ⎣ 2 ⎝ L ⎠D ⎦ ⎣                              ⎦
which yields
βŽ›W ⎞
⎜ ⎟ = 13.6
⎝ L ⎠D
b.          P = iD β‹… VDD = (150.7 )( 5 ) β‡’ P = 753 ΞΌ W

TYU16.5
a.     v0 (max) occurs when A = B = 1 and C = D = 0 or A = B = 0 and C = D = 1
βŽ›W ⎞             1 βŽ›W ⎞
⎜ ⎟ (βˆ’VTNL ) = β‹… ⎜ ⎟ ⎑ 2(vI βˆ’ VTND )vO βˆ’ vO ⎀
              2                              2

⎝ L ⎠L           2 ⎝ L ⎠D ⎣                    ⎦
             1 βŽ›W ⎞
                      ⎑                           ⎀
(0.5)(1.2)2 = β‹… ⎜ ⎟ ⎣ 2(5 βˆ’ 0.7)(0.15) βˆ’ (0.15) 2 ⎦
             2 ⎝ L ⎠D
               βŽ›W ⎞   βŽ›W ⎞
0.72 = (0.634) ⎜ ⎟ β‡’ ⎜ ⎟ = 1.14
               ⎝ L ⎠D ⎝ L ⎠D
b.
     βŽ› kβ€² βŽžβŽ› W ⎞            βŽ› 35 ⎞
iD = ⎜ n ⎟ ⎜ ⎟ (βˆ’VTNL ) 2 = ⎜ ⎟ (0.5) [ βˆ’(βˆ’1.2) ]
                                                 2

     ⎝ 2 ⎠ ⎝ L ⎠L           ⎝ 2⎠
iD = 12.6 ΞΌ A
P = iD β‹… VDD = (12.6)(5) β‡’ P = 63 ΞΌ W

TYU16.6
a.
K n = K p = 50 ΞΌ A / V 2
VIt = 2.5 V
iD (max) = K n (VIt βˆ’ VTN ) 2 = 50(2.5 βˆ’ 0.8) 2 β‡’ iD (max) = 145 ΞΌ A
b.
K n = K p = 200 ΞΌ A / V 2
VIt = 2.5 V
iD (max) = (200)(2.5 βˆ’ 0.8) 2 β‡’ iD (max) = 578 ΞΌ A

TYU16.7
a.
      5 βˆ’ 2 + (1)(0.8)
VIt =
            1+1
VIt = 1.9 V
V0 Pt = 3.9 V
V0 Nt = 1.1 V
b.
             3
VIL = 0.8 + β‹… [5 βˆ’ 2 βˆ’ 0.8] β‡’ VIL = 1.63 V
             8
         1
V0 HU = {2(1.63) + 5 βˆ’ 0.8 + 2}
         2
V0 HU = 4.73 V
            5
VIH = 0.8 + (5 βˆ’ 2 βˆ’ 0.8) β‡’ VIH = 2.18 V
            8
        1
V0 LU = {2(2.18) βˆ’ 5 βˆ’ 0.8 + 2}
        2
V0 LU = 0.275 V
c.
 NM L = VIL βˆ’ V0 LU = 1.63 βˆ’ 0.275 β‡’ NM L = 1.35 V
NM H = V0 HU βˆ’ VIH = 4.73 βˆ’ 2.18 β‡’ NM H = 2.55 V

TYU16.8
TYU16.9
NMOS βˆ’ 2 transistors in series
Wn = 2 (W ) = 2W
PMOS βˆ’ 2 transistors in series
W p = 2 ( 2W ) = 4W

TYU16.10
The NMOS part of the circuit is:
TYU16.11
The NMOS part of the circuit is:




TYU16.12
Exclusive-OR

A       B         f
0       0         0
1       0         1
0       1         1
1       1         0
TYU16.13




NMOS conducting for 0 ≀ vI ≀ 4.2 V
β‡’ NMOS Conducting: 0 ≀ t ≀ 8.4 s
NMOS Cutoff: 8.4 ≀ t ≀ 10 s
PMOS cutoff for 0 ≀ vI ≀ 1.2 V
β‡’ PMOS Cutoff: 0 ≀ t ≀ 2.4 s
PMOS Conducting: 2.4 ≀ t ≀ 10 s




