SlideShare a Scribd company logo
𝑂
𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝐻
𝑂𝐻
𝑂𝐻
𝑂𝐻
𝐶𝐻2 − 𝑂𝐻
𝑂
𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝐻
𝑂𝐻
𝑂𝐻
𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝟒 𝟏
𝟑 𝟐
𝟓
𝟔
𝟒 𝟏
𝟑 𝟐
𝟓
𝟔
𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒
/𝑀𝑔2+
𝑨𝑻𝑷 𝑨𝑫𝑷
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝟒 𝟏
𝟑 𝟐
𝟓
𝟔
𝑃ℎ𝑜𝑠𝑝ℎ𝑜ℎ𝑒𝑥𝑜𝑠𝑒
𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒
𝑀𝑔2+
𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆
𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂
𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝐻
𝑂𝐻
𝑂𝐻
𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝟓 𝟐
𝟒 𝟑
𝟏
𝟔
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑓𝑟𝑢𝑐𝑡𝑜
𝑘𝑖𝑛𝑎𝑠𝑒 − 1
/𝑀𝑔2+
𝑨𝑻𝑷 𝑨𝑫𝑷
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆
𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝟓 𝟐
𝟒 𝟑
𝟏
𝟔
𝐶𝐻2
𝑂
𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟏, 𝟔 −
𝒃𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝟓 𝟐
𝟒 𝟑
𝟏
𝟔
𝑂𝑃𝑂3
2−
𝐶𝐻2
𝑂
𝑂𝐻
𝐶𝐻2 − 𝑂𝑃𝑂3
2−
𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟏, 𝟔 −
𝒃𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂𝐻
𝑂𝐻
𝐻
𝐻
𝐻
𝟓 𝟐
𝟒 𝟑
𝟏
𝟔
𝑂𝑃𝑂3
2−
𝐴𝑙𝑑𝑜𝑙𝑎𝑠𝑒
𝐶𝐻2𝑂𝐻
𝐶𝐻2 −
𝐶 = 𝑂
𝑂𝑃𝑂3
2−
𝑂
𝐶 − 𝐻
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
+
𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆
𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑮𝑨𝑷)
𝑫𝒊𝒉𝒚𝒅𝒓𝒐𝒙𝒚𝒂𝒄𝒆𝒕𝒐𝒏𝒆
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑫𝑯𝑨𝑷)
𝐶𝐻2𝑂𝐻
𝐶𝐻2 −
𝐶 = 𝑂
𝑂𝑃𝑂3
2−
𝑂
𝐶 − 𝐻
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆
𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑮𝑨𝑷)
𝑫𝒊𝒉𝒚𝒅𝒓𝒐𝒙𝒚𝒂𝒄𝒆𝒕𝒐𝒏𝒆
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑫𝑯𝑨𝑷)
𝑇𝑟𝑖𝑜𝑠𝑒
𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒
𝐻𝑒𝑛𝑐𝑒, 𝑓𝑟𝑜𝑚 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑜𝑓 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 −
𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑎 6𝐶 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 , 2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑜𝑓
𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑎 3𝐶 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑
𝑎𝑟𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑.
𝑂
𝐶 − 𝐻
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆
𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
+
𝑂
𝑂−
𝐻𝑂 − 𝑃 − 𝑂−
𝑰𝒏𝒐𝒓𝒈𝒂𝒏𝒊𝒄
𝑷𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑂
𝐶 −
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂𝑃𝑂3
2−
𝑵𝑨𝑫+ 𝑵𝑨𝑫𝑯 + 𝑯+
𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒
3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝟏, 𝟑 − 𝑩𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒐
−𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑂
𝐶 −
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂 − 𝑃𝑂3
2−
𝟏, 𝟑 − 𝑩𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒐
−𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑂
𝐶 − 𝑂−
𝐶𝐻2 −
𝐶𝐻𝑂𝐻
𝑂𝑃𝑂3
2−
𝟑 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐
−𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
𝐾𝑖𝑛𝑎𝑠𝑒 /𝑀𝑔2+
𝑨𝒅𝒆𝒏𝒐𝒔𝒊𝒏𝒆
𝒕𝒓𝒊𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝐴𝑑𝑒𝑛𝑜𝑠𝑖𝑛𝑒
𝑑𝑖𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
+
𝑂
𝐶 − 𝑂−
𝐶𝐻2 −
𝐻 − 𝐶 − 𝑂𝐻
𝑂𝑃𝑂3
2−
𝟑 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑂
𝐶 − 𝑂−
𝐶𝐻2 − 𝑂𝐻
𝐻 − 𝐶 −𝑂𝑃𝑂3
2−
𝟐 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑃ℎ𝑜𝑠𝑝ℎ𝑜 −
𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
𝑀𝑢𝑡𝑎𝑠𝑒
𝑀𝑔2+
𝟏
𝟐
𝟑
𝟏
𝟐
𝟑
𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝐸𝑛𝑜𝑙𝑎𝑠𝑒
𝐻2𝑂 ↑
𝑂
𝐶 − 𝑂−
𝐻𝑂 − 𝐶𝐻2
𝐻 − 𝐶 −𝑂𝑃𝑂3
2−
𝟐 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
𝑂
𝐶 − 𝑂−
𝐶𝐻2
𝐶 −𝑂𝑃𝑂3
2−
𝑂
𝐶 − 𝑂−
𝐶𝐻3
𝐶 = 𝑂
𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝐾𝑖𝑛𝑎𝑠𝑒
/𝑀𝑔2+
, 𝐾+
𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝑂
𝐶 − 𝑂−
𝐶𝐻2
𝐶 − 𝑂 − 𝑃𝑂3
2−
𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝑨𝑫𝑷 𝑨𝑻𝑷
𝐸1: 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝐸2: 𝐷𝑖ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑝𝑜𝑦𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑒𝑡𝑦𝑙𝑎𝑠𝑒
𝐸3: 𝐷𝑖ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑝𝑜𝑦𝑙 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
(i) Thiamine pyrophosphate (TPP)
(ii) Lipoic acid
(iii) Coenzyme A (CoA)
(iv) FAD
(v) NAD⁺
𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝑪𝑶𝟐 ↑
𝑇𝑃𝑃
𝐶𝑜𝐴 − 𝑆𝐻
𝐶𝐻3 − 𝐶 − 𝐶𝑂𝑂𝐻
𝑂
𝐶𝐻3 − 𝐶𝐻𝑂𝐻 − 𝑇𝑃𝑃
𝑯𝒚𝒅𝒓𝒐𝒙𝒚𝒆𝒕𝒉𝒚𝒍 𝑻𝑷𝑷
𝐶𝐻3 − 𝐶 − 𝑆 − 𝐿 − 𝑆𝐻
𝑂
𝑨𝒄𝒆𝒕𝒚𝒍 𝒍𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆
𝐿
/ 
𝑆 ⋯ ⋯ 𝑆
𝐿
/ 
𝐻𝑆 𝑆𝐻
𝑳𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆
(𝒐𝒙𝒊. )
𝑳𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆
(𝒓𝒆𝒅. )
𝐶𝐻3 − 𝐶 − 𝑆𝐶𝑜𝐴
𝑂
𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨
𝑭𝑨𝑫
𝑵𝑨𝑫+
+ 𝑯+
𝑭𝑨𝑫𝑯𝟐
𝑵𝑨𝑫𝑯
𝑬𝟏
𝑬𝟐
𝑬𝟑
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑨𝑻𝑷 ⟶ 𝑨𝑫𝑷
𝑨𝑻𝑷 ⟶ 𝑨𝑫𝑷
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6
− 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6
− 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6
− 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
2 𝐺𝐴𝑃 2
1,3 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜
𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
2
1,3 − 𝐵𝑖𝑠
𝑝ℎ𝑜𝑠𝑝ℎ𝑜 −
𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
2
3 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜
𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
2 𝑃𝐸𝑃 2 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒
2 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 2 𝐴𝑐𝑒𝑡𝑦𝑙 𝐶𝑜𝐴
𝟐𝑨𝑫𝑷 ⟶ 𝟐𝑨𝑻𝑷
𝟐𝑨𝑫𝑷 ⟶ 𝟐𝑨𝑻𝑷
𝟐𝑵𝑨𝑫+ ⟶ 𝟐𝑵𝑨𝑫𝑯
+𝟐𝑯+
𝟐𝑵𝑨𝑫+
⟶ 𝟐𝑵𝑨𝑫𝑯
+𝟐𝑯+
𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑹𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔:
𝐴𝑇𝑃 𝑢𝑡𝑖𝑙𝑖𝑠𝑒𝑑 = 2
𝐴𝑇𝑃 𝑓𝑜𝑟𝑚𝑒𝑑 = 4
𝑁𝐴𝐷𝐻 𝑓𝑜𝑟𝑚𝑒𝑑 = 2 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑃𝐷𝐻 𝑐𝑜𝑚𝑝𝑙𝑒𝑥
= 5 𝐴𝑇𝑃
[∵ 1 𝑁𝐴𝐷𝐻 ≈ 2.5 𝐴𝑇𝑃 𝑣𝑖𝑎 𝐸𝑇𝐶 ]
∴ 𝑁𝑒𝑡 𝐴𝑇𝑃 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = −2 + 4 + 5 = 𝟕 𝑨𝑻𝑷
𝐶6𝐻12𝑂6 + 2 𝐴𝐷𝑃 + 2𝑃𝑖 + 2 𝑁𝐴𝐷+
𝑮𝒍𝒖𝒄𝒐𝒔𝒆
2 𝐶𝐻3 − 𝐶 − 𝐶𝑂𝑂𝐻 + 2 𝐴𝑇𝑃 + 2 𝑁𝐴𝐷𝐻 + 2𝐻+ + 2 𝐻2𝑂
𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝑂
• 𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠: 𝑖 𝐶𝑖𝑡𝑟𝑖𝑐 𝐴𝑐𝑖𝑑 𝐶𝑦𝑐𝑙𝑒
𝑖𝑖 𝑇𝑟𝑖𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝐴𝑐𝑖𝑑 𝑇𝐶𝐴 𝐶𝑦𝑐𝑙𝑒
𝑪𝒊𝒕𝒓𝒂𝒕𝒆
𝑰𝒔𝒐𝒄𝒊𝒕𝒓𝒂𝒕𝒆
𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆
𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨
𝑺𝒖𝒄𝒄𝒊𝒏𝒂𝒕𝒆
𝑭𝒖𝒎𝒂𝒓𝒂𝒕𝒆
𝑴𝒂𝒍𝒂𝒕𝒆
𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆
𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨
𝑲𝑹𝑬𝑩′𝑺 𝑪𝒀𝑪𝑳𝑬
𝑆 − 𝐶𝑜𝐴
𝐶𝐻3
𝐶 = 𝑂
𝐶𝐻2
𝑂 = 𝐶 − 𝐶𝑂𝑂−
𝐶𝑂𝑂−
𝐶𝑂𝑂−
𝐻𝑂 − 𝐶 − 𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝑖𝑡𝑟𝑎𝑡𝑒
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
𝟐 𝟏
𝟑
𝟒
𝟏
𝟐
𝐶𝑜𝐴 − 𝑆𝐻
𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆
𝑨𝒄𝒆𝒕𝒚𝒍
𝑪𝒐𝑨 𝑪𝒊𝒕𝒓𝒂𝒕𝒆
𝟐
𝟑
𝟒
𝟏
𝟓
𝟔
𝐶𝑂𝑂−
𝐻𝑂 − 𝐶 − 𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝑂𝑂−
𝐻 − 𝐶 − 𝐻
𝑪𝒊𝒕𝒓𝒂𝒕𝒆
𝟐
𝟑
𝟒
𝟏
𝟓
𝟔
𝐶𝑂𝑂−
𝐻 − 𝐶 − 𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝑂𝑂−
𝐻𝑂 − 𝐶 − 𝐻
𝑰𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆
𝟐
𝟑
𝟒
𝟏
𝟓
𝟔
𝐴𝑐𝑜𝑛𝑖𝑡𝑎𝑠𝑒
𝐴𝑐𝑜𝑛𝑖𝑡𝑎𝑠𝑒
𝑪𝒊𝒔 − 𝒂𝒄𝒐𝒏𝒊𝒕𝒂𝒕𝒆
𝑯𝟐𝑶
𝑯𝟐𝑶
(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒)
𝐶𝑂𝑂−
𝐶𝐻 − 𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝑂𝑂−
𝐶𝐻 − 𝑂𝐻
𝑰𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆
𝟐
𝟑
𝟒
𝟏
𝟓
𝟔
𝐼𝑠𝑜 − 𝑐𝑖𝑡𝑟𝑎𝑡𝑒
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑪𝑶𝟐 ↑
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶𝑂𝑂−
𝐶 = 𝑂
𝟐
𝟑
𝟒
𝟏
𝟓
𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆
𝑁𝐴𝐷+
𝑵𝑨𝑫𝑯
+𝑯+
• 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒊𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆
• 𝑹𝒆𝒎𝒐𝒗𝒂𝒍 𝒐𝒇 𝟏 𝑪 & 𝒓𝒆𝒍𝒆𝒂𝒔𝒆 𝒐𝒇 𝑪𝑶𝟐
• 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑵𝑨𝑫𝑯
𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑪𝑶𝟐 ↑
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶𝑂𝑂−
𝐶 = 𝑂
𝟐
𝟑
𝟒
𝟏
𝟓
𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆
𝑁𝐴𝐷+
𝑵𝑨𝑫𝑯
+𝑯+
𝑪𝒐𝑨 − 𝑺𝑯
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶 = 𝑂
𝟐
𝟑
𝟒
𝟏
𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨
𝑆 − 𝐶𝑜𝐴
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶 = 𝑂
𝟐
𝟑
𝟒
𝟏
𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨
𝑆 − 𝐶𝑜𝐴
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝑺𝒖𝒄𝒄𝒊𝒏𝒂𝒕𝒆
𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
𝐶𝑜𝐴 − 𝑆𝐻
𝐺𝐷𝑃
𝐴𝐷𝑃
𝑮𝑻𝑷
𝑨𝑻𝑷
𝐶𝑂𝑂−
𝐶𝐻2
𝐶𝐻2
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝑺𝒖𝒄𝒄𝒊𝒏𝒂𝒕𝒆 𝑭𝒖𝒎𝒂𝒓𝒂𝒕𝒆
𝐶𝑂𝑂−
𝐶𝐻
𝐶𝐻
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝐹𝐴𝐷 𝑭𝑨𝑫𝑯𝟐
𝑴𝒂𝒍𝒂𝒕𝒆
𝑭𝒖𝒎𝒂𝒓𝒂𝒕𝒆
𝐶𝑂𝑂−
𝐶𝐻
𝐶𝐻
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝐹𝑢𝑚𝑎𝑟𝑎𝑠𝑒
𝐶𝑂𝑂−
𝐶𝐻2
𝐻𝑂 − 𝐶 − 𝐻
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝐻2𝑂
𝑯
𝑶
𝑯
𝑴𝒂𝒍𝒂𝒕𝒆
𝐶𝑂𝑂−
𝐶𝐻2
𝐻𝑂 − 𝐶 − 𝐻
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆
𝐶𝑂𝑂−
𝐶𝐻2
𝐶 = 𝑂
𝐶𝑂𝑂−
𝟐
𝟑
𝟒
𝟏
𝑀𝑎𝑙𝑎𝑡𝑒
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑁𝐴𝐷+
𝑵𝑨𝑫𝑯
+𝑯+
𝑆𝑟.
𝑁𝑜. 𝑅𝐸𝐴𝐶𝑇𝐼𝑂𝑁𝑆
𝐸𝑛𝑒𝑟𝑔𝑦
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
1) 𝐼𝑠𝑜 − 𝑐𝑖𝑡𝑟𝑎𝑡𝑒 ⟶ 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒
𝑁𝐴𝐷+
→ 𝑁𝐴𝐷𝐻 + 𝐻+
2) 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒 ⟶ 𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴
𝑁𝐴𝐷+
→ 𝑁𝐴𝐷𝐻 + 𝐻+
3) 𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴 ⟶ 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 𝐺𝐷𝑃 → 𝐺𝑇𝑃
4) 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ⇌ 𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 𝐹𝐴𝐷 → 𝐹𝐴𝐷𝐻2
5) 𝑀𝑎𝑙𝑎𝑡𝑒 ⟶ 𝑂𝑥𝑎𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑁𝐴𝐷+
→ 𝑁𝐴𝐷𝐻 + 𝐻+
𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨 + 3𝑁𝐴𝐷+ + 𝐹𝐴𝐷 + 𝐺𝐷𝑃 + 𝑃𝑖
𝟐 𝑪𝑶𝟐 ↑ + 𝐶𝑜𝐴𝑆𝐻 + 3 𝑁𝐴𝐷𝐻 + 3𝐻+ + 𝐹𝐴𝐷𝐻2 + 𝐺𝑇𝑃
∵ 1 𝑁𝐴𝐷𝐻 ≈ 2.5 𝐴𝑇𝑃(𝑣𝑖𝑎 𝐸𝑇𝐶),
∴ 3 𝑁𝐴𝐷𝐻 = 𝟕. 𝟓 𝑨𝑻𝑷
𝐴𝑙𝑠𝑜, 1 𝐹𝐴𝐷𝐻2 = 𝟏. 𝟓 𝑨𝑻𝑷
𝐺𝑇𝑃 + 𝐴𝐷𝑃 ⟶ 𝐺𝐷𝑃 + 𝐴𝑇𝑃
𝐻𝑒𝑛𝑐𝑒, 1 𝐺𝑇𝑃 ≈ 𝟏 𝑨𝑻𝑷
∴ 𝑇𝑜𝑡𝑎𝑙 𝐴𝑇𝑃 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 7.5 + 1.5 + 1 = 𝟏𝟎 𝑨𝑻𝑷.
• 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑓𝑜𝑟 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒
• 𝐿𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 & 𝑝𝑙𝑎𝑠𝑡𝑖𝑑𝑠
• 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ∶
𝑖 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝐴𝐷𝑃𝐻
𝑖𝑖 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑖𝑏𝑜𝑠𝑒 5 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
(𝑓𝑜𝑟 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠, 𝑛𝑢𝑐𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑𝑠)
𝟐 𝑷𝒉𝒂𝒔𝒆𝒔
𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝑷𝒉𝒂𝒔𝒆
𝑵𝒐𝒏 − 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝑷𝒉𝒂𝒔𝒆
𝐻 − 𝐶 − 𝑂𝐻
𝐻𝑂 − 𝐶 − 𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶
𝐻 − 𝐶 − 𝑂𝐻
𝐶𝐻2 − 𝑶𝑷𝑶𝟑
𝟐−
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝐶 = 𝑂
𝐻𝑂 − 𝐶 − 𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶
𝐻 − 𝐶 − 𝑂𝐻
𝐶𝐻2 − 𝑶𝑷𝑶𝟑
𝟐−
𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐
𝒈𝒍𝒖𝒄𝒐𝒏𝒐𝒍𝒂𝒄𝒕𝒐𝒏𝒆
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝑂 𝑂
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃.
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑁𝐴𝐷𝑃+ 𝑵𝑨𝑫𝑷𝑯
+𝑯+
𝑀𝑔2+
𝐶 = 𝑂
𝐻𝑂 − 𝐶 − 𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶
𝐻 − 𝐶 − 𝑂𝐻
𝐶𝐻2 − 𝑶𝑷𝑶𝟑
𝟐−
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝐶 = 𝑂
𝐻𝑂 − 𝐶 − 𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐶𝐻2 − 𝑶𝑷𝑶𝟑
𝟐−
𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐
𝒈𝒍𝒖𝒄𝒐𝒏𝒐𝒍𝒂𝒄𝒕𝒐𝒏𝒆
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝑂 𝐺𝑙𝑢𝑐𝑜𝑛𝑜 −
𝑙𝑎𝑐𝑡𝑜𝑛𝑎𝑠𝑒
𝑂−
𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒖𝒄𝒐𝒏𝒂𝒕𝒆
𝐶 = 𝑂
𝐻𝑂 − 𝐶 − 𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐶𝐻2 − 𝑶𝑷𝑶𝟑
𝟐−
𝟏
𝟐
𝟑
𝟒
𝟓
𝟔
𝑂−
𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒖𝒄𝒐𝒏𝒂𝒕𝒆
6 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜
−𝑔𝑙𝑢𝑐𝑜𝑛𝑎𝑡𝑒
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑁𝐴𝐷𝑃+ 𝑵𝑨𝑫𝑷𝑯
+𝑯+
𝐻
𝐶 = 𝑂
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻2𝐶 − 𝑶𝑷𝑶𝟑
𝟐−
𝟏
𝟐
𝟑
𝟒
𝟓
𝑪𝑶𝟐
𝑹𝒊𝒃𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑝𝑒𝑛𝑡𝑜𝑠𝑒
𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒
𝐻
𝐶 = 𝑂
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻2𝐶 − 𝑶𝑷𝑶𝟑
𝟐−
𝟏
𝟐
𝟑
𝟒
𝟓
𝑹𝒊𝒃𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐶 = 𝑂
𝐻 − 𝐶 − 𝑂𝐻
𝐻 − 𝐶 − 𝑂𝐻
𝐻2𝐶 − 𝑶𝑷𝑶𝟑
𝟐−
𝟏
𝟐
𝟑
𝟒
𝟓
𝑹𝒊𝒃𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝐾𝑒𝑡𝑜𝑠𝑒
𝐴𝑙𝑑𝑜𝑠𝑒
𝑂 𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂𝐻
𝑂𝐻 𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂
𝑂𝐻
𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂 𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂𝑃𝑂3
2−
𝑂
𝑂𝐻
𝑂𝐻
𝑹𝒊𝒃𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑿𝒚𝒍𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑺𝒆𝒅𝒐𝒉𝒆𝒑𝒕𝒖𝒍𝒐𝒔𝒆 𝟕 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆 𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑬𝒓𝒚𝒕𝒉𝒓𝒐𝒔𝒆 𝟒 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
(𝟑 𝑪)
(𝟒 𝑪)
(𝟕 𝑪)
(𝟓 𝑪)
(𝟔 𝑪)
(𝟓 𝑪)
𝐸𝑝𝑖𝑚𝑒𝑟𝑎𝑠𝑒
𝑇𝑟𝑎𝑛𝑠 − 𝑘𝑒𝑡𝑜𝑙𝑎𝑠𝑒
𝑇𝑟𝑎𝑛𝑠 − 𝑎𝑙𝑑𝑜𝑙𝑎𝑠𝑒
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑠𝑒 4 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 −
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑃ℎ𝑜𝑠𝑝ℎ𝑜ℎ𝑒𝑥𝑜𝑠𝑒
𝑖𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑋𝑦𝑙𝑢𝑙𝑜𝑠𝑒 5 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒
3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑇𝑟𝑎𝑛𝑠 −
𝑘𝑒𝑡𝑜𝑙𝑎𝑠𝑒
[× 𝟐]
𝑰𝒏 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆:
𝑰𝒏 𝒏𝒐𝒏 − 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆:
3 𝐺6𝑃 + 3 2 𝑁𝐴𝐷𝑃+
⟶ 3 5𝐶 𝑠𝑢𝑔𝑎𝑟𝑠 + 3 𝐶𝑂2 ↑
+ 3 2 𝑁𝐴𝐷𝑃𝐻 + 2𝐻+
≈ 𝟔𝑵𝑨𝑫𝑷𝑯
3 5𝐶 𝑠𝑢𝑔𝑎𝑟𝑠 ⇌ 2 𝐺6𝑃 + 𝐺𝐴𝑃
𝑎) 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 −−−−→ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑏) 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 −−−−→ 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 −
𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑐) 𝑃𝐸𝑃 −−−−→ 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒
𝐴𝑇𝑃↷𝐴𝐷𝑃
𝐴𝑇𝑃↷𝐴𝐷𝑃
𝐴𝐷𝑃↷𝐴𝑇𝑃
𝑳𝒂𝒄𝒕𝒂𝒕𝒆
𝜶 − 𝑲𝒆𝒕𝒐 𝒂𝒄𝒊𝒅𝒔
𝐶𝐻3 − 𝐶 𝑂 − 𝐶𝑂𝑂𝐻
𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝑂𝑥𝑎𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑪𝒊𝒕𝒓𝒊𝒄
𝑨𝒄𝒊𝒅
𝑪𝒚𝒄𝒍𝒆
𝐶𝐻2 = 𝐶 𝑂𝑃𝑂3
2−
− 𝐶𝑂𝑂𝐻
𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆
𝐴𝑇𝑃
𝐴𝐷𝑃 + 𝑃𝑖
𝐺𝑇𝑃
𝐺𝐷𝑃 + 𝑃𝑖
𝑪𝑶𝟐
𝑪𝑶𝟐
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑒𝑛𝑜𝑙𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒
2 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
