SlideShare a Scribd company logo
1 of 13
Download to read offline
Chapter 7
Exercise Solutions

EX7.1
(a)
(i)
 RS = RP = 4 kΩ
     1         1
ω= =
     rS ( RS + RP ) CS
                  1                               1
CS =                               =
           2π f ( RS + RP )            2π ( 20 )( 4 + 4 ) × 10 3
CS = 0.995 μ F
(ii)
            ⎛ RP ⎞ ω rS
 T ( jω ) = ⎜         ⎟
            ⎝ RS + RP ⎠ 1 + ω 2 rS2
rS = ( RS + RP ) CS = 7.96 × 10 −3
   RP         4
          =        = 0.5
RS + RP 4 + 4
 f = 40 Hz
                  ( 0.5)( 2π )( 40 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                         (                 )
                                                               2
                  1 + ⎡ 2π ( 40 ) 7.96 × 10 −3 ⎤
                      ⎣                        ⎦
             T ( jω ) = 0.447
 f = 80 Hz
                  ( 0.5)( 2π )(80 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                         (                 )
                                                               2
                  1 + ⎡ 2π ( 80 ) 7.96 × 10 −3 ⎤
                      ⎣                        ⎦
             T ( jω ) = 0.485
 f = 200 Hz
                  ( 0.5 )( 2π )( 200 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                             (                 )
                                                                   2
                  1 + ⎡ 2π ( 200 ) 7.96 × 10 −3 ⎤
                      ⎣                         ⎦
             T ( jω ) = 0.498
(b)
       1       1
ω=       =
       rP ( RS RP ) CP
                  1
CP =
           2π f ( RS    RP )
                               1
       =
              (
           2π 500 × 10     3
                               ) (10         10 ) × 10 3
CP = 63.7 pF

EX7.2
a.
⎛ RP ⎞                RP                 RP
20 log10 ⎜         ⎟ = −1 ⇒         = 0.891 =           ⇒ (1 − 0.891) RP = 0.891 ⇒ RP = 8.20 kΩ
         ⎝ RP + RS ⎠        RP + RS             RP + 1
              1                            1
 fL =                   ⇒ CS =
      2π ( RS + RP ) CS        2π (100 )(1 + 8.20 ) × 10 3
CS = 0.173 μ F
                        1                                       1
fH =                                  ⇒ CP =
           2π ( RS          RP ) CP                2π 10( ) (1 || 8.20 ) × 10
                                                           6                    3


CP = 179 pF
b.
rS = ( RS + RP ) CS
       (                               )(
rS = 1 × 10 3 + 8.20 × 10 3 0.173 × 10 −6                  )
rS = 1.59 ms open-circuit time-constant
rP = ( RS          RP ) CP
rP = (1 8.20 ) × 10 3 179 × 10 −12(            )
rP = 0.160 μ s short-circuit time-constant

EX7.3
a.               rS = ( Ri + RS i ) CC
b.
             1
     f =
            2π rS
RTH = R1 R2 = 2.2 20 = 1.98 kΩ
       ⎛ R2 ⎞            ⎛ 2.2 ⎞
VTH = ⎜          ⎟ VCC = ⎜          ⎟ (10 ) = 0.991 V
       ⎝ R1 + R2 ⎠       ⎝ 2.2 + 20 ⎠
        VTH − VBE ( on )        0.991 − 0.7
I BQ =                    =                      = 0.0132 mA
       RTH + (1 + β ) RE 1.98 + ( 201)( 0.1)
 I CQ = 2.636 mA
            β VT        ( 200 )( 0.026 )
     rπ =           =                       = 1.97 kΩ
            I CQ               2.636
            ICQ        2.636
 gm =              =         = 101.4 mA/V
            VT         0.026
 Rib = τ π + (1 + β ) RE = 1.97 + ( 201)( 0.1) = 22.1 kΩ
 RB = R1 R2 = 1.98 kΩ
Ri = RB Rib = 1.98 22.1 = 1.817 kΩ
rS = ( Ri + RSi ) CC
      = (1.817 + 0.1) ×10 3   (        )( 47 × 10 )−6


  = 90.1 ms
          1
f =                 ⇒ f = 1.77 Hz
             (
    2π 90.1 × 10 −3               )
Midband Gain
− β RC         Ri
Aν =                     ⋅
         rπ + (1 + β ) RE Ri + RSi
            − ( 200 )( 2 )      1.82
     =                            ⋅
         1.97 + ( 201)( 0.1) 1.82 + 0.1
Aν = −17.2

EX7.4
I DQ = K n (VGS − VTN )
                              2


a.
 0.8
     + 2 = VGS ⇒ VGS = 3.265 V
 0.5
                     VS − ( −5 )
VS = −3.265 ⇒ I DQ =
                        RS
       −3.265 + 5
RS =               ⇒ RS = 2.17 kΩ
           0.8
                   5
VD = 0 ⇒ RD =         ⇒ RD = 6.25 kΩ
                  0.8
b.
rS = ( RD + RL ) CC = (10 + 6.25 ) × 10 3 × CC
       1                     1
 f =       ⇒ CC =
     2π rS                        (
                    2π f 16.25 × 10 3            )
                      1
CC =                                      ⇒ CC = 0.49 μ F
                  (
         2π ( 20 ) 16.25 × 10 3       )
EX7.5
rS = ( RL + Ro ) CC 2
       1                     1
 f =       ⇒ CC 2 =
     2π rS            2π f ( RL + Ro )
           ⎧ rπ + ( RS RB ) ⎫
           ⎪                ⎪
R0 = RE r0 ⎨                ⎬
           ⎪
           ⎩      1+ β      ⎪
                            ⎭
From Example 7-5, R0 = 35.5 Ω
                          1
CC 2 =
          2π (10 ) ⎡10 × 10 3 + 35.5⎤
                   ⎣                ⎦
CC 2 = 1.59 μ F

EX7.6
            I DQ = K P (VSG + VTP )
                                            2
a.
           1
              − ( −2 ) = VSG ⇒ VSG = 3.41 V
          0.5
        VS = 3.41
              5 − 3.41
        RS =            ⇒ RS = 1.59 kΩ
                  1
                                     5
For VSDG = VSGQ ⇒ VD = 0 ⇒ RD = ⇒ RD = 5 kΩ
                                    1
b.           rP = ( RD RL ) CL
                     1                  1
              f =         ⇒ CL =
                    2π rP        2π f ( RD RL )
                                  1
             CL =                                  ⇒ CL = 47.7 pF
                          ( )
                     2π 10 6     ( 5 10 ) × 10 3

EX7.7
(a)
 RTH = 5 K
 VTH = −3.7527
          −3.7527 − 0.7 − ( −5) 0.54726
I BQ =                         =
             5 + (101)( 0.5)      55.5
      = 0.00986
I CQ = 0.986 mA
gm = 37.925 rπ = 2.637 K
        5 − Vo Vo
0.986 =       − = 1 − Vo ( 0.4 )
           5   5
Vo = 0.035
(b)
                                       Rib

            RS ϭ 0.1 k⍀
                                                                               V0
                                             ϩ

