SlideShare a Scribd company logo
1 of 29
Cavity optomagnonics
with magnetic quasivortices
Alto Osada
Komaba Institute for Science, The Univ. of
Tokyo
(since April 2019)
1
2
Optomagnonics
T. Satoh et al. Nature Photon. 6, 662 (2012)
T. Satoh et al. Nature Photon. 9, 25 (2014)
S. O. Demokritov et al. Nature 443, 430 (2006) R. Hisatomi, AO et. al., PRB (2016)
3
Optomagnonics
T. Satoh et al. Nature Photon. 6, 662 (2012)
T. Satoh et al. Nature Photon. 9, 25 (2014)
S. O. Demokritov et al. Nature 443, 430 (2006) R. Hisatomi, AO et. al., PRB (2016)
Interaction is weak (spin-orbit coupling)
Enhancement by an optical cavity
Cavity optomagnonics
4
Possible applications
Y. Tabuchi et. al., Science (2015)
SC qubit magnon
10 GHz
microwave
200 THz
light
Microwave-to-optical photon converter
I. Zutic and H. Dery Nature Materials 10, 647
Opto-spintronics Chiral photonics
I. Sollner et al.,Nature Nanotech. 10, 775
5
Whispering gallery modes
(WGMs)
Al2O3 rod
1 mm
Yttrium iron garnet (YIG) sphere
Transparent
for 1.5 µm lightFerrimagnetic
Walker modes
A. Gloppe et al., arXiv:1809.09785
6
Experimental setup
7
Experimental setup
8
Nonreciprocal Brillouin scattering
9
Nonreciprocal Brillouin scattering
10
Nonreciprocal Brillouin scattering
11
Winding numbers
0 2ππ
φ
φ
0 2ππ
φ
0 2ππ
OAM
0
1
2
12
Nonreciprocal Brillouin scattering
0 2 0 1
13
Nonreciprocal Brillouin scattering
0 2 0 1
Different OAM of magnon  reciprocal/non-.
Interplay with spin-Hall effect of WGM!
[AO et al., PRL 120, 133602 (2018)]
[AO et al., NJP 20, 103018 (2018)]
14
Resonant enhancement
Yoke (iron)
Electromagnet
Inject the laser
Magnon freq.
15
Magnetic field dependence
Higher magnetic field
Larger signal
Coupling with other modes
(Fano interference)
Fit and extract (green curves)
Cavity enhancement ~ x20
16
Magnetic field dependence
Higher magnetic field
Larger signal
Coupling with other modes
(Fano interference)
Fit and extract (green curves)
Similar behavior was observed by Cambridge group
[J. A. Haigh et. al., PRL 117, 133602 (2016)]
Cavity enhancement ~ x20
17
Cavity optomagnonics activities
X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Phys. Rev. Lett. 117, 123605
(2016)
J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Phys. Rev.
Lett. 117, 133602 (2016)
S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Phys. Rev. A 94, 033821
(2016)
T. Liu, X. Zhang, H. X. Tang, and M. E. Flatte, Phys. Rev. B 94, 060405(R)
(2016)
S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. B 96, 094412
(2017)
…and more and more!
18
Recent activities in Usami’s group
Induction tomography
of
Walker modes
A. Gloppe et al.,
arXiv:1809.09785
• Two-magnon process
• “Bizarre” Brillouin
scattering
- Umklapp process joins
- Looks like spin non-
conserving!
R. Hisatomi et
al.,
arXiv:1905.0401
8
Magnonic
crystal
S. Baba et al.,
arXiv:1905.0468
3
19
Summary
• Brillouin scatterings of WGM light by Walker
modes were investigated
• OAM of magnon and photon result in
nontrivial reciprocal/nonreciprocal Brillouin
scattering
• Cavity enhancement of the Brillouin scattering
was examined K. Usami Y. Nakamura
Great thanks to
all the collaborators!
20
Whispering gallery mode (WGM)
• Resonance: 2𝜋𝑅 ⋅ 𝑛r = 𝑚𝜆
(𝑚 ∈ ℤ)
• Geometrical birefringence
 𝑓TE
𝑚
< 𝑓TM
𝑚
21
𝑚 − 1 𝑚 𝑚 𝑚 + 1 𝑚 + 1
Red = TM Blue = TE
Mode index
Frequency
Transverse
Magnetic
Transverse
Electric
𝑓TM
𝑚
− 𝑓TE
𝑚
22
Polarizations of WGMs
• Shift of the rays of the two spin components
 Spin Hall effect of light [M. Onoda et. al. PRL 93, 083901 (2004)]
𝒌 ⋅ 𝑬 = 0 ⟹ spin-orbit coupling of light
TE TM (CCW) TM (CW)
±𝑚 𝜋 𝑚 − 1 𝜎−
+ 𝑚 + 1 𝜎+
−(𝑚 − 1) 𝜎+
+ −(𝑚 + 1) 𝜎−
Observation of WGMs in YIG
23
Q ~ 1×105
YIG sphere
(diameter 1mm)
Q = frequency / linewidth
Light beam
Walker mode (frequencies)
• 𝜔Kittel = 𝛾m 𝐻appl = 2𝜋 × 28 × 𝐻appl GHz
• Other Walker modes  generally nonlinear
24
 Thick solid: (m, m, 0)
 Thin solid: (m+2, m, 0)
 Thin dashed: (m+2, m, 1)
(n, m, s) mode
 m  ∝ 𝑒 𝑖𝑚𝜑
 n-m  𝜃-distribution
 s  𝑟-distribution
25
Further improvements
• Removing “excess fat”
 x 90
• Improvement of the quality factor of WGM
 x 3500
𝑔(theory)
= 𝒱𝑐
1
𝑛spin 𝑉
Improved conversion efficiency
4 x 10-4
26
Observation of Walker modes
• Experiment using cylinder magnets
• Normal mode splitting
 Finite inhomogeneity of applied magnetic field
27
Observation of Walker modes
• Experiment using cylinder magnets
• Normal mode splitting
 Finite inhomogeneity of applied magnetic field
28
(1, 1, 0), Kittel
Observation of Walker modes
• Experiment using ring magnets
• Normal mode splitting & Frequency shift
 Inhomogeneity of applied magnetic field
29