3 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
1,3 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒
𝐷𝐻𝐴𝑃 + 𝐺𝐴𝑃
⇌
⇌
⇌
𝐺𝐴𝑃
⇌
⇌
2 𝐺𝐴𝑃
→
→
⇌
𝑻𝒉𝒆𝒔𝒆 𝒇𝒆𝒘 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝒐𝒇 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔:
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐸𝑛𝑜𝑙𝑎𝑠𝑒
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑚𝑢𝑡𝑎𝑠𝑒
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 𝐾𝑖𝑛𝑎𝑠𝑒
𝐺𝐴𝑃 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝐸𝑛𝑜𝑙𝑎𝑠𝑒
𝐴𝑙𝑑𝑜𝑙𝑎𝑠𝑒
𝟐 𝑨𝑻𝑷
𝟐 𝑨𝑫𝑷
↷
𝟐 𝑵𝑨𝑫𝑯 + 𝟐𝑯+
𝟐 𝑵𝑨𝑫+
↷
𝑮𝒍𝒚𝒄𝒆𝒓𝒐𝒍
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔 𝑮𝒍𝒖𝒄𝒐𝒏𝒆𝒐𝒈𝒆𝒏𝒆𝒔𝒊𝒔
1,6 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝑖𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒
𝑷𝒊 ⟵
𝑷𝒊 ⟵
𝑺𝒕𝒆𝒑 𝟐:
𝑺𝒕𝒆𝒑 𝟑:
𝑃ℎ𝑜𝑠𝑝ℎ𝑜
−𝑓𝑟𝑢𝑐𝑡𝑜
𝑘𝑖𝑛𝑎𝑠𝑒
𝐴𝑇𝑃
𝐴𝐷𝑃
𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒
𝐴𝑇𝑃
𝐴𝐷𝑃
𝑮𝒍𝒖𝒄𝒐𝒔𝒆
(𝑀𝑜𝑛𝑜𝑠𝑎𝑐𝑐ℎ𝑎𝑟𝑖𝑑𝑒)
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
(𝑃𝑜𝑙𝑦𝑠𝑎𝑐𝑐ℎ𝑎𝑟𝑖𝑑𝑒)
𝑂
𝑂𝐻
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑂
𝑂𝐻
𝑂𝐻
𝐻2𝐶 − 𝑂𝑃𝑂3
2−
𝑂𝐻
𝑂𝐻
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 −
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝟔
𝑂
𝑂𝐻
𝑂𝑃𝑂3
2−
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝟏
𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒
𝐴𝑇𝑃 𝐴𝐷𝑃
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻 𝑂 − 𝑃 − 𝑂−
𝑂
𝑂−
−
𝑂 − 𝑃 − 𝑂 − 𝑃 − 𝑂−
𝑂
𝑂−
𝑂
𝑂−
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
+
𝑼𝒓𝒂𝒄𝒊𝒍
(𝑵 − 𝒃𝒂𝒔𝒆)
𝑹𝒊𝒃𝒐𝒔𝒆
(𝑺𝒖𝒈𝒂𝒓)
𝑼𝒓𝒊𝒅𝒊𝒏𝒆 𝑻𝒓𝒊𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
(𝑼𝑻𝑷)
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑃𝑦𝑟𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
+
𝑷𝒚𝒓𝒐𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
• 𝐴 𝑠𝑚𝑎𝑙𝑙 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝒑𝒓𝒆 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒈𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑎𝑐𝑡𝑠
𝑎𝑠 𝑎 𝒑𝒓𝒊𝒎𝒆𝒓.
• 𝐴 𝑝𝑟𝑜𝑡𝑒𝑖𝑛, 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏𝒊𝒏, 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑛𝑖𝑡𝑠 𝑡𝑜
𝑓𝑜𝑟𝑚 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 𝑝𝑟𝑖𝑚𝑒𝑟.
−𝑂𝐻 + 𝑈𝐷𝑃 −
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑆𝑦𝑛𝑡𝑎𝑠𝑒
𝑈𝐷𝑃 ↓
−𝑂 −
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏𝒊𝒏
𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑷𝒓𝒊𝒎𝒆𝒓
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻 𝑼𝑫𝑷
𝑂 𝑂 ⋯
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
+
𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
[ 𝒏 − 𝟏 𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔]
𝑵𝒐𝒏
𝒓𝒆𝒅𝒖𝒄𝒊𝒏𝒈
𝒆𝒏𝒅
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
𝑺𝒚𝒏𝒕𝒂𝒔𝒆
𝑂
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂 𝑂 ⋯ ⋯
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑵𝒐𝒏
𝒓𝒆𝒅𝒖𝒄𝒊𝒏𝒈
𝒆𝒏𝒅
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 (𝒏 − 𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔)
𝟒 𝟏 𝟒 𝟏 𝟒 𝟏
• 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑒𝑛𝑧𝑦𝑚𝑒: 𝑮𝒍𝒖𝒄𝒐𝒔𝒚𝒍 𝜶 (𝟒 − 𝟔) 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒂𝒔𝒆
• 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
5 − 8 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑛 − 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑒𝑛𝑑.
• 𝐵𝑜𝑛𝑑𝑠 𝑏𝑟𝑜𝑘𝑒𝑛: 𝛼 − 1,4 𝑔𝑙𝑦𝑐𝑜𝑠𝑖𝑑𝑖𝑐 𝑏𝑜𝑛𝑑𝑠
• 𝐵𝑜𝑛𝑑𝑠 𝑓𝑜𝑟𝑚𝑒𝑑: 𝜶 − 𝟏, 𝟔 𝒈𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒃𝒐𝒏𝒅𝒔
𝜶 − 𝟏, 𝟒 𝑮𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄
𝒍𝒊𝒏𝒌𝒂𝒈𝒆𝒔
𝜶 − 𝟏, 𝟔 𝑮𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄
𝒍𝒊𝒏𝒌𝒂𝒈𝒆
𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑪𝒉𝒂𝒊𝒏
𝑩𝒓𝒂𝒏𝒄𝒉𝒆𝒅
𝑪𝒉𝒂𝒊𝒏
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
𝑂
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂 𝑂 ⋯ ⋯
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝟒 𝟏 𝟒 𝟏 𝟒 𝟏
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻 𝑂
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
𝑂
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂 ⋯ ⋯
𝟒 𝟏 𝟒 𝟏
𝑂𝑃𝑂3
2−
𝟒 𝟏 +
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝑃𝑖
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
[𝑛 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠]
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
[ 𝑛 − 1
𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠]
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 1 −
𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝜶 − 𝟏, 𝟒 𝑮𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄
𝒍𝒊𝒏𝒌𝒂𝒈𝒆𝒔
• 𝐷𝑒𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑒𝑛𝑧𝑦𝑚𝑒 𝑖𝑠 𝑎 𝑩𝒊𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒏𝒛𝒚𝒎𝒆.
2 𝑒𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑓𝑜𝑢𝑛𝑑
𝑜𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑙𝑦𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑐ℎ𝑎𝑖𝑛.