Vi    ϩ                           RTH ϭ                                    RC ͉͉RL ϭ
      Ϫ                                      V␲     r␲
                                  5 k⍀                              gmV␲   2.5 k⍀

                                             Ϫ




                                                           RE ϭ
                                                           0.5 k⍀




 Vo = − gmVπ ( RC         RL )
Rib = rπ + (1 + β ) RE = 2.64 + (101)( 0.5) = 53.14 K
               Vb                Vb              Vb
Vπ =                   =                     =
             ⎛1+ β ⎞        ⎛  101 ⎞           14.885
          1+ ⎜     ⎟ RE 1 + ⎜ 2.637 ⎟ ( 0.5)
             ⎝ rπ ⎠         ⎝       ⎠
      ⎛ RTH Rib ⎞              ⎛ 5 53.14 ⎞
 Vb = ⎜                 ⎟ Vi = ⎜               ⎟ Vi
      ⎝ RTH Rib + RS ⎠         ⎝ 5 53.14 + 0.1 ⎠
      ⎛ 4.57 ⎞
    =⎜             ⎟ Vi = 0.9786
      ⎝ 4.57 + 0.1 ⎠
           (37.925)( 2.5)
 Av = −                      ( 0.9786 ) = Av = −6.23
               14.885
(c)

EX7.8
a.
0 − 0.7 − ( −10 )
I BQ =                              = 0.0230 mA
           0.5 + (101)( 4 )
I CQ = 2.30 mA
           β VT        (100 )( 0.026 )
 rπ =              =                      = 1.13 kΩ
            I CQ               2.30
           I CQ        2.30
 gm =              =         = 88.46 mA / V
           VT          0.026
            RE ( RS + rπ ) CE
rB =
          RS + rπ + (1 + β ) RE

      =
        ( 4 × 10 ) ( 0.5 + 1.13) C
                   3
                                         E

           0.5 + 1.13 + (101)( 4 )
            1        1
rB =            =           = 0.7958 ms
          2π f B 2π ( 200 )
                                     0.796 × 10 −3
rB = 16.07CE ⇒ CE =                                ⇒ CE = 49.5 μ F
                                        16.07
b.
 rA = RE CE = 4 × 10 3 (            )( 49.5 × 10 ) ⇒ r
                                               −6
                                                            A   = 0.198 s
           1         1
fA =           =             ⇒ f A = 0.804 H Z
          2π rA 2π ( 0.198 )

EX7.9
          β 0VT        (150 )( 0.026 )
 rπ =              =                      = 7.8 kΩ
           I CQ                0.5
                   1
fβ =
          2π rπ ( Cπ + Cμ )
                                1
      =                                                  ⇒ f β = 8.87 MH Z
              (
          2π 7.8 × 10      3
                               ) ( 2 + 0.3) × 10   −12




EX7.10
          β 0VT        (150)(0.026)
 rπ   =            =                ⇒ rπ = 3.9 kΩ
           I CQ             1
                   1
fβ =
          2π rπ ( Cπ + Cμ )
                                1
      =                                                  ⇒ f β = 9.07 MHz
              (
          2π 3.9 × 10      3
                               ) ( 4 + 0.5) (10 )
                                               −12


 fT = β 0 f β = (150 )( 9.07 ) ⇒ fT = 1.36 GHz

EX7.11
RTH = R1 R2 = 200 220 = 104.8 kΩ
       ⎛ R2 ⎞            ⎛ 220 ⎞
VTH = ⎜          ⎟ VCC = ⎜           ⎟ (5) = 2.619 V
       ⎝ R1 + R2 ⎠       ⎝ 200 + 220 ⎠
          2.62 − 0.7
I BQ =                 = 0.009316 mA
       105 + (101)(1)
 I CQ = 0.9316 mA
I CQ         0.9316
gm =              =          ⇒ gm = 35.83 mA/V
         VT           0.026
         β VT         (100)(0.026)
 rπ =             =                ⇒ rπ = 2.79 kΩ
           I CQ          0.932
a.
C M = Cμ ⎡1 + gm ( RC RL ) ⎤
           ⎣                   ⎦
C M = ( 2 ) ⎡1 + ( 35.83 )( 2.2 4.7 ) ⎤ ⇒ C M = 109 pF
            ⎣                         ⎦
b.
  RB = rS         R1        R2 = 100 200 220 = 51.17 kΩ
                             1
 f3 dB =
            2π ( RB rπ        ) (Cπ   + Cμ )
                                1
      =                                                    ⇒ f3dB = 0.506 MHz
            2π [ 51.17 2.79] × 10 3 × (10 + 109 ) × 10 −12

EX7.12
               gm
 fT =
         2π ( Cgs + Cgd )
gm = 2 K n I DQ

     =2       ( 0.2 )( 0.4 )
     = 0.5657 mA/V
               0.5657 × 10 −3
 fT =                                ⇒ fT = 333 MHz
         2π ( 0.25 + 0.02 ) × 10 −12

EX7.13
dc analysis
     ⎛ R2 ⎞            ⎛ 166 ⎞
VG = ⎜         ⎟ VDD = ⎜
       R1 + R2 ⎠                   ⎟ (10 ) = 4.15 V
     ⎝                 ⎝ 166 + 234 ⎠
     V
I D = S and VS = VG − VGS
     RS
                              VG − VGS
K n (VGS − VTN ) =
                        2

                                 RS
( 0.5)( 0.5) (VGS − 4VGS + 4 ) = 4.15 − VGS
               2



0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V
     2


gm = 2K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 )
  = 1.55 mA/V
Small-signal equivalent circuit.
         Ri ϭ 10 k⍀
                                                                      V0
                                            ϩ Cgd
                                      Cgs
                             RG ϭ
Vi   ϩ                                      Vgs              RD       RL
     Ϫ                       R1͉͉R2
                                                    gmVgs
                                            Ϫ


a.              C M = Cgd (1 + gm ( RD RL ) )
                C M = ( 0.1) ⎡1 + (1.55) ( 4 20 )⎤ ⇒ C M = 0.617 pF
                             ⎣                   ⎦
b.
1
 fH =
       2πτ P
τ P = ( RG Ri ) ( Cgs + C M )
RG = R1 R2 = 234 166 = 97.1 kΩ
RG Ri = 97.1 10 = 9.07 kΩ
        (                        )
rP = 9.07 × 10 3 (1 + 0.617 ) × 10 −12 = 14.7 ns
                            1
 fH =                                         ⇒ f H = 10.9 MHz
                    (
            2π 14.7 × 10 −9               )
EX7.14
dc analysis
VTH = 0, RTH = 10 kΩ
            0 − 0.7 − ( −5 )
I BQ =                                    = 0.00672 mA
            10 + (126 )( 5 )
I CQ = 0.840 mA
            β VT            (125)( 0.026 )
     rπ =               =                              = 3.87 kΩ
                I CQ                  0.840
            I CQ            0.840
 gm =                   =         = 32.3 mA/V
             VT             0.026
            VA    200
     r0 =       =     = 238 kΩ
            I CQ 0.84
High-frequency equivalent circuit
                                                                   C␮
            RS ϭ 1 k⍀
                                                                                         V0
                                                   ϩ
       ϩ                              RB ϭ
Vi                                           V          r␲                     r0   RC   RL
       Ϫ                              R1͉͉R2 ␲               C␲         gmV␲
                                              Ϫ