TYU16.14
(a)       1 K β‡’ 32 Γ— 32 array
Each row and column requires a 5-bit word β‡’ 6 transistors per row and column, β‡’ 32 Γ— 6 + 32 Γ— 6 = 384
transistors plus buffer transistors.
(b)       4 K β‡’ 64 Γ— 64 array
Each row and column requires a 6-bit word β‡’ 7 transistors per row and column β‡’ 64 Γ— 7 + 64 Γ— 7 = 896
transistors plus buffer transistors.
(c)       16 K β‡’ 128 Γ— 128 array
Each row and column requires a 7-bit word β‡’ 8 transistors per row and column
 β‡’ 128 Γ— 8 + 128 Γ— 8 = 2048 transistors plus buffer transistors.

TYU16.15
From Equation (16.84)
(W / L )nA 2 (VDDVTN ) βˆ’ 3VTN 2(2.5)(0.4) βˆ’ 3(0.4) 2
                              2

            =                   =                    = 0.526
 (W / L )n1   (VDD βˆ’ 2VTN )
                            2
                                  ( 2.5 βˆ’ 2(0.4) )
                                                   2


From Equation (16.86)
(W / L ) p       kn 2 (VDDVTN ) βˆ’ 3VTN
                  β€²                   2
                                                ⎑ 2(2.5)(0.4) βˆ’ 3(0.4) 2 ⎀
             =      β‹…                   = (2.5) ⎒                        βŽ₯ = 0.862
(W / L )nB       kβ€²
                  p    (VDD + VTP )
                                    2
                                                ⎣     (2.5 βˆ’ 0.4) 2      ⎦
   βŽ›W ⎞                                                       βŽ›W ⎞
So ⎜ ⎟ of transmission gate device must be < 0.526 times the ⎜ ⎟ of the NMOS transistors in the
   ⎝  L⎠                                                      ⎝L⎠
                   βŽ›W ⎞                                                  βŽ›W ⎞
inverter cell. The ⎜ ⎟ of the PMOS transistors must be < 0.862 times the ⎜ ⎟ of the transmission gate
                   ⎝L⎠                                                   ⎝L⎠
                   βŽ› W⎞                                            βŽ› W⎞
devices. Then the ⎜ ⎟ of the PMOS devices must be < 0.453 times ⎜ ⎟ of NMOS devices in cell.
                   ⎝L⎠                                             ⎝L⎠

TYU16.16
Initial voltage across the storage capacitor = VDD βˆ’ VTN = 3 βˆ’ 0.5 = 2.5 V .
Now
         dV               I
 βˆ’I = C       or V = βˆ’ β‹… t + K
          dt             C
                                      2.5
where K = 2.5 V , t = 1.5 ms, V =         = 1.25 V , and C = 0.05 pF . Then
                                       2
               I (1.5 Γ— 10βˆ’3 )
1.25 = 2.5 βˆ’                   β‡’
              (0.05 Γ— 10βˆ’12 )
I = 4.17 Γ— 10βˆ’11 A β‡’ I = 41.7 pA

More Related Content

What's hot

Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation IIJazz Michele Pasaribu
Β 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyearsAnwesa Roy
Β 
Research: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionResearch: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionMadhawa Gunasekara
Β 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)Harrisson David Assis Santos
Β 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_prialeJeff Chasi
Β 

What's hot (11)

Integrales
IntegralesIntegrales
Integrales
Β 
Ch13s
Ch13sCh13s
Ch13s
Β 
Chapt03 pp 110626
Chapt03 pp 110626Chapt03 pp 110626
Chapt03 pp 110626
Β 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation II
Β 
V2.0
V2.0V2.0
V2.0
Β 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
Β 
Ch08p
Ch08pCh08p
Ch08p
Β 
Research: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionResearch: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy Detection
Β 
Ch12p
Ch12pCh12p
Ch12p
Β 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
Β 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
Β 

Similar to Ch16p (20)