• 𝐸𝑛𝑧𝑦𝑚𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑟𝑒:
𝟏) 𝑮𝒍𝒚𝒄𝒐𝒔𝒚𝒍 𝟒: 𝟒 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒂𝒔𝒆
[𝑎. 𝑘. 𝑎. 𝑂𝑙𝑖𝑔𝑜 𝛼 − 1,4 → 1,4 𝑔𝑙𝑢𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒]
𝟐) 𝑨𝒎𝒚𝒍𝒐 𝜶 − 𝟏, 𝟔 𝒈𝒍𝒖𝒄𝒐𝒔𝒊𝒅𝒂𝒔𝒆
𝑩𝒓𝒂𝒏𝒄𝒉𝒊𝒏𝒈
𝒑𝒐𝒊𝒏𝒕 𝟏
𝟑
𝟒
𝟐
𝟏
𝟑
𝟒 𝟐
𝟏
𝟑
𝟒 𝟐
𝟓
𝟕 𝟔
𝟏
𝐺𝑙𝑦𝑐𝑜𝑠𝑦𝑙 4: 4
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒
𝜶 − 𝟏, 𝟔 𝒈𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒍𝒊𝒏𝒌𝒂𝒈𝒆
𝑂
𝑂𝐻
𝑂𝐻
𝐶𝐻2𝑂𝐻
𝑂𝐻
𝑂𝐻
+
𝐴𝑚𝑦𝑙𝑜 𝛼 − 1,6
𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒
𝒇𝒓𝒆𝒆 𝑮𝒍𝒖𝒄𝒐𝒔𝒆
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
𝑩𝒓𝒂𝒏𝒄𝒉 𝒘𝒊𝒕𝒉 𝟏
𝒈𝒍𝒖𝒄𝒐𝒔𝒚𝒍 𝒓𝒆𝒔𝒊𝒅𝒖𝒆
𝑫𝒆𝒃𝒓𝒂𝒏𝒄𝒉𝒊𝒏𝒈 𝒆𝒏𝒛𝒚𝒎𝒆
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏
𝒑𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒔𝒆
𝑷𝒉𝒐𝒔𝒑𝒉𝒐
−𝒈𝒍𝒖𝒄𝒐
−𝒎𝒖𝒕𝒂𝒔𝒆
𝑹𝒂𝒕𝒊𝒐:
𝟖: 𝟏
𝟐) 𝑴𝑼𝑺𝑪𝑳𝑬𝑺 & 𝑩𝑹𝑨𝑰𝑵
𝑮𝑳𝒀𝑪𝑶𝑮𝑬𝑵
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 1 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
𝑮𝑳𝑼𝑪𝑶𝑺𝑬
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 −
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 −
𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒
𝑨𝑫𝑷 𝑨𝑻𝑷
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 −
𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒
𝑷𝒊 ↓
𝑃ℎ𝑜𝑠𝑝ℎ𝑜
−𝑔𝑙𝑢𝑐𝑜
−𝑚𝑢𝑡𝑎𝑠𝑒
𝑃ℎ𝑜𝑠𝑝ℎ𝑜
𝑔𝑙𝑢𝑐𝑜
𝑚𝑢𝑡𝑎𝑠𝑒
← 𝑼𝑻𝑷
𝑼𝑫𝑷 ←
→ 𝑷𝑷𝒊
𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
← 𝑷𝒊
𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑃𝑦𝑟𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐷𝑒𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝐸𝑛𝑧𝑦𝑚𝑒
• 𝑇ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
𝑏𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 & 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠.
𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
⇌
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
⊕ 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟
⊖ 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟
↓ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
↓ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙
𝐴𝑀𝑃
⊕
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃.
𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝐴𝑇𝑃
⊖
↑ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
↑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃.
⊕
𝑺𝒕𝒂𝒓𝒗𝒂𝒕𝒊𝒐𝒏
𝑾𝒆𝒍𝒍 − 𝒇𝒆𝒅
𝑺𝒕𝒂𝒈𝒆
• 𝐻𝑜𝑟𝑚𝑜𝑛𝑒𝑠 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑮𝒍𝒖𝒄𝒂𝒈𝒐𝒏 & 𝑰𝒏𝒔𝒖𝒍𝒊𝒏
𝑎𝑛𝑑 𝑬𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆 & 𝑵𝒐𝒓𝒆𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆
(𝑓𝑟𝑜𝑚
𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠)
(𝑓𝑟𝑜𝑚
𝐴𝑑𝑟𝑒𝑛𝑎𝑙
𝑔𝑙𝑎𝑛𝑑𝑠)
𝑐𝑎𝑟𝑟𝑦 𝑜𝑢𝑡 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒐𝒏 &
𝑫𝒆𝒑𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒐𝒏 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠
• 𝑮𝒍𝒖𝒄𝒂𝒈𝒐𝒏 & 𝑬𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒
𝐴𝑑𝑒𝑛𝑦𝑙𝑎𝑡𝑒 𝑐𝑦𝑐𝑙𝑎𝑠𝑒 𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑐𝐴𝑀𝑃.
• 𝑰𝒏𝒔𝒖𝒍𝒊𝒏 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑑𝑖𝑒𝑠𝑡𝑒𝑟𝑎𝑠𝑒
𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑐𝐴𝑀𝑃.
• 𝐻𝑒𝑛𝑐𝑒, 𝒄𝑨𝑴𝑷 − 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒆𝒏𝒛𝒚𝒎𝒆𝒔 𝑎𝑟𝑒 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦
𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝐺𝑙𝑢𝑐𝑎𝑔𝑜𝑛 & 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑏𝑦 𝐼𝑛𝑠𝑢𝑙𝑖𝑛.
• 𝑇ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑺𝒚𝒏𝒕𝒉𝒂𝒔𝒆 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 2 𝑓𝑜𝑟𝑚𝑠 ∶
𝑨𝒄𝒕𝒊𝒗𝒆 𝑑𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 & 𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒
𝑷
𝑐𝐴𝑀𝑃 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐾𝑖𝑛𝑎𝑠𝑒
𝑃𝑟𝑜𝑡𝑒𝑖𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 − 1
𝐷𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑
𝑨𝑪𝑻𝑰𝑽𝑬 𝑰𝑵𝑨𝑪𝑻𝑰𝑽𝑬
• 𝑇ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒔𝒆 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 2
𝑓𝑜𝑟𝑚𝑠 ∶ 𝑨𝒄𝒕𝒊𝒗𝒆 & 𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐾𝑖𝑛𝑎𝑠𝑒
𝑷
𝑐𝐴𝑀𝑃 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐾𝑖𝑛𝑎𝑠𝑒
𝑃𝑟𝑜𝑡𝑒𝑖𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒
𝐷𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑
𝑰𝑵𝑨𝑪𝑻𝑰𝑽𝑬 𝑨𝑪𝑻𝑰𝑽𝑬
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝑷
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒
𝐾𝑖𝑛𝑎𝑠𝑒
BLOOD
SUGAR
SECRETION
cAMP
conc.
Glycogen
Synthase
Glycogen
Phosphorylase EFFECT
HIGH
INSULIN ↑
GLUCAGON↓
↓ ACTIVE INACTIVE
GLYCOGENESIS
(Blood glucose↓)
LOW
GLUCAGON↑
INSULIN↓
↑ INACTIVE ACTIVE
GLYCOGENOLYSIS
(Blood glucose↑)
𝑁𝐴𝐷+
𝐹𝐴𝐷
𝑁𝐴𝐷𝐻 + 𝐻+
𝐹𝐴𝐷𝐻2
𝐴𝐷𝑃
+𝑃𝑖
𝑨𝑻𝑷
𝑬𝑻𝑪
𝐻2𝑂
𝟏
𝟐
𝑶𝟐
𝑺𝒊𝒕𝒆 𝒐𝒇 𝑬𝒍𝒆𝒄𝒕𝒓𝒐𝒏 𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 𝑪𝒉𝒂𝒊𝒏
𝑂𝑢𝑡𝑒𝑟
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
𝐼𝑛𝑛𝑒𝑟
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