a.
Miller Capacitance
C M = Cμ (1 + gm RL )
                  ′
  ′
RL = r0 RC RL
  ′
RL = 238 2.3 5 = 1.565 kΩ
C M = ( 3 ) ⎡1 + ( 32.3 )(1.57 ) ⎤ ⇒ Cμ = 155 pF
            ⎣                    ⎦
b.
Req = RS RB rπ = RS R1 R2 rπ
Req = 1 20 20 3.87 = 0.736 kΩ
  rP = Re q ( Cπ + C M )
            (                         )
       = 0.736 × 10 3 ( 24 + 155 ) × 10 −12
                                 −7
       = 1.314 × 10
                             1
 fH =                                             ⇒ f H = 1.21 MHz
                    (
            2π 1.314 × 10 −7                  )
c.
⎡ RB τ π ⎤
( Av )M             ′
           = − gm RL ⎢              ⎥
                      ⎢ RB τ π + RS ⎥
                      ⎣             ⎦
                                ⎡ 10 3.87 ⎤
( Av )M    = − ( 32.3 )(1.565 ) ⎢             ⎥ ⇒ ( Av ) M = −37.2
                                ⎣ 10 3.87 + 1 ⎦

EX7.15
The dc analysis
           10 − 0.7
I BQ =                  = 0.00838 mA
       100 + (101)(10 )
I CQ = 0.838 mA
        β VT         (100 )( 0.026 )
 rπ =            =                     = 3.10 kΩ
          I CQ           0.838
        I CQ
gm =       = 32.22 mA/V
      VT
For the input
       ⎡⎛ r ⎞          ⎤
 rPπ = ⎢⎜ π ⎟ RE RS ⎥ Cπ
       ⎣⎝ 1 + β ⎠      ⎦
       ⎡ 3.10       ⎤
     =⎢       10 1⎥ × 10 3 × 24 × 10 −12
       ⎣ 101        ⎦
     = 7.13 × 10 −10 s
            1          1
f Hπ =          =                 ⇒ f Hπ = 223 MHz
                           (
          2π rPπ 2π 7.13 × 10 −10            )
For the output
 rP μ = [ RC RL ] Cμ = (10 1) × 10 3 × 3 × 10 −12
      = 2.73 × 10 −9
           1            1
 fHμ =          =                ⇒ f H μ = 58.4 MHz
                           (
        2π rP μ 2π 2.73 × 10 −9          )
                               ⎡      ⎛ rπ ⎞ ⎤
                               ⎢ RE ⎜        ⎟ ⎥
                          RL ) ⎢      ⎝1+ β ⎠ ⎥
( Aν )M    = gm ( RC
                               ⎢                 ⎥
                                    ⎛ rπ ⎞
                               ⎢ RE ⎜     ⎟ + RS ⎥
                               ⎢
                               ⎣    ⎝1+ β ⎠      ⎥
                                                 ⎦
                             ⎡      ⎛ 3.1 ⎞ ⎤
                             ⎢ 10 ⎜ 101 ⎟ ⎥
           = ( 32.22 )(10 1) ⎢      ⎝     ⎠ ⎥⇒ A
                                                ( ν )M = 0.870
                             ⎢    ⎛ 3.1 ⎞ ⎥
                             ⎢ 10 ⎜ 101 ⎟ + 1 ⎥
                                  ⎝     ⎠ ⎦
                             ⎣

EX7.16
      ⎛      R3      ⎞         ⎛        7.92        ⎞
VB1 = ⎜              ⎟ (12 ) = ⎜                      (12 ) = 0.9502 V
      ⎝ R1 + R2 + R3 ⎠         ⎝ 58.8 + 33.3 + 7.92 ⎟
                                                    ⎠
Neglecting lose currents
      0.9502 − 0.7
 IC =               = 0.50 mA
          0.5
      β VT (100 )( 0.026 )
 rπ =      =                = 5.2 K
       IC          0.5
     IC     0.5
gm =    =       = 19.23 mA/V
     VT 0.026
From Eq (7.127(a)),
τ Pπ   = [ RS      RB1 rπ ][Cπ 1 + C M 1 ]
RB1 = R2 R3 = 33.3 7.92 = 6.398 K
C M 1 = 2Cμ 1 = 6 pF
Then
 τ Pπ = [1 6.398 5.2] × 10 × [24 + 6] × 10     ⇒ 22.24 ns
                          3                −12


          1            1
 f Hπ =       =                     ⇒ 7.15 MHz
        2πτ Pπ 2π ( 22.24 × 10 −9 )
From Eq (7.128(a))
 τ P μ = [ RC RL ] C μ 2 = ( 7.5 2 ) × 10 × 3 × 10     ⇒ 4.737 ns
                                         3         −12


             1                1
 fHμ =          =                       = 33.6 MHz
          2πτ Pμ 2π ( 4.737 × 10 −9 )
From Eq. 7.133
                             ⎡ RB1 rπ 1 ⎤
 Av        = gm 2 ( RC  RC ) ⎢               ⎥
                             ⎣ RB1 rπ 1 + RS ⎦
       M


                               ⎡ 6.40 5.2 ⎤
           = (19.23)( 7.5 2 ) ⎢                ⎥
                               ⎣ 6.40 5.2 + 1 ⎦
                             ⎡ 2.869 ⎤
           = (19.23)(1.579 ) ⎢
                             ⎣ 2.869 + 1 ⎥
                                         ⎦
 Av    M
           = 22.5

TYU7.1
a.
   V0 = − ( gmVπ ) RL
               rπ
   Vπ =                 × Vi
               1
        rπ +       + RS
              sCC
               V0 ( s )            − gm rπ RL
T (s) =                   =
               Vi ( s )       rπ + RS + (1 / sCC )
                − gm rπ RL ( sCC )
           =
               1 + s ( rπ + RS ) CC
gm rπ = β
                − β RL     ⎛ s ( rπ + RS ) CC        ⎞
T (s) =                   ×⎜                         ⎟
               rπ + RS     ⎜ 1 + s (r + R ) C        ⎟
                           ⎝         π   S    C      ⎠
 Then τ = ( rπ + RS ) CC
b.
                  1
 f3− dB =
          2π ( rπ + RS ) CC
                                   1
 f3− dB =                                                ⇒ f3 dB = 53.1 Hz
         2π ⎡ 2 × 10 + 1 × 10 3 ⎤ ⎡10 −6 ⎤
             ⎣
                               3
                                ⎦⎣       ⎦
               rg R       ( 2 )( 50 )( 4 )
T ( jω ) max = π m L =
               rπ + RS         2 +1
T ( jω ) max = 133
c.
͉T( j␻)͉


     133




                      53.1 Hz                           f

TYU7.2
a.
             ⎛          1 ⎞
V0 = − g mVπ ⎜ RL          ⎟
             ⎝         sCL ⎠
     ⎛ r       ⎞
Vπ = ⎜ π ⎟ × Vi
     ⎝ rπ + RS ⎠
                                ⎛       1       ⎞
        V0 ( s )           rπ   ⎜ RL × sC       ⎟
T (s) =          = − gm         ⎜         L     ⎟
        Vi ( s )        rπ + RS ⎜       1       ⎟
                                ⎜ RL + sC       ⎟
                                ⎝         L     ⎠
            − β RL ⎛      1     ⎞
T (s) =           ×⎜            ⎟
           rπ + RS ⎝ 1 + sRL CL ⎠
Then τ = RL CL
b.
             1                1
 f3− dB =         =                      ⇒ f3dB = 3.18 MH Z
                             (       )(
          2π RL CL 2π 5 × 10 10 × 10 −12
                            3
                                                    )
              gm rπ RL ( 75)(1.5)( 5)
 T ( jω ) =           =
              rπ + RS     1.5 + 0.5
 T ( jω ) max = 281
c.