Ch04s
Ch04sCh04s
Ch04s
Β 
Ch03p
Ch03pCh03p
Ch03p
Β 
Ch11p
Ch11pCh11p
Ch11p
Β 
Ch03s
Ch03sCh03s
Ch03s
Β 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Β 
Ch09s
Ch09sCh09s
Ch09s
Β 
Ch15p
Ch15pCh15p
Ch15p
Β 
Ch02s
Ch02sCh02s
Ch02s
Β 
Ch10s
Ch10sCh10s
Ch10s
Β 
Ch01p
Ch01pCh01p
Ch01p
Β 
Ch11s
Ch11sCh11s
Ch11s
Β 
Ch14p
Ch14pCh14p
Ch14p
Β 
Ch06s
Ch06sCh06s
Ch06s
Β 
Ch09p
Ch09pCh09p
Ch09p
Β 
Ch05p
Ch05pCh05p
Ch05p
Β 
SesiΓ³n 05
SesiΓ³n 05SesiΓ³n 05
SesiΓ³n 05
Β 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Β 
Ch08s
Ch08sCh08s
Ch08s
Β 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Β 
Ch15s
Ch15sCh15s
Ch15s
Β 

More from Bilal Sarwar

More from Bilal Sarwar (9)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Β 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Β 
Ramey soft
Ramey softRamey soft
Ramey soft
Β 
Ch14s
Ch14sCh14s
Ch14s
Β 
Ch12s
Ch12sCh12s
Ch12s
Β 
Ch07s
Ch07sCh07s
Ch07s
Β 
Ch07p
Ch07pCh07p
Ch07p
Β 
Ch06p
Ch06pCh06p
Ch06p
Β 
Ch05s
Ch05sCh05s
Ch05s
Β 

Recently uploaded

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
Β 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
Β 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
Β 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
Β 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
Β 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
Β 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
Β 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
Β 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
Β 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
Β 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
Β 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
Β 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
Β 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
Β 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
Β 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
Β 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
Β 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
Β 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
Β 

Recently uploaded (20)

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
Β 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Β 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Β 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
Β 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Β 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
Β 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Β 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
Β 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
Β 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
Β 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Β 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
Β 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
Β 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
Β 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
Β 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
Β 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Β 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
Β 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Β 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
Β 