More Related Content

What's hot

Graphene Light Bulb
Graphene Light BulbGraphene Light Bulb
Graphene Light BulbJefry John
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesPei-Che Chang
 
Lecture#1-Introduction.ppt
Lecture#1-Introduction.pptLecture#1-Introduction.ppt
Lecture#1-Introduction.pptSalmanHameed26
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsClaudio Attaccalite
 
Adaptive analog beamforming
Adaptive analog beamformingAdaptive analog beamforming
Adaptive analog beamformingKhalid Hussain
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General InformationIan Rothbarth
 
Plasma Antenna and its applications
Plasma Antenna and its applicationsPlasma Antenna and its applications
Plasma Antenna and its applicationsswetha samv
 
Fisika Kuantum (1) radiasi benda hitam
Fisika Kuantum (1) radiasi benda hitamFisika Kuantum (1) radiasi benda hitam
Fisika Kuantum (1) radiasi benda hitamjayamartha
 
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
L i g o ( Laser Interferometer Gravitational-Wave Observatory)L i g o ( Laser Interferometer Gravitational-Wave Observatory)
L i g o ( Laser Interferometer Gravitational-Wave Observatory)Vysakh Arakkal
 
Dark Matter and Dark Energy
Dark Matter and Dark EnergyDark Matter and Dark Energy
Dark Matter and Dark EnergyBryan Higgs
 
Implementation of li_fi_using_arduino
Implementation of li_fi_using_arduinoImplementation of li_fi_using_arduino
Implementation of li_fi_using_arduinoVivek Bakul Maru
 
Wireless Power Transfer Technology
Wireless Power Transfer TechnologyWireless Power Transfer Technology
Wireless Power Transfer TechnologySRINIVASAN R
 
IRJET- Wearable Antenna for Medical Application
IRJET- Wearable Antenna for Medical ApplicationIRJET- Wearable Antenna for Medical Application
IRJET- Wearable Antenna for Medical ApplicationIRJET Journal
 

What's hot (20)

Graphene Light Bulb
Graphene Light BulbGraphene Light Bulb
Graphene Light Bulb
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Lecture#1-Introduction.ppt
Lecture#1-Introduction.pptLecture#1-Introduction.ppt
Lecture#1-Introduction.ppt
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Antimatter ppt
Antimatter pptAntimatter ppt
Antimatter ppt
 
Adaptive analog beamforming
Adaptive analog beamformingAdaptive analog beamforming
Adaptive analog beamforming
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General Information
 
Plasma Antenna and its applications
Plasma Antenna and its applicationsPlasma Antenna and its applications
Plasma Antenna and its applications
 
What is Astrochemistry?
What is Astrochemistry?What is Astrochemistry?
What is Astrochemistry?
 