     281



͉T( j␻)͉



              f                  3.18 MHz

TYU7.3
a.     Open-circuit time constant ( CL → open )
rS = ( RS + rπ ) CC
                         (       )
     = ( 0.25 + 2 ) × 10 3 2 × 10 −6 = 4.5 ms
Short-circuit time constant ( CC → short )
                  (       )(
rP = RL CL = 4 × 10 3 50 × 10 −12         )
rP = 0.2 μ s
b.          Midband gain
⎛ rπ ⎞
V0 = − gmVπ RL , Vπ = ⎜          ⎟ Vi
                      ⎝ τ π + RS ⎠
     V     −g r R
Av = 0 = m π L
     Vi     rπ + RS
         − ( 65 )( 2 )( 4 )
     =
       2 + 0.25
Av = −231
c.
          1         1
 fL =         =               ⇒ f L = 35.4 Hz
                        (
         2π rS 2π 4.5 × 10 −3          )
          1         1
 fH =         =               ⇒ f H = 0.796 MHz
                        (
         2π rP 2π 0.2 × 10 −6          )
TYU7.4 Computer Analysis

TYU7.5 Computer Analysis

TYU7.6
     βV     (100 )( 0.026 )
 rπ = 0 T =                 = 10.4 kΩ
      I CQ      0.25
                  1
 fβ =
         2π rπ ( Cπ + C μ )
                   1                  1
Cπ + Cμ =                =
                                   (          )(
                2π f β rπ 2π 11.5 × 10 6 10.4 × 10 3      )
Cπ + Cμ = 1.33 pF
         Cμ = 0.1 pF ⇒ Cπ = 1.23 pF

TYU7.7
                β0
h fe =
         1 + j ( f / fβ )
 f β = 5 MH Z , β 0 = 100
At f = 50 MH Z
               100
 h fe =                       ⇒ h fe = 9.95
                        2
               ⎛ 50 ⎞
            1+ ⎜ ⎟
               ⎝ 5 ⎠
                 ⎛ 50 ⎞
Phase = − tan −1 ⎜ ⎟ ⇒ Phase = −84.3°
                 ⎝ 5 ⎠

TYU7.8
      f   500
 fβ = T =     ⇒ f β = 4.17 MHz
     β 0 120
                 1
 fβ =
         2π rπ (Cπ + C μ )
                   1                  1
Cπ + Cμ =                =
                2π f β rπ 2π (4.167 × 10 6 )(5 × 10 3 )
Cπ + Cμ = 7.639 pF
Cμ = 0.2 pF ⇒ Cπ = 7.44 pF
TYU7.9
(a)
 gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 3 − 1) ⇒ gm = 1.6 mA/V
  ′
 gm = 80% of gm = 1.28 mA/V
         gm
  ′
 gm =
      1 + gm rS
                  gm
1 + gm rS =
                   ′
                  gm
        ⎛ gm
        1       ⎞ 1 ⎛ 1.6        ⎞
rS =    ⎜    − 1⎟ =     ⎜     − 1⎟
        ⎝
       gm  ′
          gm    ⎠   1.6 ⎝ 1.28 ⎠
rS = 0.156 kΩ ⇒ rS = 156 ohms
(b)
 gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 5 − 1) ⇒ gm = 3.2 mA/V
         gm              3.2
  ′
 gm =          =                       = 2.134
      1 + gm rS 1 + ( 3.2 )( 0.156 )
Δgm 3.2 − 2.134
    =           ⇒ A 33.3% reduction
 gm     3.2

TYU7.10
                       gm
 fT =
           2π ( CgsT + C gdT )
                            gm
       =
           2π ( Cgs + Cgsp + Cgdp )
            gm
Cgs =            − Cgsp − C gdp
           2π fT
             0.5 × 10 −3
       =                                 − ( 0.01 + 0.01) × 10 −12 ⇒ Cgs = 0.139 pF
              (
           2π 500 × 10           6
                                     )
TYU7.11
                gm
fT =
       2π (Cgs + Cgsp + Cgdp )
Cgsp = Cgdp
              gm               1× 10−3
2Cgsp =            − C gs =                 − 0.4 × 10−12
             2π fT          2π (350 × 106 )
2Cgsp = 0.0547 pF ⇒ Cgsp = Cgdp ≅ 0.0274 pF

TYU7.12
dc analysis
     ⎛ 50 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −2.5
     ⎝ 50 + 150 ⎠
                                         VS − ( −5 )
VS = VG − VGS . I D =
                                             RS
                             VG − VGS + 5
K n (VGS − VTN ) =
                       2

                                  RS
(1)( 2 ) ⎡VGS − 1.6VGS + 0.64 ⎤ = −2.5 − VGS + 5
         ⎣
           2
                              ⎦
2VGS − 2.2VGS − 1.22 = 0
  2



                    ( 2.2 )       + 4 ( 2 )(1.22 )
                              2
            2.2 ±
VGS =                                                ⇒ VGS = 1.505 V
                          2 (2)
gm = 2 K n (VGS − VTN ) = 2 (1)(1.505 − 0.8 )
                                     = 1.41 mA/V
Equivalent circuit
              Ri                                           Cgd
                                                                              V0
                                            ϩ
      ϩ                            RG ϭ
Vi                                        Vgs
      Ϫ                            R1͉͉R2            Cgs
                                                                         RD
                                                                 gmVgs
                                               Ϫ


(a)           C M = Cgd (1 + gm RD ) = ( 0.2 ) ⎡1 + (1.42 )( 5 ) ⎤ ⇒ C M = 1.61 pF
                                               ⎣                 ⎦
(b)
τ P = ( Ri RG ) ( Cgs + CM )
 rP = [ 20 50 150 ] × 10 3 × ( 2 + 1.61) × 10 −12
        (            )(                    )
      = 13 × 10 3 3.62 × 10 −12 = 4.71 × 10 −8 s
           1          1
 fH =          =                ⇒ f H = 3.38 MHz
                          (
          2π rP 2π 4.71 × 10 −8             )
                                  ⎛ RG ⎞
c.            ( Av )M   = − gm RD ⎜           ⎟
                                  ⎝ RG + RS ⎠
                                        ⎛ 37.5 ⎞
              ( Av )M   = − (1.41)( 5 ) ⎜           ⎟ ⇒ ( Av ) M = −4.60
                                        ⎝ 37.5 + 20 ⎠