𝐼𝑛𝑡𝑒𝑟 −
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
𝑠𝑝𝑎𝑐𝑒
𝐶𝑟𝑖𝑠𝑡𝑎𝑒
𝑀𝑎𝑡𝑟𝑖𝑥
𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑠
𝑫𝑵𝑨
• 𝑬𝑻𝑪 𝒂𝒔𝒔𝒆𝒎𝒃𝒍𝒚 𝒂𝒏𝒅 𝑨𝑻𝑷 𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒊𝒏𝒈 𝒔𝒚𝒔𝒕𝒆𝒎 𝒂𝒓𝒆
𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒐𝒏 𝒕𝒉𝒆 𝑰𝒏𝒏𝒆𝒓 𝑴𝒆𝒎𝒃𝒓𝒂𝒏𝒆.
• 𝑻𝒉𝒆 𝒉𝒊𝒈𝒉𝒍𝒚 𝒇𝒐𝒍𝒅𝒆𝒅 𝑪𝒓𝒊𝒔𝒕𝒂𝒆 𝒑𝒐𝒔𝒔𝒆𝒔𝒔 𝒔𝒑𝒆𝒄𝒊𝒂𝒍𝒊𝒛𝒆𝒅
𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒏𝒈 𝒔𝒖𝒃𝒖𝒏𝒊𝒕𝒔.
• 𝑹𝒊𝒃𝒐𝒔𝒐𝒎𝒆𝒔 𝒂𝒏𝒅 𝒎𝒊𝒕𝒐𝒄𝒉𝒐𝒏𝒅𝒓𝒊𝒂𝒍 𝑫𝑵𝑨 𝒂𝒓𝒆 𝒑𝒓𝒆𝒔𝒆𝒏𝒕
𝒊𝒏 𝒕𝒉𝒆 𝒎𝒂𝒕𝒓𝒊𝒙.
• 𝑻𝒉𝒆 𝑴𝒂𝒕𝒓𝒊𝒙 𝒊𝒔 𝒓𝒊𝒄𝒉 𝒊𝒏 𝒆𝒏𝒛𝒚𝒎𝒆𝒔 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒇𝒐𝒓:
𝒊 𝑪𝒊𝒕𝒓𝒊𝒄 𝑨𝒄𝒊𝒅 𝑪𝒚𝒄𝒍𝒆
𝒊𝒊 𝜷 − 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑭𝒂𝒕𝒕𝒚 𝑨𝒄𝒊𝒅𝒔
𝒊𝒊𝒊 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑨𝒎𝒊𝒏𝒐 𝑨𝒄𝒊𝒅𝒔
𝑈𝑄 𝐶𝑦𝑡. 𝐶
𝑶𝒖𝒕𝒆𝒓 𝒎𝒆𝒎𝒃.
𝑰𝒏𝒏𝒆𝒓
𝒎𝒆𝒎𝒃.
𝑪𝒓𝒊𝒔𝒕𝒂𝒆
𝑰𝒏𝒕𝒆𝒓
𝒎𝒆𝒎𝒃.
𝒔𝒑𝒂𝒄𝒆
𝑵𝑨𝑫𝑯
+𝑯+
𝑭𝑨𝑫𝑯𝟐
𝐹𝐴𝐷
𝑁𝐴𝐷+
𝟒𝑯+
𝟒𝑯+
𝟐𝑯+
𝒆−
𝒆− 𝒆− 𝒆− 𝒆−
𝟏
𝟐𝑶𝟐
𝑯𝟐𝑶
𝟐𝑯+
𝑯+
𝑯+
𝑯+
𝑯+
𝑨𝑫𝑷 𝑨𝑻𝑷
⊕
⊕
⊕ ⊕ ⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
𝑀𝐴𝑇𝑅𝐼𝑋
⊖
⊖
⊖
⊖
⊖
⊖
⊖
⊖
⊖
⊖
⊖
𝑁𝑖𝑐𝑜𝑡𝑖𝑛𝑎𝑚𝑖𝑑𝑒 (𝑁𝐴𝐷+
)
𝑉𝑖𝑡𝑎𝑚𝑖𝑛
𝑵𝒊𝒂𝒄𝒊𝒏
𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚
𝐴𝐻2 + 𝑁𝐴𝐷+
𝑺𝒖𝒃𝒔𝒕𝒓𝒂𝒕𝒆
𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝐴 + 𝑁𝐴𝐷𝐻 + 𝐻+
(𝑶𝒙𝒊𝒅𝒊𝒛𝒆𝒅) (𝑹𝒆𝒅𝒖𝒄𝒆𝒅)
• 𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔, 𝑲𝒓𝒆𝒃′𝒔 𝑪𝒚𝒄𝒍𝒆 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟
𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠. 𝐼𝑡 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰.
• 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 𝑚𝑎𝑦 𝑏𝑒: 𝐺𝐴𝑃, 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒, 𝑖𝑠𝑜 − 𝐶𝑖𝑡𝑟𝑎𝑡𝑒,
𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒, 𝑀𝑎𝑙𝑎𝑡𝑒
𝐹𝑀𝑁
𝐹𝐴𝐷
𝑷𝒓𝒐𝒔𝒕𝒉𝒆𝒕𝒊𝒄 𝒈𝒓𝒐𝒖𝒑 𝑜𝑓
𝑁𝐴𝐷𝐻 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
𝑪𝒐 − 𝒆𝒏𝒛𝒚𝒎𝒆 𝑜𝑓
𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜.
𝑖 𝑁𝐴𝐷𝐻 + 𝐻+
+ 𝑭𝑴𝑵 𝑁𝐴𝐷+
+ 𝑭𝑴𝑵𝑯𝟐
𝑖𝑖 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 + 𝑭𝑨𝑫 𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 + 𝑭𝑨𝑫𝑯𝟐
↑
(𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑)
↓
𝟐𝒆−
𝟐𝑯+ + 𝟐𝒆−
↑
(𝑅𝑒𝑑𝑢𝑐𝑒𝑑)
↓
• 𝐹𝑒𝑆 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 2 𝑓𝑜𝑟𝑚𝑠, 𝒐𝒙𝒊𝒅𝒊𝒔𝒆𝒅 𝑭𝒆𝟑+
𝑓𝑜𝑟𝑚
𝑜𝑟 𝒓𝒆𝒅𝒖𝒄𝒆𝒅 𝑭𝒆𝟐+ 𝑓𝑜𝑟𝑚.
• 𝑇ℎ𝑒𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑒𝑠 𝑡𝑜
𝑪𝒐𝒆𝒏𝒛𝒚𝒎𝒆 𝑸 𝑎𝑛𝑑 𝒄𝒚𝒕𝒐𝒄𝒉𝒓𝒐𝒎𝒆𝒔 𝒃 & 𝒄𝟏.
𝐹𝑒3+
+ 𝑒−
𝐹𝑒2+
⟶ ⟶ ⟶ ⟶ ⟶ ⟶
𝑒−
𝑒−
𝑒− 𝑒−
𝑒−
𝑒−
𝑒− 𝑒−
𝐹𝑒3+
𝑒−
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑓𝑙𝑜𝑤
• 𝑸𝒖𝒊𝒏𝒊𝒏𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑜𝑖𝑑 𝑠𝑖𝑑𝑒
𝑐ℎ𝑎𝑖𝑛𝑠.
• 𝐼𝑛 𝑚𝑎𝑚𝑚𝑎𝑙𝑠, 𝟏𝟎 𝒊𝒔𝒐𝒑𝒓𝒆𝒏𝒐𝒊𝒅 𝒄𝒉𝒂𝒊𝒏𝒔 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡.
𝐻𝑒𝑛𝑐𝑒, 𝑖𝑡 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑪𝒐 − 𝒆𝒏𝒛𝒚𝒎𝒆 𝑸𝟏𝟎 𝑜𝑟 𝑪𝒐𝑸𝟏𝟎.
• 𝐴𝑐𝑐𝑒𝑝𝑡𝑠 (𝒆−) 𝑓𝑟𝑜𝑚
𝐹𝑀𝑁𝐻2 𝑎𝑛𝑑 𝐹𝐴𝐷𝐻2 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑡𝑜
𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑰𝑰
• 𝑪𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆𝒅 𝒑𝒓𝒐𝒕𝒆𝒊𝒏𝒔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑯𝒆𝒎𝒆 𝒈𝒓𝒐𝒖𝒑
𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓 𝐻𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛 & 𝑀𝑦𝑜𝑔𝑙𝑜𝑏𝑖𝑛 .
• 𝑯𝒆𝒎𝒆 ⟶ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑃𝑜𝑟𝑝ℎ𝑦𝑟𝑖𝑛 𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑰𝒓𝒐𝒏 𝒂𝒕𝒐𝒎
• 𝑈𝑛𝑙𝑖𝑘𝑒 ℎ𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛, ℎ𝑒𝑚𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑦𝑡𝑜𝑐ℎ𝑟𝑜𝑚𝑒𝑠 𝑖𝑠
𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝒐𝒙𝒊𝒅𝒊𝒔𝒆𝒅 & 𝒓𝒆𝒅𝒖𝒄𝒆𝒅.
𝑭𝒆𝟑+ ⇌ 𝑭𝒆𝟐+
𝑪𝒐𝑸 𝐶𝑦𝑡. 𝑏 ⟶ 𝐶𝑦𝑡. 𝑐1 𝐶𝑦𝑡. 𝑎 ⟶ 𝐶𝑦𝑡. 𝑎3
𝑪𝒚𝒕. 𝑪
⟶
⟶ ⟶
𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑰𝑰 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑽
• 𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑡𝑎𝑘𝑒𝑠 𝑝𝑙𝑎𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟:
• 𝑪𝒚𝒕𝒐𝒄𝒉𝒓𝒐𝒎𝒆 𝑪 𝑖𝑠 𝑙𝑜𝑜𝑠𝑒𝑙𝑦 𝑏𝑜𝑢𝑛𝑑, 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑟𝑒𝑑𝑜𝑥 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙.
• 𝑪𝒚𝒕. 𝒐𝒙𝒊𝒅𝒂𝒔𝒆 𝒂 + 𝒂𝟑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑐𝑜𝑝𝑝𝑒𝑟 𝑡ℎ𝑎𝑡 𝑢𝑛𝑑𝑒𝑟𝑔𝑜𝑒𝑠
𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 & 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛. [𝑪𝒖𝟐+ ⇌ 𝑪𝒖+]
• 𝐻𝑒𝑚𝑒 𝐼𝑟𝑜𝑛 𝑜𝑓 𝑐𝑦𝑡. 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 𝑐𝑎𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑎𝑐𝑡 𝑤𝑖𝑡ℎ
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑥𝑦𝑔𝑒𝑛.
𝟏
𝟐𝑶𝟐 + 𝟐𝑯+
+ 𝟐𝒆−
⟶ 𝑯𝟐𝑶
𝑯+ 𝑯+
𝒆−
𝒆−
𝒆−
𝒆−
𝒆−
𝒆−
𝑯+
𝟏
𝟐𝑶𝟐
𝑯𝟐𝑶
𝑰𝑵𝑻𝑬𝑹 − 𝑴𝑬𝑴𝑩𝑹𝑨𝑵𝑬 𝑺𝑷𝑨𝑪𝑬
𝑯+
𝒊𝒐𝒏𝒔
𝑯+
𝑰𝒏𝒕𝒆𝒓
𝑴𝒆𝒎𝒃𝒓𝒂𝒏𝒆
𝑺𝒑𝒂𝒄𝒆
𝒃𝟐
𝜶𝟑𝜷𝟑
𝑯+
𝑴𝑨𝑻𝑹𝑰𝑿
𝑨𝑻𝑷
𝑨𝑫𝑷 + 𝑷𝒊
𝑨𝑫𝑷
𝑷𝒊
𝑬𝑻𝑪
𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒆𝒔
𝑰, 𝑰𝑰𝑰, 𝑰𝑽
⟹ 𝑃𝑢𝑚𝑝 𝐻+ 𝑖𝑜𝑛𝑠
𝑓𝑟𝑜𝑚 𝑀𝑎𝑡𝑟𝑖𝑥
⟹ 𝑖𝑛𝑡𝑜 𝐼𝑛𝑡𝑒𝑟 −
𝑚𝑒𝑚𝑏. 𝑠𝑝𝑎𝑐𝑒
𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝐻+
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
𝑯+
𝑯+
𝑯+
𝑯+
𝒇𝒍𝒐𝒘 𝒓𝒐𝒕𝒂𝒕𝒆𝒔
𝒓𝒐𝒕𝒐𝒓 𝒂𝒏𝒅 𝒂𝒙𝒍𝒆
𝑬𝒏𝒆𝒓𝒈𝒚
𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏
𝑨𝑫𝑷
𝑷𝒊
𝑨𝑻𝑷
[𝑨𝑿𝑳𝑬]
Carbohydrate Metabolism