Fisika Kuantum (1) radiasi benda hitam
Fisika Kuantum (1) radiasi benda hitamFisika Kuantum (1) radiasi benda hitam
Fisika Kuantum (1) radiasi benda hitam
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Higgs boson
Higgs bosonHiggs boson
Higgs boson
 
Introduction to DFT Part 1
Introduction to DFT Part 1 Introduction to DFT Part 1
Introduction to DFT Part 1
 
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
L i g o ( Laser Interferometer Gravitational-Wave Observatory)L i g o ( Laser Interferometer Gravitational-Wave Observatory)
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
 
Dark Matter and Dark Energy
Dark Matter and Dark EnergyDark Matter and Dark Energy
Dark Matter and Dark Energy
 
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
Metamaterials
Metamaterials Metamaterials
Metamaterials
 
Implementation of li_fi_using_arduino
Implementation of li_fi_using_arduinoImplementation of li_fi_using_arduino
Implementation of li_fi_using_arduino
 
Wireless Power Transfer Technology
Wireless Power Transfer TechnologyWireless Power Transfer Technology
Wireless Power Transfer Technology
 
IRJET- Wearable Antenna for Medical Application
IRJET- Wearable Antenna for Medical ApplicationIRJET- Wearable Antenna for Medical Application
IRJET- Wearable Antenna for Medical Application
 

Similar to Cavity optomagnonics with magnetic quasivortices - Alto Osada

Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes Stephan Irle
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxRyutaro Okuma
 
First Principles Calculation of Charge and Spin Transport in Tin-Monolayer
First Principles Calculation of Charge and Spin Transport in Tin-MonolayerFirst Principles Calculation of Charge and Spin Transport in Tin-Monolayer
First Principles Calculation of Charge and Spin Transport in Tin-MonolayerYuma Nakamura
 
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...Sérgio Sacani
 
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawMagnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawKouki Nakata
 
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesStorm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesSérgio Sacani
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLeonid Abdurakhimov
 
Polarimetric Study of emission nebulea Stock 8 in Auriga
Polarimetric Study of emission nebulea Stock 8 in AurigaPolarimetric Study of emission nebulea Stock 8 in Auriga
Polarimetric Study of emission nebulea Stock 8 in Aurigarahulporuri
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMagNanoFrontMag-cm
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMagNanoFrontMag-cm
 
An overview of phononic crystals
An overview of phononic crystalsAn overview of phononic crystals
An overview of phononic crystalsvinzilla
 
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...Sérgio Sacani
 
Black hole feedback_in_the_luminous_quasar_pds_456
Black hole feedback_in_the_luminous_quasar_pds_456Black hole feedback_in_the_luminous_quasar_pds_456
Black hole feedback_in_the_luminous_quasar_pds_456Sérgio Sacani
 
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aMulti dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aSérgio Sacani
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...Sérgio Sacani
 
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Sérgio Sacani
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 

Similar to Cavity optomagnonics with magnetic quasivortices - Alto Osada (20)

Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptx
 
First Principles Calculation of Charge and Spin Transport in Tin-Monolayer
First Principles Calculation of Charge and Spin Transport in Tin-MonolayerFirst Principles Calculation of Charge and Spin Transport in Tin-Monolayer
First Principles Calculation of Charge and Spin Transport in Tin-Monolayer
 
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
 
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawMagnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
 
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubblesStorm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
Storm in teacup_a_radio_quiet_quasar_with_radio_emitting_bubbles
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
 
Polarimetric Study of emission nebulea Stock 8 in Auriga
Polarimetric Study of emission nebulea Stock 8 in AurigaPolarimetric Study of emission nebulea Stock 8 in Auriga
Polarimetric Study of emission nebulea Stock 8 in Auriga
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag
 
An overview of phononic crystals
An overview of phononic crystalsAn overview of phononic crystals
An overview of phononic crystals
 
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...
Fifteen years of_xmm_newton_and_chandra_monitoring_of_sgr_a_evidence_for_a_re...
 