TYU7.13 Computer Analysis

More Related Content

What's hot

Digital Communication
Digital CommunicationDigital Communication
Digital CommunicationPartha_bappa
 
Fourier supplementals
Fourier supplementalsFourier supplementals
Fourier supplementalsPartha_bappa
 
Antenna Paper Solution
Antenna Paper SolutionAntenna Paper Solution
Antenna Paper SolutionHaris Hassan
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theoremRajendran
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)Babu Rao
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
 
Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...gerarluis
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transformop205
 
L 32(nkd)(et) ((ee)nptel)
L 32(nkd)(et) ((ee)nptel)L 32(nkd)(et) ((ee)nptel)
L 32(nkd)(et) ((ee)nptel)sairoopareddy
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSLUIS POWELL
 

What's hot (20)

Digital Communication
Digital CommunicationDigital Communication
Digital Communication
 
Physics
PhysicsPhysics
Physics
 
Fourier supplementals
Fourier supplementalsFourier supplementals
Fourier supplementals
 
Antenna Paper Solution
Antenna Paper SolutionAntenna Paper Solution
Antenna Paper Solution
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
Raytracing Part II
Raytracing Part IIRaytracing Part II
Raytracing Part II
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theorem
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
4th Semester (June-2016) Computer Science and Information Science Engineering...
4th Semester (June-2016) Computer Science and Information Science Engineering...4th Semester (June-2016) Computer Science and Information Science Engineering...
4th Semester (June-2016) Computer Science and Information Science Engineering...
 
Tutorial no. 3(1)
Tutorial no. 3(1)Tutorial no. 3(1)
Tutorial no. 3(1)
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
 
Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
L 32(nkd)(et) ((ee)nptel)
L 32(nkd)(et) ((ee)nptel)L 32(nkd)(et) ((ee)nptel)
L 32(nkd)(et) ((ee)nptel)
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
1st semester Physics stream (2013-June) Question Papers
1st semester Physics stream (2013-June) Question Papers 1st semester Physics stream (2013-June) Question Papers
1st semester Physics stream (2013-June) Question Papers
 
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
3rd Semester Electronic and Communication Engineering (2013-December) Questio...3rd Semester Electronic and Communication Engineering (2013-December) Questio...
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
 

Viewers also liked (17)

Ch05s
Ch05sCh05s
Ch05s
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch03p
Ch03pCh03p
Ch03p
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch01s
Ch01sCh01s
Ch01s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch01p
Ch01pCh01p
Ch01p
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch03s
Ch03sCh03s
Ch03s
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch11s
Ch11sCh11s
Ch11s
 

Similar to Chapter 7 Exercise Solutions

Formulario Trigonometria.pdf
Formulario Trigonometria.pdfFormulario Trigonometria.pdf
Formulario Trigonometria.pdfAntonio Guasco
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edMobin Hossain
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2nayakq
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copyKitTrnTun5
 

Similar to Chapter 7 Exercise Solutions (20)

Ch15p
Ch15pCh15p
Ch15p
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch12p
Ch12pCh12p
Ch12p
 
Formulario Trigonometria.pdf
Formulario Trigonometria.pdfFormulario Trigonometria.pdf
Formulario Trigonometria.pdf
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch11p
Ch11pCh11p
Ch11p
 
Rrr
RrrRrr
Rrr
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th ed
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch02s
Ch02sCh02s
Ch02s
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Cilindro
CilindroCilindro
Cilindro
 

More from Bilal Sarwar (10)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch04p
Ch04pCh04p
Ch04p
 

Recently uploaded

Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 

Recently uploaded (20)

Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 

Chapter 7 Exercise Solutions

  • 1. Chapter 7 Exercise Solutions EX7.1 (a) (i) RS = RP = 4 kΩ 1 1 ω= = rS ( RS + RP ) CS 1 1 CS = = 2π f ( RS + RP ) 2π ( 20 )( 4 + 4 ) × 10 3 CS = 0.995 μ F (ii) ⎛ RP ⎞ ω rS T ( jω ) = ⎜ ⎟ ⎝ RS + RP ⎠ 1 + ω 2 rS2 rS = ( RS + RP ) CS = 7.96 × 10 −3 RP 4 = = 0.5 RS + RP 4 + 4 f = 40 Hz ( 0.5)( 2π )( 40 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 40 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.447 f = 80 Hz ( 0.5)( 2π )(80 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 80 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.485 f = 200 Hz ( 0.5 )( 2π )( 200 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 200 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.498 (b) 1 1 ω= = rP ( RS RP ) CP 1 CP = 2π f ( RS RP ) 1 = ( 2π 500 × 10 3 ) (10 10 ) × 10 3 CP = 63.7 pF EX7.2 a.
  • 2. ⎛ RP ⎞ RP RP 20 log10 ⎜ ⎟ = −1 ⇒ = 0.891 = ⇒ (1 − 0.891) RP = 0.891 ⇒ RP = 8.20 kΩ ⎝ RP + RS ⎠ RP + RS RP + 1 1 1 fL = ⇒ CS = 2π ( RS + RP ) CS 2π (100 )(1 + 8.20 ) × 10 3 CS = 0.173 μ F 1 1 fH = ⇒ CP = 2π ( RS RP ) CP 2π 10( ) (1 || 8.20 ) × 10 6 3 CP = 179 pF b. rS = ( RS + RP ) CS ( )( rS = 1 × 10 3 + 8.20 × 10 3 0.173 × 10 −6 ) rS = 1.59 ms open-circuit time-constant rP = ( RS RP ) CP rP = (1 8.20 ) × 10 3 179 × 10 −12( ) rP = 0.160 μ s short-circuit time-constant EX7.3 a. rS = ( Ri + RS i ) CC b. 1 f = 2π rS RTH = R1 R2 = 2.2 20 = 1.98 kΩ ⎛ R2 ⎞ ⎛ 2.2 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) = 0.991 V ⎝ R1 + R2 ⎠ ⎝ 2.2 + 20 ⎠ VTH − VBE ( on ) 0.991 − 0.7 I BQ = = = 0.0132 mA RTH + (1 + β ) RE 1.98 + ( 201)( 0.1) I CQ = 2.636 mA β VT ( 200 )( 0.026 ) rπ = = = 1.97 kΩ I CQ 2.636 ICQ 2.636 gm = = = 101.4 mA/V VT 0.026 Rib = τ π + (1 + β ) RE = 1.97 + ( 201)( 0.1) = 22.1 kΩ RB = R1 R2 = 1.98 kΩ Ri = RB Rib = 1.98 22.1 = 1.817 kΩ rS = ( Ri + RSi ) CC = (1.817 + 0.1) ×10 3 ( )( 47 × 10 )−6 = 90.1 ms 1 f = ⇒ f = 1.77 Hz ( 2π 90.1 × 10 −3 ) Midband Gain
  • 3. − β RC Ri Aν = ⋅ rπ + (1 + β ) RE Ri + RSi − ( 200 )( 2 ) 1.82 = ⋅ 1.97 + ( 201)( 0.1) 1.82 + 0.1 Aν = −17.2 EX7.4 I DQ = K n (VGS − VTN ) 2 a. 0.8 + 2 = VGS ⇒ VGS = 3.265 V 0.5 VS − ( −5 ) VS = −3.265 ⇒ I DQ = RS −3.265 + 5 RS = ⇒ RS = 2.17 kΩ 0.8 5 VD = 0 ⇒ RD = ⇒ RD = 6.25 kΩ 0.8 b. rS = ( RD + RL ) CC = (10 + 6.25 ) × 10 3 × CC 1 1 f = ⇒ CC = 2π rS ( 2π f 16.25 × 10 3 ) 1 CC = ⇒ CC = 0.49 μ F ( 2π ( 20 ) 16.25 × 10 3 ) EX7.5 rS = ( RL + Ro ) CC 2 1 1 f = ⇒ CC 2 = 2π rS 2π f ( RL + Ro ) ⎧ rπ + ( RS RB ) ⎫ ⎪ ⎪ R0 = RE r0 ⎨ ⎬ ⎪ ⎩ 1+ β ⎪ ⎭ From Example 7-5, R0 = 35.5 Ω 1 CC 2 = 2π (10 ) ⎡10 × 10 3 + 35.5⎤ ⎣ ⎦ CC 2 = 1.59 μ F EX7.6 I DQ = K P (VSG + VTP ) 2 a. 1 − ( −2 ) = VSG ⇒ VSG = 3.41 V 0.5 VS = 3.41 5 − 3.41 RS = ⇒ RS = 1.59 kΩ 1 5 For VSDG = VSGQ ⇒ VD = 0 ⇒ RD = ⇒ RD = 5 kΩ 1
  • 4. b. rP = ( RD RL ) CL 1 1 f = ⇒ CL = 2π rP 2π f ( RD RL ) 1 CL = ⇒ CL = 47.7 pF ( ) 2π 10 6 ( 5 10 ) × 10 3 EX7.7 (a) RTH = 5 K VTH = −3.7527 −3.7527 − 0.7 − ( −5) 0.54726 I BQ = = 5 + (101)( 0.5) 55.5 = 0.00986 I CQ = 0.986 mA gm = 37.925 rπ = 2.637 K 5 − Vo Vo 0.986 = − = 1 − Vo ( 0.4 ) 5 5 Vo = 0.035 (b) Rib RS ϭ 0.1 k⍀ V0 ϩ Vi ϩ RTH ϭ RC ͉͉RL ϭ Ϫ V␲ r␲ 5 k⍀ gmV␲ 2.5 k⍀ Ϫ RE ϭ 0.5 k⍀ Vo = − gmVπ ( RC RL ) Rib = rπ + (1 + β ) RE = 2.64 + (101)( 0.5) = 53.14 K Vb Vb Vb Vπ = = = ⎛1+ β ⎞ ⎛ 101 ⎞ 14.885 1+ ⎜ ⎟ RE 1 + ⎜ 2.637 ⎟ ( 0.5) ⎝ rπ ⎠ ⎝ ⎠ ⎛ RTH Rib ⎞ ⎛ 5 53.14 ⎞ Vb = ⎜ ⎟ Vi = ⎜ ⎟ Vi ⎝ RTH Rib + RS ⎠ ⎝ 5 53.14 + 0.1 ⎠ ⎛ 4.57 ⎞ =⎜ ⎟ Vi = 0.9786 ⎝ 4.57 + 0.1 ⎠ (37.925)( 2.5) Av = − ( 0.9786 ) = Av = −6.23 14.885 (c) EX7.8 a.