More Related Content

What's hot

Metabolism anabolism & catabolism made easy and simple
Metabolism anabolism & catabolism made easy and simpleMetabolism anabolism & catabolism made easy and simple
Metabolism anabolism & catabolism made easy and simple
MALAKAHMADYOUSAFZAI
 
GROWTH HORMONES
GROWTH HORMONESGROWTH HORMONES
GROWTH HORMONES
Dr Nilesh Kate
 
Hexose Monophosphate Shunt
Hexose Monophosphate ShuntHexose Monophosphate Shunt
Hexose Monophosphate Shunt
Ashok Katta
 
Lecture notes on Chemistry of carbohydrates
Lecture notes on Chemistry of  carbohydratesLecture notes on Chemistry of  carbohydrates
Lecture notes on Chemistry of carbohydrates
neha sheth
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
WEEKLYMEDIC
 
Nutritional importance of proteins
Nutritional importance of proteinsNutritional importance of proteins
Nutritional importance of proteins
rohini sane
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
RAJENDRA SINGH
 
ENZYMES
ENZYMESENZYMES
ENZYMES
YESANNA
 
PENTOSE PHOSPHATE PATHWAY
PENTOSE PHOSPHATE PATHWAY PENTOSE PHOSPHATE PATHWAY
PENTOSE PHOSPHATE PATHWAY
J K COLLEGE,PURULIA
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )
OMEED AKBAR
 
Regulation of glycogen metabolism
Regulation of glycogen metabolismRegulation of glycogen metabolism
Regulation of glycogen metabolism
Namrata Chhabra
 
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISMGLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
YESANNA
 
pancreatic secretions.pptx
pancreatic secretions.pptxpancreatic secretions.pptx
pancreatic secretions.pptx
FatimaSundus1
 
Functions of gastrointestinal tract
Functions of gastrointestinal tractFunctions of gastrointestinal tract
Functions of gastrointestinal tract
Pavithra Mannan
 
Catabolism of Purine Nucleotides | Hyperuricemia | Gout
Catabolism of Purine Nucleotides | Hyperuricemia | GoutCatabolism of Purine Nucleotides | Hyperuricemia | Gout
Catabolism of Purine Nucleotides | Hyperuricemia | Gout
kiransharma204
 
KETONE BODIES METABOLISM
KETONE BODIES METABOLISMKETONE BODIES METABOLISM
KETONE BODIES METABOLISM
YESANNA
 
HMP shunt
HMP shuntHMP shunt
HMP shunt
abdulrahman amer
 
Protein Metabolism for First BDS students.
Protein Metabolism for First BDS students.Protein Metabolism for First BDS students.
Protein Metabolism for First BDS students.
SmitaPakhmode1
 
DIABETES MELLITUS - BIOCHEMISTRY
DIABETES MELLITUS - BIOCHEMISTRYDIABETES MELLITUS - BIOCHEMISTRY
DIABETES MELLITUS - BIOCHEMISTRY
YESANNA
 
TREHALOSE and Its production
TREHALOSE and Its productionTREHALOSE and Its production
TREHALOSE and Its production
boyalibulgur
 

What's hot (20)

Metabolism anabolism & catabolism made easy and simple
Metabolism anabolism & catabolism made easy and simpleMetabolism anabolism & catabolism made easy and simple
Metabolism anabolism & catabolism made easy and simple
 
GROWTH HORMONES
GROWTH HORMONESGROWTH HORMONES
GROWTH HORMONES
 
Hexose Monophosphate Shunt
Hexose Monophosphate ShuntHexose Monophosphate Shunt
Hexose Monophosphate Shunt
 
Lecture notes on Chemistry of carbohydrates
Lecture notes on Chemistry of  carbohydratesLecture notes on Chemistry of  carbohydrates
Lecture notes on Chemistry of carbohydrates
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Nutritional importance of proteins
Nutritional importance of proteinsNutritional importance of proteins
Nutritional importance of proteins
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
ENZYMES
ENZYMESENZYMES
ENZYMES
 
PENTOSE PHOSPHATE PATHWAY
PENTOSE PHOSPHATE PATHWAY PENTOSE PHOSPHATE PATHWAY
PENTOSE PHOSPHATE PATHWAY
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )
 
Regulation of glycogen metabolism
Regulation of glycogen metabolismRegulation of glycogen metabolism
Regulation of glycogen metabolism
 
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISMGLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
 
pancreatic secretions.pptx
pancreatic secretions.pptxpancreatic secretions.pptx
pancreatic secretions.pptx
 
Functions of gastrointestinal tract
Functions of gastrointestinal tractFunctions of gastrointestinal tract
Functions of gastrointestinal tract
 
Catabolism of Purine Nucleotides | Hyperuricemia | Gout
Catabolism of Purine Nucleotides | Hyperuricemia | GoutCatabolism of Purine Nucleotides | Hyperuricemia | Gout
Catabolism of Purine Nucleotides | Hyperuricemia | Gout
 
KETONE BODIES METABOLISM
KETONE BODIES METABOLISMKETONE BODIES METABOLISM
KETONE BODIES METABOLISM
 
HMP shunt
HMP shuntHMP shunt
HMP shunt
 
Protein Metabolism for First BDS students.
Protein Metabolism for First BDS students.Protein Metabolism for First BDS students.
Protein Metabolism for First BDS students.
 
DIABETES MELLITUS - BIOCHEMISTRY
DIABETES MELLITUS - BIOCHEMISTRYDIABETES MELLITUS - BIOCHEMISTRY
DIABETES MELLITUS - BIOCHEMISTRY
 
TREHALOSE and Its production
TREHALOSE and Its productionTREHALOSE and Its production
TREHALOSE and Its production
 

Similar to Carbohydrate Metabolism

Lipid Metabolism
Lipid MetabolismLipid Metabolism
Lipid Metabolism
VedantPatel100
 
Photosynthesis
PhotosynthesisPhotosynthesis
Photosynthesis
VedantPatel100
 
SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)
tungwc
 
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
tungwc
 
SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)
tungwc
 
SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)
tungwc
 
Relativity
RelativityRelativity
Relativity
edgardoangeles1
 
SUEC 高中 Adv Maths (Irrational Part 2)
SUEC 高中 Adv Maths (Irrational Part 2)SUEC 高中 Adv Maths (Irrational Part 2)
SUEC 高中 Adv Maths (Irrational Part 2)
tungwc
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
JHANDRYALCIVARGUAJAL
 
08.sdcd_ransformada_z
08.sdcd_ransformada_z08.sdcd_ransformada_z
08.sdcd_ransformada_z
Hipólito Aguilar
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)
tungwc
 
Pembuktian sifat sifat logaritma
Pembuktian sifat sifat logaritmaPembuktian sifat sifat logaritma
Pembuktian sifat sifat logaritma
Franxisca Kurniawati
 
07.5.scd_ejemplos
07.5.scd_ejemplos07.5.scd_ejemplos
07.5.scd_ejemplos
Hipólito Aguilar
 
Math-7-Lesson-9-Irrational-Numbers.pdf
Math-7-Lesson-9-Irrational-Numbers.pdfMath-7-Lesson-9-Irrational-Numbers.pdf
Math-7-Lesson-9-Irrational-Numbers.pdf
VelodonaTancio
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas
Hipólito Aguilar
 
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
tungwc
 
SUEC 高中 Adv Maths (Trigo Function Part 1)
SUEC 高中 Adv Maths (Trigo Function Part 1)SUEC 高中 Adv Maths (Trigo Function Part 1)
SUEC 高中 Adv Maths (Trigo Function Part 1)
tungwc
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
katherinecedeo11
 

Similar to Carbohydrate Metabolism (20)

Lipid Metabolism
Lipid MetabolismLipid Metabolism
Lipid Metabolism
 
Photosynthesis
PhotosynthesisPhotosynthesis
Photosynthesis
 
SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)
 
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
 
SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)
 
SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)
 
Relativity
RelativityRelativity
Relativity
 
SUEC 高中 Adv Maths (Irrational Part 2)
SUEC 高中 Adv Maths (Irrational Part 2)SUEC 高中 Adv Maths (Irrational Part 2)
SUEC 高中 Adv Maths (Irrational Part 2)
 
Sets
SetsSets
Sets
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
08.sdcd_ransformada_z
08.sdcd_ransformada_z08.sdcd_ransformada_z
08.sdcd_ransformada_z
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)
 
Pembuktian sifat sifat logaritma
Pembuktian sifat sifat logaritmaPembuktian sifat sifat logaritma
Pembuktian sifat sifat logaritma
 
07.5.scd_ejemplos
07.5.scd_ejemplos07.5.scd_ejemplos
07.5.scd_ejemplos
 
Math-7-Lesson-9-Irrational-Numbers.pdf
Math-7-Lesson-9-Irrational-Numbers.pdfMath-7-Lesson-9-Irrational-Numbers.pdf
Math-7-Lesson-9-Irrational-Numbers.pdf
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas
 
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
 
tabla de Integral
tabla de Integraltabla de Integral
tabla de Integral
 
SUEC 高中 Adv Maths (Trigo Function Part 1)
SUEC 高中 Adv Maths (Trigo Function Part 1)SUEC 高中 Adv Maths (Trigo Function Part 1)
SUEC 高中 Adv Maths (Trigo Function Part 1)
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 