Optics
OpticsOptics
Optics
 
PH 101 Optics
PH 101 OpticsPH 101 Optics
PH 101 Optics
 
Black hole feedback_in_the_luminous_quasar_pds_456
Black hole feedback_in_the_luminous_quasar_pds_456Black hole feedback_in_the_luminous_quasar_pds_456
Black hole feedback_in_the_luminous_quasar_pds_456
 
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aMulti dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...
Measurements of energetic_particle_radiation_in_transit_to_mars_on_the_mars_s...
 
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 

Recently uploaded

Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Sahil Suleman
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...kevin8smith
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxKyawThanTint
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptxyoussefboujtat3
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationSérgio Sacani
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einsteinxgamestudios8
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxPat (JS) Heslop-Harrison
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationAreesha Ahmad
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...yogeshlabana357357
 
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptxPOST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptxArpitaMishra69
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...Sérgio Sacani
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Ansari Aashif Raza Mohd Imtiyaz
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)kushbuR
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxGOWTHAMIM22
 
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfMODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfRevenJadePalma
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyAreesha Ahmad
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfhoangquan21999
 

Recently uploaded (20)

Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einstein
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
 
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptxPOST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
 
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfMODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) Enzymology
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 

Cavity optomagnonics with magnetic quasivortices - Alto Osada

  • 1. Cavity optomagnonics with magnetic quasivortices Alto Osada Komaba Institute for Science, The Univ. of Tokyo (since April 2019) 1
  • 2. 2 Optomagnonics T. Satoh et al. Nature Photon. 6, 662 (2012) T. Satoh et al. Nature Photon. 9, 25 (2014) S. O. Demokritov et al. Nature 443, 430 (2006) R. Hisatomi, AO et. al., PRB (2016)
  • 3. 3 Optomagnonics T. Satoh et al. Nature Photon. 6, 662 (2012) T. Satoh et al. Nature Photon. 9, 25 (2014) S. O. Demokritov et al. Nature 443, 430 (2006) R. Hisatomi, AO et. al., PRB (2016) Interaction is weak (spin-orbit coupling) Enhancement by an optical cavity Cavity optomagnonics
  • 4. 4 Possible applications Y. Tabuchi et. al., Science (2015) SC qubit magnon 10 GHz microwave 200 THz light Microwave-to-optical photon converter I. Zutic and H. Dery Nature Materials 10, 647 Opto-spintronics Chiral photonics I. Sollner et al.,Nature Nanotech. 10, 775
  • 5. 5 Whispering gallery modes (WGMs) Al2O3 rod 1 mm Yttrium iron garnet (YIG) sphere Transparent for 1.5 µm lightFerrimagnetic Walker modes A. Gloppe et al., arXiv:1809.09785