  • 5. 0 − 0.7 − ( −10 ) I BQ = = 0.0230 mA 0.5 + (101)( 4 ) I CQ = 2.30 mA β VT (100 )( 0.026 ) rπ = = = 1.13 kΩ I CQ 2.30 I CQ 2.30 gm = = = 88.46 mA / V VT 0.026 RE ( RS + rπ ) CE rB = RS + rπ + (1 + β ) RE = ( 4 × 10 ) ( 0.5 + 1.13) C 3 E 0.5 + 1.13 + (101)( 4 ) 1 1 rB = = = 0.7958 ms 2π f B 2π ( 200 ) 0.796 × 10 −3 rB = 16.07CE ⇒ CE = ⇒ CE = 49.5 μ F 16.07 b. rA = RE CE = 4 × 10 3 ( )( 49.5 × 10 ) ⇒ r −6 A = 0.198 s 1 1 fA = = ⇒ f A = 0.804 H Z 2π rA 2π ( 0.198 ) EX7.9 β 0VT (150 )( 0.026 ) rπ = = = 7.8 kΩ I CQ 0.5 1 fβ = 2π rπ ( Cπ + Cμ ) 1 = ⇒ f β = 8.87 MH Z ( 2π 7.8 × 10 3 ) ( 2 + 0.3) × 10 −12 EX7.10 β 0VT (150)(0.026) rπ = = ⇒ rπ = 3.9 kΩ I CQ 1 1 fβ = 2π rπ ( Cπ + Cμ ) 1 = ⇒ f β = 9.07 MHz ( 2π 3.9 × 10 3 ) ( 4 + 0.5) (10 ) −12 fT = β 0 f β = (150 )( 9.07 ) ⇒ fT = 1.36 GHz EX7.11 RTH = R1 R2 = 200 220 = 104.8 kΩ ⎛ R2 ⎞ ⎛ 220 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (5) = 2.619 V ⎝ R1 + R2 ⎠ ⎝ 200 + 220 ⎠ 2.62 − 0.7 I BQ = = 0.009316 mA 105 + (101)(1) I CQ = 0.9316 mA
  • 6. I CQ 0.9316 gm = = ⇒ gm = 35.83 mA/V VT 0.026 β VT (100)(0.026) rπ = = ⇒ rπ = 2.79 kΩ I CQ 0.932 a. C M = Cμ ⎡1 + gm ( RC RL ) ⎤ ⎣ ⎦ C M = ( 2 ) ⎡1 + ( 35.83 )( 2.2 4.7 ) ⎤ ⇒ C M = 109 pF ⎣ ⎦ b. RB = rS R1 R2 = 100 200 220 = 51.17 kΩ 1 f3 dB = 2π ( RB rπ ) (Cπ + Cμ ) 1 = ⇒ f3dB = 0.506 MHz 2π [ 51.17 2.79] × 10 3 × (10 + 109 ) × 10 −12 EX7.12 gm fT = 2π ( Cgs + Cgd ) gm = 2 K n I DQ =2 ( 0.2 )( 0.4 ) = 0.5657 mA/V 0.5657 × 10 −3 fT = ⇒ fT = 333 MHz 2π ( 0.25 + 0.02 ) × 10 −12 EX7.13 dc analysis ⎛ R2 ⎞ ⎛ 166 ⎞ VG = ⎜ ⎟ VDD = ⎜ R1 + R2 ⎠ ⎟ (10 ) = 4.15 V ⎝ ⎝ 166 + 234 ⎠ V I D = S and VS = VG − VGS RS VG − VGS K n (VGS − VTN ) = 2 RS ( 0.5)( 0.5) (VGS − 4VGS + 4 ) = 4.15 − VGS 2 0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V 2 gm = 2K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 ) = 1.55 mA/V Small-signal equivalent circuit. Ri ϭ 10 k⍀ V0 ϩ Cgd Cgs RG ϭ Vi ϩ Vgs RD RL Ϫ R1͉͉R2 gmVgs Ϫ a. C M = Cgd (1 + gm ( RD RL ) ) C M = ( 0.1) ⎡1 + (1.55) ( 4 20 )⎤ ⇒ C M = 0.617 pF ⎣ ⎦ b.
  • 7. 1 fH = 2πτ P τ P = ( RG Ri ) ( Cgs + C M ) RG = R1 R2 = 234 166 = 97.1 kΩ RG Ri = 97.1 10 = 9.07 kΩ ( ) rP = 9.07 × 10 3 (1 + 0.617 ) × 10 −12 = 14.7 ns 1 fH = ⇒ f H = 10.9 MHz ( 2π 14.7 × 10 −9 ) EX7.14 dc analysis VTH = 0, RTH = 10 kΩ 0 − 0.7 − ( −5 ) I BQ = = 0.00672 mA 10 + (126 )( 5 ) I CQ = 0.840 mA β VT (125)( 0.026 ) rπ = = = 3.87 kΩ I CQ 0.840 I CQ 0.840 gm = = = 32.3 mA/V VT 0.026 VA 200 r0 = = = 238 kΩ I CQ 0.84 High-frequency equivalent circuit C␮ RS ϭ 1 k⍀ V0 ϩ ϩ RB ϭ Vi V r␲ r0 RC RL Ϫ R1͉͉R2 ␲ C␲ gmV␲ Ϫ a. Miller Capacitance C M = Cμ (1 + gm RL ) ′ ′ RL = r0 RC RL ′ RL = 238 2.3 5 = 1.565 kΩ C M = ( 3 ) ⎡1 + ( 32.3 )(1.57 ) ⎤ ⇒ Cμ = 155 pF ⎣ ⎦ b. Req = RS RB rπ = RS R1 R2 rπ Req = 1 20 20 3.87 = 0.736 kΩ rP = Re q ( Cπ + C M ) ( ) = 0.736 × 10 3 ( 24 + 155 ) × 10 −12 −7 = 1.314 × 10 1 fH = ⇒ f H = 1.21 MHz ( 2π 1.314 × 10 −7 ) c.
  • 8. ⎡ RB τ π ⎤ ( Av )M ′ = − gm RL ⎢ ⎥ ⎢ RB τ π + RS ⎥ ⎣ ⎦ ⎡ 10 3.87 ⎤ ( Av )M = − ( 32.3 )(1.565 ) ⎢ ⎥ ⇒ ( Av ) M = −37.2 ⎣ 10 3.87 + 1 ⎦ EX7.15 The dc analysis 10 − 0.7 I BQ = = 0.00838 mA 100 + (101)(10 ) I CQ = 0.838 mA β VT (100 )( 0.026 ) rπ = = = 3.10 kΩ I CQ 0.838 I CQ gm = = 32.22 mA/V VT For the input ⎡⎛ r ⎞ ⎤ rPπ = ⎢⎜ π ⎟ RE RS ⎥ Cπ ⎣⎝ 1 + β ⎠ ⎦ ⎡ 3.10 ⎤ =⎢ 10 1⎥ × 10 3 × 24 × 10 −12 ⎣ 101 ⎦ = 7.13 × 10 −10 s 1 1 f Hπ = = ⇒ f Hπ = 223 MHz ( 2π rPπ 2π 7.13 × 10 −10 ) For the output rP μ = [ RC RL ] Cμ = (10 1) × 10 3 × 3 × 10 −12 = 2.73 × 10 −9 1 1 fHμ = = ⇒ f H μ = 58.4 MHz ( 2π rP μ 2π 2.73 × 10 −9 ) ⎡ ⎛ rπ ⎞ ⎤ ⎢ RE ⎜ ⎟ ⎥ RL ) ⎢ ⎝1+ β ⎠ ⎥ ( Aν )M = gm ( RC ⎢ ⎥ ⎛ rπ ⎞ ⎢ RE ⎜ ⎟ + RS ⎥ ⎢ ⎣ ⎝1+ β ⎠ ⎥ ⎦ ⎡ ⎛ 3.1 ⎞ ⎤ ⎢ 10 ⎜ 101 ⎟ ⎥ = ( 32.22 )(10 1) ⎢ ⎝ ⎠ ⎥⇒ A ( ν )M = 0.870 ⎢ ⎛ 3.1 ⎞ ⎥ ⎢ 10 ⎜ 101 ⎟ + 1 ⎥ ⎝ ⎠ ⎦ ⎣ EX7.16 ⎛ R3 ⎞ ⎛ 7.92 ⎞ VB1 = ⎜ ⎟ (12 ) = ⎜ (12 ) = 0.9502 V ⎝ R1 + R2 + R3 ⎠ ⎝ 58.8 + 33.3 + 7.92 ⎟ ⎠ Neglecting lose currents 0.9502 − 0.7 IC = = 0.50 mA 0.5 β VT (100 )( 0.026 ) rπ = = = 5.2 K IC 0.5 IC 0.5 gm = = = 19.23 mA/V VT 0.026 From Eq (7.127(a)),