Ch16p

  • 1. Chapter 16 Exercise Solutions EX16.1 ( 3.9 ) (8.85 Γ—10βˆ’14 ) COX = = 1.726 Γ—10βˆ’7 F / cm 2 200 Γ— 10βˆ’8 2 (1.6 Γ— 10βˆ’19 ) (11.7 ) ( 8.85 Γ—10 βˆ’14 )(1015 ) 1 Ξ³ = = 0.1055 V 2 1.726 Γ— 10βˆ’7 Ξ”VTN = r ⎑ 0.576 + VSB βˆ’ 0.576 ⎀ = ( 0.1055 ) ⎑ 0.576 + 5 + 0.576 ⎀ ⎣ ⎦ ⎣ ⎦ Ξ”VTN = 0.169 V EX16.2 (a) vo = VDD βˆ’ I D RD βŽ› kβ€² βŽžβŽ› W ⎞ vo = 3 βˆ’ ⎜ n ⎟ ⎜ ⎟ ⎣ 2 ( 3 βˆ’ 0.5 ) vo βˆ’ vo ⎦ RD ⎑ ⎀ 2 ⎝ 2 ⎠⎝ L ⎠ vo = 0.1 βŽ› 0.06 ⎞ ⎑ ⎟ ( 5 ) ⎣( 5 )( 0.1) βˆ’ ( 0.1) ⎀ RD 2 0.1 = 3 βˆ’ ⎜ ⎝ 2 ⎠ ⎦ 0.1 = 3 βˆ’ 0.0735RD RD = 39.5 K (b) βŽ› 0.06 ⎞ ⎟ ( 5 )( 39.5 )(VIt βˆ’ 0.5 ) + (VIt βˆ’ 0.5 ) βˆ’ 3 = 0 2 ⎜ ⎝ 2 ⎠ 5.925 (VIt βˆ’ 0.5 ) + (VIt βˆ’ 0.5 ) βˆ’ 3 = 0 2 βˆ’1 Β± 1 + 4 ( 5.925 )( 3) (VIt βˆ’ 0.5 ) = VOt = 2 ( 5.925 ) VOt = 0.632 V VIt = 1.132 V EX16.3 (a) (i) vo = VDD βˆ’ VTNL = 3 βˆ’ 0.4 vo = 2.6 V (ii) βŽ›W ⎞ βŽ›W ⎞ ⎜ ⎟ ⎑ 2 ( vI βˆ’ 0.4 ) vo βˆ’ vo ⎀ = ⎜ ⎟ [VDD βˆ’ vo βˆ’ 0.4] 2 2 ⎣ ⎦ ⎝ L ⎠D ⎝ L ⎠L 16 ⎑ 2 ( 2.6 βˆ’ 0.4 ) vo βˆ’ vo ⎀ = 2 [3 βˆ’ vo βˆ’ 0.4] 2 2 ⎣ ⎦ 35.2vo βˆ’ 8vo = 6.76 βˆ’ 5.2vo + vo 2 2 9vo βˆ’ 40.4vo + 6.76 = 0 2 40.4 Β± 1632.16 βˆ’ 4 ( 9 )( 6.76 ) vo = 2 (9) vo = 0.174 V
  • 2. (b) βŽ› 60 ⎞ iD = ⎜ ⎟ (2) [3 βˆ’ 0.174 βˆ’ 0.4] 2 ⎝ 2 ⎠ iD = 353.1 ΞΌ A P = iD β‹… VDD = 1.06 mW EX16.4 (a) βŽ›W ⎞ βŽ›W ⎞ ⎜ ⎟ ⎑ 2 ( vI βˆ’ 0.4 ) vo βˆ’ vo ⎀ = ⎜ ⎟ ( βˆ’ ( βˆ’0.8 ) ) 2 2 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠L 6 ⎑ 2 ( 3 βˆ’ 0.4 ) vo βˆ’ vo ⎀ = 2 ( 0.64 ) ⎣ 2 ⎦ 6vo βˆ’ 31.2vo + 1.28 = 0 2 31.2 Β± 973.44 βˆ’ 4 ( 6 )(1.28 ) vo = 2(6) vo = 41.4 mV (b) βŽ›W ⎞ βŽ›W ⎞ ⎜ ⎟ ( vIt βˆ’ 0.4 ) = ⎜ ⎟ ( βˆ’(βˆ’0.8) ) 2 2 ⎝ L ⎠D ⎝ L ⎠L 6 ( vIt βˆ’ 0.4 ) = 2 ( 0.64 ) 2 β‡’ vIt = 0.862 V ⎫ ⎬ Driver vOt = 0.862 βˆ’ 0.4 = 0.462 V ⎭ vIt = 0.862 V ⎫ ⎬ Load vOt = VDD + VTNL = 3 βˆ’ 0.8 = 2.2 V ⎭ (c) βŽ› 60 ⎞ iD = ⎜ ⎟ (2) ( βˆ’ ( βˆ’0.8 ) ) = 38.4 ΞΌ A 2 ⎝ 2 ⎠ P = iD β‹… VDD = 115.2 ΞΌ W EX16.5 We have { VOH = VDD βˆ’ VTNLO + r ⎑ 2Ο† fP + VSB βˆ’ 2Ο† fP ⎀ ⎣ ⎦ } { VOH = 5 βˆ’ 0.8 + 0.35 ⎑ 0.73 + VOH βˆ’ ⎣ 0.73 ⎀} ⎦ VOH βˆ’ 4.499 = βˆ’0.35 0.73 + VOH Squaring both sides VOH βˆ’ 8.998VOH + 20.241 = 0.1225(0.73 + VOH ) 2 VOH βˆ’ 9.1205VOH + 20.15 = 0 2 9.1205 Β± 83.1835 βˆ’ 4(20.15) VOH = 2 VOH = 3.76 V EX16.6 a. i. A = logic 1 = 10 V, B = logic 0 β€œA” driver in nonsaturation. β€œB” driver off