  • 11. 11 Winding numbers 0 2ππ φ φ 0 2ππ φ 0 2ππ OAM 0 1 2
  • 13. 13 Nonreciprocal Brillouin scattering 0 2 0 1 Different OAM of magnon  reciprocal/non-. Interplay with spin-Hall effect of WGM! [AO et al., PRL 120, 133602 (2018)] [AO et al., NJP 20, 103018 (2018)]
  • 15. 15 Magnetic field dependence Higher magnetic field Larger signal Coupling with other modes (Fano interference) Fit and extract (green curves) Cavity enhancement ~ x20
  • 16. 16 Magnetic field dependence Higher magnetic field Larger signal Coupling with other modes (Fano interference) Fit and extract (green curves) Similar behavior was observed by Cambridge group [J. A. Haigh et. al., PRL 117, 133602 (2016)] Cavity enhancement ~ x20
  • 17. 17 Cavity optomagnonics activities X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Phys. Rev. Lett. 117, 123605 (2016) J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Phys. Rev. Lett. 117, 133602 (2016) S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Phys. Rev. A 94, 033821 (2016) T. Liu, X. Zhang, H. X. Tang, and M. E. Flatte, Phys. Rev. B 94, 060405(R) (2016) S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. B 96, 094412 (2017) …and more and more!
  • 18. 18 Recent activities in Usami’s group Induction tomography of Walker modes A. Gloppe et al., arXiv:1809.09785 • Two-magnon process • “Bizarre” Brillouin scattering - Umklapp process joins - Looks like spin non- conserving! R. Hisatomi et al., arXiv:1905.0401 8 Magnonic crystal S. Baba et al., arXiv:1905.0468 3
  • 19. 19 Summary • Brillouin scatterings of WGM light by Walker modes were investigated • OAM of magnon and photon result in nontrivial reciprocal/nonreciprocal Brillouin scattering • Cavity enhancement of the Brillouin scattering was examined K. Usami Y. Nakamura Great thanks to all the collaborators!
  • 20. 20
  • 21. Whispering gallery mode (WGM) • Resonance: 2𝜋𝑅 ⋅ 𝑛r = 𝑚𝜆 (𝑚 ∈ ℤ) • Geometrical birefringence  𝑓TE 𝑚 < 𝑓TM 𝑚 21 𝑚 − 1 𝑚 𝑚 𝑚 + 1 𝑚 + 1 Red = TM Blue = TE Mode index Frequency Transverse Magnetic Transverse Electric 𝑓TM 𝑚 − 𝑓TE 𝑚
  • 22. 22 Polarizations of WGMs • Shift of the rays of the two spin components  Spin Hall effect of light [M. Onoda et. al. PRL 93, 083901 (2004)] 𝒌 ⋅ 𝑬 = 0 ⟹ spin-orbit coupling of light TE TM (CCW) TM (CW) ±𝑚 𝜋 𝑚 − 1 𝜎− + 𝑚 + 1 𝜎+ −(𝑚 − 1) 𝜎+ + −(𝑚 + 1) 𝜎−
  • 23. Observation of WGMs in YIG 23 Q ~ 1×105 YIG sphere (diameter 1mm) Q = frequency / linewidth Light beam
  • 24. Walker mode (frequencies) • 𝜔Kittel = 𝛾m 𝐻appl = 2𝜋 × 28 × 𝐻appl GHz • Other Walker modes  generally nonlinear 24  Thick solid: (m, m, 0)  Thin solid: (m+2, m, 0)  Thin dashed: (m+2, m, 1) (n, m, s) mode  m  ∝ 𝑒 𝑖𝑚𝜑  n-m  𝜃-distribution  s  𝑟-distribution
  • 25. 25 Further improvements • Removing “excess fat”  x 90 • Improvement of the quality factor of WGM  x 3500 𝑔(theory) = 𝒱𝑐 1 𝑛spin 𝑉 Improved conversion efficiency 4 x 10-4
  • 26. 26
  • 27. Observation of Walker modes • Experiment using cylinder magnets • Normal mode splitting  Finite inhomogeneity of applied magnetic field 27
  • 28. Observation of Walker modes • Experiment using cylinder magnets • Normal mode splitting  Finite inhomogeneity of applied magnetic field 28 (1, 1, 0), Kittel
  • 29. Observation of Walker modes • Experiment using ring magnets • Normal mode splitting & Frequency shift  Inhomogeneity of applied magnetic field 29