  • 9. τ Pπ = [ RS RB1 rπ ][Cπ 1 + C M 1 ] RB1 = R2 R3 = 33.3 7.92 = 6.398 K C M 1 = 2Cμ 1 = 6 pF Then τ Pπ = [1 6.398 5.2] × 10 × [24 + 6] × 10 ⇒ 22.24 ns 3 −12 1 1 f Hπ = = ⇒ 7.15 MHz 2πτ Pπ 2π ( 22.24 × 10 −9 ) From Eq (7.128(a)) τ P μ = [ RC RL ] C μ 2 = ( 7.5 2 ) × 10 × 3 × 10 ⇒ 4.737 ns 3 −12 1 1 fHμ = = = 33.6 MHz 2πτ Pμ 2π ( 4.737 × 10 −9 ) From Eq. 7.133 ⎡ RB1 rπ 1 ⎤ Av = gm 2 ( RC RC ) ⎢ ⎥ ⎣ RB1 rπ 1 + RS ⎦ M ⎡ 6.40 5.2 ⎤ = (19.23)( 7.5 2 ) ⎢ ⎥ ⎣ 6.40 5.2 + 1 ⎦ ⎡ 2.869 ⎤ = (19.23)(1.579 ) ⎢ ⎣ 2.869 + 1 ⎥ ⎦ Av M = 22.5 TYU7.1 a. V0 = − ( gmVπ ) RL rπ Vπ = × Vi 1 rπ + + RS sCC V0 ( s ) − gm rπ RL T (s) = = Vi ( s ) rπ + RS + (1 / sCC ) − gm rπ RL ( sCC ) = 1 + s ( rπ + RS ) CC gm rπ = β − β RL ⎛ s ( rπ + RS ) CC ⎞ T (s) = ×⎜ ⎟ rπ + RS ⎜ 1 + s (r + R ) C ⎟ ⎝ π S C ⎠ Then τ = ( rπ + RS ) CC b. 1 f3− dB = 2π ( rπ + RS ) CC 1 f3− dB = ⇒ f3 dB = 53.1 Hz 2π ⎡ 2 × 10 + 1 × 10 3 ⎤ ⎡10 −6 ⎤ ⎣ 3 ⎦⎣ ⎦ rg R ( 2 )( 50 )( 4 ) T ( jω ) max = π m L = rπ + RS 2 +1 T ( jω ) max = 133 c.
  • 10. ͉T( j␻)͉ 133 53.1 Hz f TYU7.2 a. ⎛ 1 ⎞ V0 = − g mVπ ⎜ RL ⎟ ⎝ sCL ⎠ ⎛ r ⎞ Vπ = ⎜ π ⎟ × Vi ⎝ rπ + RS ⎠ ⎛ 1 ⎞ V0 ( s ) rπ ⎜ RL × sC ⎟ T (s) = = − gm ⎜ L ⎟ Vi ( s ) rπ + RS ⎜ 1 ⎟ ⎜ RL + sC ⎟ ⎝ L ⎠ − β RL ⎛ 1 ⎞ T (s) = ×⎜ ⎟ rπ + RS ⎝ 1 + sRL CL ⎠ Then τ = RL CL b. 1 1 f3− dB = = ⇒ f3dB = 3.18 MH Z ( )( 2π RL CL 2π 5 × 10 10 × 10 −12 3 ) gm rπ RL ( 75)(1.5)( 5) T ( jω ) = = rπ + RS 1.5 + 0.5 T ( jω ) max = 281 c. 281 ͉T( j␻)͉ f 3.18 MHz TYU7.3 a. Open-circuit time constant ( CL → open ) rS = ( RS + rπ ) CC ( ) = ( 0.25 + 2 ) × 10 3 2 × 10 −6 = 4.5 ms Short-circuit time constant ( CC → short ) ( )( rP = RL CL = 4 × 10 3 50 × 10 −12 ) rP = 0.2 μ s b. Midband gain
  • 11. ⎛ rπ ⎞ V0 = − gmVπ RL , Vπ = ⎜ ⎟ Vi ⎝ τ π + RS ⎠ V −g r R Av = 0 = m π L Vi rπ + RS − ( 65 )( 2 )( 4 ) = 2 + 0.25 Av = −231 c. 1 1 fL = = ⇒ f L = 35.4 Hz ( 2π rS 2π 4.5 × 10 −3 ) 1 1 fH = = ⇒ f H = 0.796 MHz ( 2π rP 2π 0.2 × 10 −6 ) TYU7.4 Computer Analysis TYU7.5 Computer Analysis TYU7.6 βV (100 )( 0.026 ) rπ = 0 T = = 10.4 kΩ I CQ 0.25 1 fβ = 2π rπ ( Cπ + C μ ) 1 1 Cπ + Cμ = = ( )( 2π f β rπ 2π 11.5 × 10 6 10.4 × 10 3 ) Cπ + Cμ = 1.33 pF Cμ = 0.1 pF ⇒ Cπ = 1.23 pF TYU7.7 β0 h fe = 1 + j ( f / fβ ) f β = 5 MH Z , β 0 = 100 At f = 50 MH Z 100 h fe = ⇒ h fe = 9.95 2 ⎛ 50 ⎞ 1+ ⎜ ⎟ ⎝ 5 ⎠ ⎛ 50 ⎞ Phase = − tan −1 ⎜ ⎟ ⇒ Phase = −84.3° ⎝ 5 ⎠ TYU7.8 f 500 fβ = T = ⇒ f β = 4.17 MHz β 0 120 1 fβ = 2π rπ (Cπ + C μ ) 1 1 Cπ + Cμ = = 2π f β rπ 2π (4.167 × 10 6 )(5 × 10 3 ) Cπ + Cμ = 7.639 pF Cμ = 0.2 pF ⇒ Cπ = 7.44 pF
  • 12. TYU7.9 (a) gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 3 − 1) ⇒ gm = 1.6 mA/V ′ gm = 80% of gm = 1.28 mA/V gm ′ gm = 1 + gm rS gm 1 + gm rS = ′ gm ⎛ gm 1 ⎞ 1 ⎛ 1.6 ⎞ rS = ⎜ − 1⎟ = ⎜ − 1⎟ ⎝ gm ′ gm ⎠ 1.6 ⎝ 1.28 ⎠ rS = 0.156 kΩ ⇒ rS = 156 ohms (b) gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 5 − 1) ⇒ gm = 3.2 mA/V gm 3.2 ′ gm = = = 2.134 1 + gm rS 1 + ( 3.2 )( 0.156 ) Δgm 3.2 − 2.134 = ⇒ A 33.3% reduction gm 3.2 TYU7.10 gm fT = 2π ( CgsT + C gdT ) gm = 2π ( Cgs + Cgsp + Cgdp ) gm Cgs = − Cgsp − C gdp 2π fT 0.5 × 10 −3 = − ( 0.01 + 0.01) × 10 −12 ⇒ Cgs = 0.139 pF ( 2π 500 × 10 6 ) TYU7.11 gm fT = 2π (Cgs + Cgsp + Cgdp ) Cgsp = Cgdp gm 1× 10−3 2Cgsp = − C gs = − 0.4 × 10−12 2π fT 2π (350 × 106 ) 2Cgsp = 0.0547 pF ⇒ Cgsp = Cgdp ≅ 0.0274 pF TYU7.12 dc analysis ⎛ 50 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −2.5 ⎝ 50 + 150 ⎠ VS − ( −5 ) VS = VG − VGS . I D = RS VG − VGS + 5 K n (VGS − VTN ) = 2 RS
  • 13. (1)( 2 ) ⎡VGS − 1.6VGS + 0.64 ⎤ = −2.5 − VGS + 5 ⎣ 2 ⎦ 2VGS − 2.2VGS − 1.22 = 0 2 ( 2.2 ) + 4 ( 2 )(1.22 ) 2 2.2 ± VGS = ⇒ VGS = 1.505 V 2 (2) gm = 2 K n (VGS − VTN ) = 2 (1)(1.505 − 0.8 ) = 1.41 mA/V Equivalent circuit Ri Cgd V0 ϩ ϩ RG ϭ Vi Vgs Ϫ R1͉͉R2 Cgs RD gmVgs Ϫ (a) C M = Cgd (1 + gm RD ) = ( 0.2 ) ⎡1 + (1.42 )( 5 ) ⎤ ⇒ C M = 1.61 pF ⎣ ⎦ (b) τ P = ( Ri RG ) ( Cgs + CM ) rP = [ 20 50 150 ] × 10 3 × ( 2 + 1.61) × 10 −12 ( )( ) = 13 × 10 3 3.62 × 10 −12 = 4.71 × 10 −8 s 1 1 fH = = ⇒ f H = 3.38 MHz ( 2π rP 2π 4.71 × 10 −8 ) ⎛ RG ⎞ c. ( Av )M = − gm RD ⎜ ⎟ ⎝ RG + RS ⎠ ⎛ 37.5 ⎞ ( Av )M = − (1.41)( 5 ) ⎜ ⎟ ⇒ ( Av ) M = −4.60 ⎝ 37.5 + 20 ⎠ TYU7.13 Computer Analysis