  • 3. β€² βŽ› kn ⎞ βŽ› W ⎞ βŽ› kβ€² βŽžβŽ› W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ( βˆ’VTNL ) = ⎜ 2 ⎟ ⎜ L ⎟ ⎑ 2 ( vI βˆ’ vTND ) VOL βˆ’ VOL ⎀ 2 2 ⎣ ⎦ ⎝ ⎠ ⎝ ⎠L ⎝ ⎠ ⎝ ⎠D 2 ( 3) = (10 ) ⎑ 2 (10 βˆ’ 1.5 ) V0 L βˆ’ V02L ⎀ 2 ⎣ ⎦ 9 = 5 (17V0 L βˆ’ V02L ) 5V02L βˆ’ 85V0 L + 9 = 0 (85 ) βˆ’ 4 ( 5 )( 9 ) 2 85 Β± V0 L = β‡’ V0 L = 0.107 V 2(5) ii. A = B = logic 1 β€² βŽ› kn ⎞ βŽ› W ⎞ βŽ› kβ€² βŽžβŽ› W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ( βˆ’VTNL ) = 2 ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 ( vI βˆ’ vTND )VOL βˆ’ VOL ⎀ ⎑ 2 2 ⎦ ⎝ ⎠ ⎝ ⎠L ⎝ ⎠ ⎝ ⎠D 2 ( 3) = ( 2 )(10 ) ⎑ 2 (10 βˆ’ 1.5 ) V0 L βˆ’ V02L ⎀ 2 ⎣ ⎦ 9 = 10 (17V0 L βˆ’ V02L ) 10V02L βˆ’ 170V0 L + 9 = 0 (170 ) βˆ’ 4 (10 )( 9 ) 2 170 Β± V0 L = β‡’ V0 L = 0.0531 V 2 (10 ) b. Both cases. 35 iD = β‹… ( 2 )( 3) = 315 ΞΌ A β‡’ P = iD β‹… VDD β‡’ P = 3.15 mW 2 2 EX16.7 800 P = iD β‹… VDD β‡’ iD = = 160 ΞΌ A 5 35 βŽ› W ⎞ βŽ›W ⎞ βŽ›W ⎞ iD = 160 = β‹… ⎜ ⎟ (1.4 ) = 34.3 ⎜ ⎟ β‡’ ⎜ ⎟ = 4.66 2 2 ⎝ L ⎠L ⎝ L ⎠L ⎝ L ⎠L 35 βŽ› W ⎞ ⎑ βŽ›W ⎞ β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.12 ) βˆ’ ( 0.12 ) ⎀ β‡’ ⎜ ⎟ = 9.20 2 iD = 160 = 2 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠D EX16.8 VDD 2.1 (a) VIt = = = 1.05 V 2 2 VOPt = VIt βˆ’ VTD = 1.05 βˆ’ (βˆ’0.4) = 1.45 V VONt = VIt βˆ’ VTN = 1.05 βˆ’ 0.4 = 0.65 V 2.1 + (βˆ’0.4) + 0.5(0.4) (b) VIt = = 1.16 V 1 + 0.5 VOPt = 1.16 + 0.4 = 1.56 V VONt = 1.16 βˆ’ 0.4 = 0.76 V 2.1 + (βˆ’0.4) + 2(0.4) (c) VIt = = 0.938 V 1+ 2 VOPt = 0.938 + 0.4 = 1.338 V VONt = 0.538 V EX16.9
  • 4. P = f β‹… CL β‹… VDD 2 ( 0.10 Γ—10 ) = f ( 0.5 Γ—10 ) ( 3) βˆ’6 βˆ’12 2 f = 2.22 Γ— 104 Hz β‡’ f = 22.2 kHz EX16.10 a. 10 βˆ’ 2 + 2.5(2) K n / K p = 200 / 80 = 2.5 β‡’ VIt = β‡’ VIt = 4.32 V 1 + 2.5 V0 Pt = 6.32 V V0 Nt = 2.32 V b. 10 βˆ’ 2 βˆ’ 2 ⎑ 2.5 ⎀ VIL = 2 + β‹… ⎒2 βˆ’ 1βŽ₯ β‡’ VIL = 3.39 V 2.5 βˆ’ 1 ⎣ 2.5 + 3 ⎦ 1 V0 HU = {(1 + 2.5)(3.39) + 10 βˆ’ (2.5)(2) + 2} 2 V0 HU = 