Editor's Notes

  1. Thank you for the kind introduction and I am grateful to the organizers who invited me o such a celebrated, awesome conference. Here I will talk about the cavity optomagnonics with quasivortices which was one of the topics I dealt with in my PhD study.
  2. Well we should first note that there are a numerous number of works aiming at controlling spin waves or its quantum, magnon, by electromagnetic waves. By microwave it’s been done from long ago, and current topic is to address or detect magnons by optical means, to access the k-space information held by the magnon. However, it’s quite hard. Quite hard because the light-magnon interaction is inevitably mediated by the spin-orbit interaction of the electron in the material. Our idea was to enhance this inherently weak interaction using the optical cavity. That’s the idea of cavity optomagnonics, which has the same spirit as the cavity optomechanics.
  3. Well we should first note that there are a numerous number of works aiming at controlling spin waves or its quantum, magnon, by electromagnetic waves. By microwave it’s been done from long ago, and current topic is to address or detect magnons by optical means, to access the k-space information held by the magnon. However, it’s quite hard. Quite hard because the light-magnon interaction is inevitably mediated by the spin-orbit interaction of the electron in the material. Our idea was to enhance this inherently weak interaction using the optical cavity. That’s the idea of cavity optomagnonics, which has the same spirit as the cavity optomechanics.
  4. The system stimulates us to apply it to the Microwave-to-optical photon converter that can possibly be used to the quantum interface, or some device made up of the combination of spintronic and optical technologies. Another interesting thing is the chiral photonic devices useful for the nanophotonic circuits.
  5. Okay, then given such an idea, we want nice magneto-optical material that makes it feasible. And in most cavity optomagnonics activities the yttrium iron garnet sphere is adopted. It is ferrimagnetic on one hand to exhibit magnetostatic modes of rich spin textures. On the other hand YIG is highly transparent at telecom wavelength and the sphere supports whispering gallery modes. The light can circulate the periphery to form the optical resonance. Here’s the situation we want. Walker mode magnons can be addressed by the optical resonator!
  6. Okay, let’s move on to the experiment. We have a YIG sphere of diameter 1mm and the magnons are excited by the microwave through the loop coil. The excited magnons are in this experiment detected by the WGM light injected evanescently through this prism. Since we are interested in creating or annihilating magnons by light, the Brillouin scattering is concerned here, namely the energy and the angular momenta of the magnon should be transferred to or retracted from the WGM. These facts requires the scattered light to possess the frequency shifted by magnon frequency, about 7 GHz, and the polarization rotated. So here we detect the fluctuation of the output light polarization by the fast photodetector to get the sideband signal at 7 GHz. The optical sideband is beaten down to the microwave regime by taking heterodyne signal. In the network analyzer the simplest, uniform magnetostatic mode, the Kittel mode, is observed as the dip in the reflection signal of the loop coil and the Brillouin-scattered light is detected like this yellow signal.
  7. Okay, let’s move on to the experiment. We have a YIG sphere of diameter 1mm and the magnons are excited by the microwave through the loop coil. The excited magnons are in this experiment detected by the WGM light injected evanescently through this prism. Since we are interested in creating or annihilating magnons by light, the Brillouin scattering is concerned here, namely the energy and the angular momenta of the magnon should be transferred to or retracted from the WGM. These facts requires the scattered light to possess the frequency shifted by magnon frequency, about 7 GHz, and the polarization rotated. So here we detect the fluctuation of the output light polarization by the fast photodetector to get the sideband signal at 7 GHz. The optical sideband is beaten down to the microwave regime by taking heterodyne signal. In the network analyzer the simplest, uniform magnetostatic mode, the Kittel mode, is observed as the dip in the reflection signal of the loop coil and the Brillouin-scattered light is detected like this yellow signal.