9.43 V 10 βˆ’ 2 βˆ’ 2 ⎑ 2(2.5) ⎀ VIH = 2 + β‹…βŽ’ βˆ’ 1βŽ₯ β‡’ VIH = 4.86 V 2.5 βˆ’ 1 ⎒ 3(2.5) + 1 βŽ₯ ⎣ ⎦ (4.86)(1 + 2.5) βˆ’ 10 βˆ’ (2.5)(2) + 2 V0 LU = 2(2.5) V0 LU = 0.802 V c. NM L = VIL βˆ’ V0 LU = 3.39 βˆ’ 0.802 β‡’ NM L = 2.59 V NM H = V0 HU βˆ’ VIH = 9.43 βˆ’ 4.86 β‡’ NM H = 4.57 V EX16.11 3 PMOS in series and 3 NMOS in parallel. Worst Case: Only one NMOS is ON in Pull-down mode β‡’ same as the CMOS inverter β‡’ Wn = W . All 3 PMOS are on during pull-up mode β‡’ W p = 3(2W ) = 6W . EX16.12 NMOS: Worst Case, M NA , M NB on, Wn = 2(W ) or M NC , M ND or M NC , M NE on β‡’ Wn = 2(W ). PMOS: M PA and M PC on or M PA and M PB on β‡’ WP = 2(2W ) = 4W If M PD and M PE on, need WP = 2(4W ) = 8W EX16.13 a. vI = Ο† = 5 V β‡’ v0 = 4 V b. vI = 3 V, Ο† = 5 V β‡’ v0 = 3 V c. vI = 4.2 V, Ο† = 5 V β‡’ v0 = 4 V d. vI = 5 V, Ο† = 3 V β‡’ v0 = 2 V EX16.14 (a) vI = 8V , Ο† = 10V β‡’ vGSD = 8 V M D in nonsaturation
  • 5. K D ⎑ 2(vGSD βˆ’ VTND )vO βˆ’ vO ⎀ ⎣ 2 ⎦ K L [VDD βˆ’ vO βˆ’ VTNL ] 2 KD ⎑ K 2 ( 8 βˆ’ 2 )( 0.5 ) βˆ’ ( 0.5 ) ⎀ = [10 βˆ’ 0.5 βˆ’ 2] β‡’ D = 9.78 2 2 KL ⎣ ⎦ KL (b) vI = Ο† = 8V β‡’ vGSD = 6 V KD ⎑ K 2 6 βˆ’ 2 )( 0.5 ) βˆ’ ( 0.5 ) ⎀ = [10 βˆ’ 0.5 βˆ’ 2] β‡’ D = 15 ⎣ ( 2 2 KL ⎦ KL EX16.15 16 K β‡’ 16384 cells Total Power = 125 mW = (2.5) IT β‡’ IT = 50 mA 50 mA Then, for each cell, I = β‡’ I = 3.05 ΞΌ A 16384 VDD V 2.5 Now, I β‰… or R = DD = β‡’ R = 0.82 M Ξ© R I 3.05 TYU16.1 750 P = iD β‹… VDD β‡’ iD = = 150 ΞΌ A 5 35 βŽ› W ⎞ 150 = ⎜ ⎟ (5 βˆ’ 0.2 βˆ’ 0.8) 2 2 ⎝ L ⎠L βŽ›W ⎞ βŽ›W ⎞ 150 = 280 ⎜ ⎟ β‡’ ⎜ ⎟ = 0.536 ⎝ L ⎠L ⎝ L ⎠L βŽ› kβ€² βŽžβŽ› W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ⎑ 2(vI βˆ’ VTND )vO βˆ’ vO ⎀ 2 ⎝ 2 ⎠ ⎝ L ⎠D ⎣ ⎦ 35 βŽ› W ⎞ 150 = ⎜ ⎟ ⎑ 2(4.2 βˆ’ 0.8)(0.2) βˆ’ (0.2) 2 ⎀ 2 ⎝ L ⎠D ⎣ ⎦ βŽ›W ⎞ βŽ›W ⎞ 150 = 23.1 β‹… ⎜ ⎟ β‡’ ⎜ ⎟ = 6.49 ⎝ L ⎠D ⎝ L ⎠D TYU16.2 350 P = iD β‹… VDD β‡’ I D = = 70 ΞΌ A 5 βŽ› kβ€² βŽžβŽ› W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ( βˆ’VTNL ) 2 ⎝ 2 ⎠ ⎝ L ⎠L 35 βŽ› W ⎞ βŽ›W ⎞ 70 = β‹… ⎜ ⎟ ( 2 ) β‡’ ⎜ ⎟ = 1 2 2 ⎝ L ⎠L ⎝ L ⎠L 35 βŽ› W ⎞ ⎑ β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.05 ) βˆ’ ( 0.05 ) ⎀ 2 iD = 2 ⎝ L ⎠D ⎣ ⎦ βŽ›W ⎞ βŽ›W ⎞ 70 = 7.31 β‹… ⎜ ⎟ β‡’ ⎜ ⎟ = 9.58 ⎝ L ⎠D ⎝ L ⎠D TYU16.3