  8. What is astonishing is that when the direction of the WGM light is clockwise, indicated by blue, the Brillouin scattering can be observed, however, when counterclockwise, indicated by red, the signal disappears! The phenomenon is nonreciprocal. This is not as usual as simple Faraday effect because the Brillouin scattering is dynamical effect. This nonreciprocity was revealed to be due to the interplay among energy and spin angular momentum conservation, and the spin-orbit coupled nature of the WGM. We do not dive into the great detail in this talk. Let us see further mystery we encountered in the experiment. That is, when you see the higher-order magnons located at the higher frequency, you see the nonreciprocal or reciprocal nature is strongly dependent on those modes.
  9. What is astonishing is that when the direction of the WGM light is clockwise, indicated by blue, the Brillouin scattering can be observed, however, when counterclockwise, indicated by red, the signal disappears! The phenomenon is nonreciprocal. This is not as usual as simple Faraday effect because the Brillouin scattering is dynamical effect. This nonreciprocity was revealed to be due to the interplay among energy and spin angular momentum conservation, and the spin-orbit coupled nature of the WGM. We do not dive into the great detail in this talk. Let us see further mystery we encountered in the experiment. That is, when you see the higher-order magnons located at the higher frequency, you see the nonreciprocal or reciprocal nature is strongly dependent on those modes.
  10. Let’s take a look at these magnon modes. The leftmost is the Kittel mode, the uniform mode. And others can be identified by checking their frequencies for variable magnetic fields. These are the transverse magnetization distributions and you can see various textures exhibited by these, for example the 401 mode possesses the spiral texture at some instance. What makes these textures different from each other is resolved by examining the winding number of these vector fields. In order to do so we shall track the transverse magnetization in the vicinity of the perimeter.
  11. First, the Kittel mode and 311 mode the transverse magnetization points the same direction all along the circumference, therefore the winding number reads 0. For the 401 mode, it is up here, rotates by 180 degree on the other side and goes back. The total amount of rotation is 2pi, which yields the winding number of 1. And for 31bar1 mode, from its pattern we see the magnetization is up here, down here, up, down, up, and rotated all the way by 4pi in total. Thus the winding number is 2. Since such rotations are the spatial variation of the phase, we can interpret them as the orbital angular momenta.
  12. Okay, then let’s have a look back. Now the orbital angular momenta are assigned to the Walker modes. And we notice that for magnons with vanishing OAM, the clockwise cases are more prominent than the counterclockwise cases. If the magnon have OAM of 1, the Brillouin scattering appears to be reciprocal. If 2, in this case the counterclockwise scattering is superior to the clockwise one. These results are in a quite nice agreement with the theory that take in to account the energy and angular momenta conservation.