  • 6. 800 P = iD β‹… VDD β‡’ iD = = 160 ΞΌ A 5 35 βŽ› W ⎞ βŽ›W ⎞ iD = 160 = β‹… ⎜ ⎟ (1.4 ) β‡’ ⎜ ⎟ = 4.66 2 2 ⎝ L ⎠L ⎝ L ⎠L 35 1 βŽ› W ⎞ ⎑ βŽ›W ⎞ iD = 160 ΞΌ A = β‹… β‹… ⎜ ⎟ 2 ( 5 βˆ’ 0.8 )( 0.12 ) βˆ’ ( 0.12 ) ⎀ β‡’ ⎜ ⎟ = 27.6 2 2 3 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠D TYU16.4 a. From the load transistor: βŽ› β€² kn ⎞ βŽ› W ⎞ 35 I DL = ⎜ ⎟ ⎜ ⎟ (VGSL βˆ’ VTNL ) = ( 0.5 )( 5 βˆ’ 0.15 βˆ’ 0.7 ) 2 2 ⎝ 2 ⎠ ⎝ L ⎠L 2 or I DL = 150.7 ΞΌ A Maximum v0 occurs when either A or B is high and C is high. For the two NMOS is series, the effective k N is cut in half, so 1 βŽ‘βŽ› k n ⎞ βŽ› W ⎞ ⎀ β€² I DL = ⎒⎜ ⎟ ⎜ ⎟ βŽ₯ ⎑ 2 (VGSD βˆ’ VTND ) VDS βˆ’ VDS ⎀ 2 2 ⎣⎝ 2 ⎠ ⎝ L ⎠ D ⎦ ⎣ ⎦ or 1 ⎑ 35 βŽ› W ⎞ ⎀ ⎑ ⎒ β‹… ⎜ ⎟ βŽ₯ 2 ( 5 βˆ’ 0.7 )( 0.15 ) βˆ’ ( 0.15 ) ⎀ 2 150.7 = 2 ⎣ 2 ⎝ L ⎠D ⎦ ⎣ ⎦ which yields βŽ›W ⎞ ⎜ ⎟ = 13.6 ⎝ L ⎠D b. P = iD β‹… VDD = (150.7 )( 5 ) β‡’ P = 753 ΞΌ W TYU16.5 a. v0 (max) occurs when A = B = 1 and C = D = 0 or A = B = 0 and C = D = 1 βŽ›W ⎞ 1 βŽ›W ⎞ ⎜ ⎟ (βˆ’VTNL ) = β‹… ⎜ ⎟ ⎑ 2(vI βˆ’ VTND )vO βˆ’ vO ⎀ 2 2 ⎝ L ⎠L 2 ⎝ L ⎠D ⎣ ⎦ 1 βŽ›W ⎞ ⎑ ⎀ (0.5)(1.2)2 = β‹… ⎜ ⎟ ⎣ 2(5 βˆ’ 0.7)(0.15) βˆ’ (0.15) 2 ⎦ 2 ⎝ L ⎠D βŽ›W ⎞ βŽ›W ⎞ 0.72 = (0.634) ⎜ ⎟ β‡’ ⎜ ⎟ = 1.14 ⎝ L ⎠D ⎝ L ⎠D b. βŽ› kβ€² βŽžβŽ› W ⎞ βŽ› 35 ⎞ iD = ⎜ n ⎟ ⎜ ⎟ (βˆ’VTNL ) 2 = ⎜ ⎟ (0.5) [ βˆ’(βˆ’1.2) ] 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎝ 2⎠ iD = 12.6 ΞΌ A P = iD β‹… VDD = (12.6)(5) β‡’ P = 63 ΞΌ W TYU16.6 a. K n = K p = 50 ΞΌ A / V 2 VIt = 2.5 V iD (max) = K n (VIt βˆ’ VTN ) 2 = 50(2.5 βˆ’ 0.8) 2 β‡’ iD (max) = 145 ΞΌ A
  • 7. b. K n = K p = 200 ΞΌ A / V 2 VIt = 2.5 V iD (max) = (200)(2.5 βˆ’ 0.8) 2 β‡’ iD (max) = 578 ΞΌ A TYU16.7 a. 5 βˆ’ 2 + (1)(0.8) VIt = 1+1 VIt = 1.9 V V0 Pt = 3.9 V V0 Nt = 1.1 V b. 3 VIL = 0.8 + β‹… [5 βˆ’ 2 βˆ’ 0.8] β‡’ VIL = 1.63 V 8 1 V0 HU = {2(1.63) + 5 βˆ’ 0.8 + 2} 2 V0 HU = 4.73 V 5 VIH = 0.8 + (5 βˆ’ 2 βˆ’ 0.8) β‡’ VIH = 2.18 V 8 1 V0 LU = {2(2.18) βˆ’ 5 βˆ’ 0.8 + 2} 2 V0 LU = 0.275 V c. NM L = VIL βˆ’ V0 LU = 1.63 βˆ’ 0.275 β‡’ NM L = 1.35 V NM H = V0 HU βˆ’ VIH = 4.73 βˆ’ 2.18 β‡’ NM H = 2.55 V TYU16.8