  13. Okay, then let’s have a look back. Now the orbital angular momenta are assigned to the Walker modes. And we notice that for magnons with vanishing OAM, the clockwise cases are more prominent than the counterclockwise cases. If the magnon have OAM of 1, the Brillouin scattering appears to be reciprocal. If 2, in this case the counterclockwise scattering is superior to the clockwise one. These results are in a quite nice agreement with the theory that take in to account the energy and angular momenta conservation.
  14. In the last part I will talk about the effect of the presence of the cavity.
  15. 磁場を変化させたときに得られた、キッテルモードによるブリルアン散乱の信号がこちらに羅列してあります。下から上に向かって磁場が大きくなっており、磁場が大きくなるにつれて信号が大きくなっています。これは共鳴に近づいている兆候です。そしてある磁場の大きさからは別のモードがキッテルモードを横切ってきて、ファノ的な干渉が見られます。この効果をきちんとフィットしてキッテルモードによる寄与のみを抽出すると、横軸磁場、縦軸ピークの高さでこのようなプロットが得られます。データ店は丸と四角がありますが、これは電磁石だけでは十分な範囲で磁場を変えられなかったために磁石のペアを変えてとったことを示しています。青のローレンチアンはフィットですが、パラメータは高さのみです。位置と太さは入出力のウィスパリングギャラリーモードの周波数差と線幅かを用いました。このプロットから、磁場を振ることによってたしかに共鳴的な兆候が見られました。この振る舞いはCambridgeのグループによっても観測されています。
  16. 磁場を変化させたときに得られた、キッテルモードによるブリルアン散乱の信号がこちらに羅列してあります。下から上に向かって磁場が大きくなっており、磁場が大きくなるにつれて信号が大きくなっています。これは共鳴に近づいている兆候です。そしてある磁場の大きさからは別のモードがキッテルモードを横切ってきて、ファノ的な干渉が見られます。この効果をきちんとフィットしてキッテルモードによる寄与のみを抽出すると、横軸磁場、縦軸ピークの高さでこのようなプロットが得られます。データ店は丸と四角がありますが、これは電磁石だけでは十分な範囲で磁場を変えられなかったために磁石のペアを変えてとったことを示しています。青のローレンチアンはフィットですが、パラメータは高さのみです。位置と太さは入出力のウィスパリングギャラリーモードの周波数差と線幅かを用いました。このプロットから、磁場を振ることによってたしかに共鳴的な兆候が見られました。この振る舞いはCambridgeのグループによっても観測されています。
  17. ウィスパリングギャラリーモードは光が誘電体の中を全反射しながら周回する共振モードで、共振条件は光路長が波長の整数倍という条件です。偏光に関して二つのモードがあり、電場が軌道面に垂直なTEモードと軌道面内にあるTMモードがあります。そしてこれら二つの偏光モードは試料界面での境界条件の違いにより周波数が異なることが知られています。横軸を周波数に、ウィスパリングギャラリーモードの状態密度を可視化するとこのように、赤のTMと青のTEモードがそれぞれ周期的にあり、二つは周波数がずれています。さて、偏光によりこのように異なるスペクトルが期待されるわけですが、ウィスパリングギャラリーモードの観測はこの球の表面から外側に漏れ出す光に、同じく染み出し光を用いて結合します。
  18. では実際にウィスパリングギャラリーモードの偏光状態がどういうものかについて、まあこういった観点ではほとんど解析されてこなかったんですけれども、私が得た結論について述べます。まずTE偏光は光の軌道面内に垂直に電場が振動するπ偏光です。そしてもう一つ考えたい自由度が軌道角運動量で、モード指数がmのとき、TEモードの軌道角運動量もmであることがわかります。そしてウィスパリングギャラリーモードの宗愛方向によってプラスかマイナスかがきまる。一方TMモードでは印可磁場に垂直な偏光で、一般にはこれはσ+とσ-の重ね合わせになります。ここでウィスパリングギャラリーモードは動径方向に非常に強く局在している効果で、二つのスピン成分が片方は外側に、片方は内側にずれてしまいます。そして速さが同じで半径が大きい外側の成分は軌道角運動量はmより少し大きくなってm+1、内側は少し小さくなってm-1という風になっています。この偏光成分による重心のずれは光のスピンホール効果と呼ばれており、電場が波数ベクトルに直交であれという条件が光のスピン軌道相互作用とみなせるということが知られております。よって例えば反時計回りの時には下向きスピンが外、上向きスピンが内にあり、また時計回りの時には軌道角運動量は全体にマイナスが付くだけなんですけどもスピン部分に関しては反時計回りの時と内と外が入れ替わります。
  19. ともかく、プリズムを用いてYIG球に置けるウィスパリングギャラリーモードを観測しましょう。まず1.5ミクロンのレーザーをプリズムで全反射するように入射させておきます。入射偏光は面内がTM、面直がTEモードに結合するようなものになります。そしてプリズムの表面のどこかで全反射している光の染み出しスポットを、YIG球を動かしながら地道にさがしていきます。ひとたびウィスパリングギャラリーモードが見つかれば、このようにTMモードとTEモードのそれぞれのスペクトルが得られます。このスペクトルから共振の間隔が40.2GHz、そしてTEとTMの周波数の差が32GHzと見積もることができます。理論的には44GHzと39GHzで、少しすれていますが位置関係という点では理論通りになっています。またQ値は、10^5という比較的高い値となることがわかりました。
  20. キッテルモードの周波数は磁場に正比例しますが、ほかのモードは一般にそうではなく、かつ非線形です。ここで一般のウォーカーモードの周波数をキッテルモードからの周波数差で表し、その磁場に対する依存性をプロットするとこのようなプロットが得られます。キッテルモードは常に周波数差ゼロにあって、太線の(mm0)モードはみな線形な変化をします。細い実線や破線の(m+2m0や1)モードは非線形に変化しているのがわかります。ここでモード指数に関して説明すると、一番大事なのは真ん中のmで、これは球座標で言うφ方向の分布を表しています。シータ方向やr方向の分布はn-mやsにより決まります。
  21. ここで得られた2×10-9という変換効率は、やはり超伝導量子ビットの情報の光による読み出しなどの実用的な観点では不十分と思われます。さらに変換効率を上げるために、私は二つの方法があり得ると考えております。まず、ブリルアン散乱の結合定数gは、このように書けます。これは磁気光学効果の大きさを表すヴェルデ定数V、光速c、そしてマグノンモードに関与するスピン数に依存します。Vの大きな物質を使うというのは一つの柵ですが、もう一つの方法として関与するスピン数を減らすというものがあります。すなわち、球の赤道に局在するウィスパリングギャラリーモードとの重なりのない部分、球で言うと上と下の部分をそいでディスク上にすることで、おおよそ変換効率が90倍になると考えられます。また、ウィスパリングギャラリーモードのQ値は10^5でしたが、YIGの吸収係数によってのみリミットされるならばQ値は3×10^6まで上がると案が得られます。もしこれが実現されれば変換効率はさらに3500倍になります。これらを合わせて、将来的には4×10-4まで変換効率が改善することが期待されますが、これだけの変換効率があれば超伝導量子ビットの状態の光による読み出しの実験などが現実的になります。
  22. 実際にマグノンのスペクトルを磁場を変えながらとっていき、キッテルモードが常に周波数ゼロに来るように並べた実験結果がこちらです。左には観測できるモードの理論値を出してまして、200、220、330モードなど非常に理論と良い一致を示すことが見て取れます。いくつかのモードは信号が小さくて見えづらいですが。さらにキッテルモードと200モードは反交差しており、モード間の結合がおそらく磁場の非一様性により生じていることを示唆しています。
  23. 実際にマグノンのスペクトルを磁場を変えながらとっていき、キッテルモードが常に周波数ゼロに来るように並べた実験結果がこちらです。左には観測できるモードの理論値を出してまして、200、220、330モードなど非常に理論と良い一致を示すことが見て取れます。いくつかのモードは信号が小さくて見えづらいですが。さらにキッテルモードと200モードは反交差しており、モード間の結合がおそらく磁場の非一様性により生じていることを示唆しています。
  24. 先ほどは円柱型の磁石を用いましたが、実際の実験では設計の都合上リング型の磁石を用います。なのでリング型の磁石に関しても装用の実験を行うと、200モードはキッテルモードにはねつけられていたり、全体的にスペクトルが高周波側にシフトしていたりといった振る舞いが見えましたが、先ほどの結果の助けも借りてモードを同定することができます。周波数のシフトなどの振舞はリング磁石による磁場の非一様性の増大によるものと考えられます。