  • 8. TYU16.9 NMOS βˆ’ 2 transistors in series Wn = 2 (W ) = 2W PMOS βˆ’ 2 transistors in series W p = 2 ( 2W ) = 4W TYU16.10 The NMOS part of the circuit is:
  • 9. TYU16.11 The NMOS part of the circuit is: TYU16.12 Exclusive-OR A B f 0 0 0 1 0 1 0 1 1 1 1 0
  • 10. TYU16.13 NMOS conducting for 0 ≀ vI ≀ 4.2 V β‡’ NMOS Conducting: 0 ≀ t ≀ 8.4 s NMOS Cutoff: 8.4 ≀ t ≀ 10 s PMOS cutoff for 0 ≀ vI ≀ 1.2 V β‡’ PMOS Cutoff: 0 ≀ t ≀ 2.4 s PMOS Conducting: 2.4 ≀ t ≀ 10 s TYU16.14 (a) 1 K β‡’ 32 Γ— 32 array Each row and column requires a 5-bit word β‡’ 6 transistors per row and column, β‡’ 32 Γ— 6 + 32 Γ— 6 = 384 transistors plus buffer transistors. (b) 4 K β‡’ 64 Γ— 64 array Each row and column requires a 6-bit word β‡’ 7 transistors per row and column β‡’ 64 Γ— 7 + 64 Γ— 7 = 896 transistors plus buffer transistors. (c) 16 K β‡’ 128 Γ— 128 array Each row and column requires a 7-bit word β‡’ 8 transistors per row and column β‡’ 128 Γ— 8 + 128 Γ— 8 = 2048 transistors plus buffer transistors. TYU16.15 From Equation (16.84) (W / L )nA 2 (VDDVTN ) βˆ’ 3VTN 2(2.5)(0.4) βˆ’ 3(0.4) 2 2 = = = 0.526 (W / L )n1 (VDD βˆ’ 2VTN ) 2 ( 2.5 βˆ’ 2(0.4) ) 2 From Equation (16.86)
  • 11. (W / L ) p kn 2 (VDDVTN ) βˆ’ 3VTN β€² 2 ⎑ 2(2.5)(0.4) βˆ’ 3(0.4) 2 ⎀ = β‹… = (2.5) ⎒ βŽ₯ = 0.862 (W / L )nB kβ€² p (VDD + VTP ) 2 ⎣ (2.5 βˆ’ 0.4) 2 ⎦ βŽ›W ⎞ βŽ›W ⎞ So ⎜ ⎟ of transmission gate device must be < 0.526 times the ⎜ ⎟ of the NMOS transistors in the ⎝ L⎠ ⎝L⎠ βŽ›W ⎞ βŽ›W ⎞ inverter cell. The ⎜ ⎟ of the PMOS transistors must be < 0.862 times the ⎜ ⎟ of the transmission gate ⎝L⎠ ⎝L⎠ βŽ› W⎞ βŽ› W⎞ devices. Then the ⎜ ⎟ of the PMOS devices must be < 0.453 times ⎜ ⎟ of NMOS devices in cell. ⎝L⎠ ⎝L⎠ TYU16.16 Initial voltage across the storage capacitor = VDD βˆ’ VTN = 3 βˆ’ 0.5 = 2.5 V . Now dV I βˆ’I = C or V = βˆ’ β‹… t + K dt C 2.5 where K = 2.5 V , t = 1.5 ms, V = = 1.25 V , and C = 0.05 pF . Then 2 I (1.5 Γ— 10βˆ’3 ) 1.25 = 2.5 βˆ’ β‡’ (0.05 Γ— 10βˆ’12 ) I = 4.17 Γ— 10βˆ’11 A β‡’ I = 41.7 pA