Recently uploaded

general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 

Recently uploaded (20)

general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 

Carbohydrate Metabolism

  • 1.
  • 2. 𝑂 𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝐻 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝐶𝐻2 − 𝑂𝐻 𝑂 𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝐻 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝟒 𝟏 𝟑 𝟐 𝟓 𝟔 𝟒 𝟏 𝟑 𝟐 𝟓 𝟔 𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒 /𝑀𝑔2+ 𝑨𝑻𝑷 𝑨𝑫𝑷 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
  • 3. 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝟒 𝟏 𝟑 𝟐 𝟓 𝟔 𝑃ℎ𝑜𝑠𝑝ℎ𝑜ℎ𝑒𝑥𝑜𝑠𝑒 𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒 𝑀𝑔2+ 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑂 𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝐻 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝟓 𝟐 𝟒 𝟑 𝟏 𝟔
  • 4. 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑓𝑟𝑢𝑐𝑡𝑜 𝑘𝑖𝑛𝑎𝑠𝑒 − 1 /𝑀𝑔2+ 𝑨𝑻𝑷 𝑨𝑫𝑷 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑂𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝟓 𝟐 𝟒 𝟑 𝟏 𝟔 𝐶𝐻2 𝑂 𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟏, 𝟔 − 𝒃𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑂𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝟓 𝟐 𝟒 𝟑 𝟏 𝟔 𝑂𝑃𝑂3 2−
  • 5. 𝐶𝐻2 𝑂 𝑂𝐻 𝐶𝐻2 − 𝑂𝑃𝑂3 2− 𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟏, 𝟔 − 𝒃𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑂𝐻 𝑂𝐻 𝐻 𝐻 𝐻 𝟓 𝟐 𝟒 𝟑 𝟏 𝟔 𝑂𝑃𝑂3 2− 𝐴𝑙𝑑𝑜𝑙𝑎𝑠𝑒 𝐶𝐻2𝑂𝐻 𝐶𝐻2 − 𝐶 = 𝑂 𝑂𝑃𝑂3 2− 𝑂 𝐶 − 𝐻 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− + 𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆 𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑮𝑨𝑷) 𝑫𝒊𝒉𝒚𝒅𝒓𝒐𝒙𝒚𝒂𝒄𝒆𝒕𝒐𝒏𝒆 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑫𝑯𝑨𝑷)
  • 6. 𝐶𝐻2𝑂𝐻 𝐶𝐻2 − 𝐶 = 𝑂 𝑂𝑃𝑂3 2− 𝑂 𝐶 − 𝐻 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− 𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆 𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑮𝑨𝑷) 𝑫𝒊𝒉𝒚𝒅𝒓𝒐𝒙𝒚𝒂𝒄𝒆𝒕𝒐𝒏𝒆 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑫𝑯𝑨𝑷) 𝑇𝑟𝑖𝑜𝑠𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒 𝐻𝑒𝑛𝑐𝑒, 𝑓𝑟𝑜𝑚 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑜𝑓 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑎 6𝐶 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 , 2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑜𝑓 𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑎 3𝐶 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑎𝑟𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑.
  • 7.
  • 8. 𝑂 𝐶 − 𝐻 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− 𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆 𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 + 𝑂 𝑂− 𝐻𝑂 − 𝑃 − 𝑂− 𝑰𝒏𝒐𝒓𝒈𝒂𝒏𝒊𝒄 𝑷𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑂 𝐶 − 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂𝑃𝑂3 2− 𝑵𝑨𝑫+ 𝑵𝑨𝑫𝑯 + 𝑯+ 𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝟏, 𝟑 − 𝑩𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒐 −𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆
  • 9. 𝑂 𝐶 − 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂 − 𝑃𝑂3 2− 𝟏, 𝟑 − 𝑩𝒊𝒔𝒑𝒉𝒐𝒔𝒑𝒉𝒐 −𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆 𝑂 𝐶 − 𝑂− 𝐶𝐻2 − 𝐶𝐻𝑂𝐻 𝑂𝑃𝑂3 2− 𝟑 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐 −𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 𝐾𝑖𝑛𝑎𝑠𝑒 /𝑀𝑔2+ 𝑨𝒅𝒆𝒏𝒐𝒔𝒊𝒏𝒆 𝒕𝒓𝒊𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝐴𝑑𝑒𝑛𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 +
  • 10. 𝑂 𝐶 − 𝑂− 𝐶𝐻2 − 𝐻 − 𝐶 − 𝑂𝐻 𝑂𝑃𝑂3 2− 𝟑 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆 𝑂 𝐶 − 𝑂− 𝐶𝐻2 − 𝑂𝐻 𝐻 − 𝐶 −𝑂𝑃𝑂3 2− 𝟐 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 − 𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 𝑀𝑢𝑡𝑎𝑠𝑒 𝑀𝑔2+ 𝟏 𝟐 𝟑 𝟏 𝟐 𝟑
  • 11. 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝐸𝑛𝑜𝑙𝑎𝑠𝑒 𝐻2𝑂 ↑ 𝑂 𝐶 − 𝑂− 𝐻𝑂 − 𝐶𝐻2 𝐻 − 𝐶 −𝑂𝑃𝑂3 2− 𝟐 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒚𝒄𝒆𝒓𝒂𝒕𝒆 𝑂 𝐶 − 𝑂− 𝐶𝐻2 𝐶 −𝑂𝑃𝑂3 2−
  • 12. 𝑂 𝐶 − 𝑂− 𝐶𝐻3 𝐶 = 𝑂 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝐾𝑖𝑛𝑎𝑠𝑒 /𝑀𝑔2+ , 𝐾+ 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝑂 𝐶 − 𝑂− 𝐶𝐻2 𝐶 − 𝑂 − 𝑃𝑂3 2− 𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝑨𝑫𝑷 𝑨𝑻𝑷
  • 13.
  • 14. 𝐸1: 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝐸2: 𝐷𝑖ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑝𝑜𝑦𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑒𝑡𝑦𝑙𝑎𝑠𝑒 𝐸3: 𝐷𝑖ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑝𝑜𝑦𝑙 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 (i) Thiamine pyrophosphate (TPP) (ii) Lipoic acid (iii) Coenzyme A (CoA) (iv) FAD (v) NAD⁺
  • 15. 𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝑪𝑶𝟐 ↑ 𝑇𝑃𝑃 𝐶𝑜𝐴 − 𝑆𝐻 𝐶𝐻3 − 𝐶 − 𝐶𝑂𝑂𝐻 𝑂 𝐶𝐻3 − 𝐶𝐻𝑂𝐻 − 𝑇𝑃𝑃 𝑯𝒚𝒅𝒓𝒐𝒙𝒚𝒆𝒕𝒉𝒚𝒍 𝑻𝑷𝑷 𝐶𝐻3 − 𝐶 − 𝑆 − 𝐿 − 𝑆𝐻 𝑂 𝑨𝒄𝒆𝒕𝒚𝒍 𝒍𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆 𝐿 / 𝑆 ⋯ ⋯ 𝑆 𝐿 / 𝐻𝑆 𝑆𝐻 𝑳𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆 (𝒐𝒙𝒊. ) 𝑳𝒊𝒑𝒐𝒂𝒎𝒊𝒅𝒆 (𝒓𝒆𝒅. ) 𝐶𝐻3 − 𝐶 − 𝑆𝐶𝑜𝐴 𝑂 𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨 𝑭𝑨𝑫 𝑵𝑨𝑫+ + 𝑯+ 𝑭𝑨𝑫𝑯𝟐 𝑵𝑨𝑫𝑯 𝑬𝟏 𝑬𝟐 𝑬𝟑
  • 16. 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑨𝑻𝑷 ⟶ 𝑨𝑫𝑷 𝑨𝑻𝑷 ⟶ 𝑨𝑫𝑷 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 2 𝐺𝐴𝑃 2 1,3 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜 𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 2 1,3 − 𝐵𝑖𝑠 𝑝ℎ𝑜𝑠𝑝ℎ𝑜 − 𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 2 3 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 2 𝑃𝐸𝑃 2 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 2 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 2 𝐴𝑐𝑒𝑡𝑦𝑙 𝐶𝑜𝐴 𝟐𝑨𝑫𝑷 ⟶ 𝟐𝑨𝑻𝑷 𝟐𝑨𝑫𝑷 ⟶ 𝟐𝑨𝑻𝑷 𝟐𝑵𝑨𝑫+ ⟶ 𝟐𝑵𝑨𝑫𝑯 +𝟐𝑯+ 𝟐𝑵𝑨𝑫+ ⟶ 𝟐𝑵𝑨𝑫𝑯 +𝟐𝑯+
  • 17. 𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑹𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔: 𝐴𝑇𝑃 𝑢𝑡𝑖𝑙𝑖𝑠𝑒𝑑 = 2 𝐴𝑇𝑃 𝑓𝑜𝑟𝑚𝑒𝑑 = 4 𝑁𝐴𝐷𝐻 𝑓𝑜𝑟𝑚𝑒𝑑 = 2 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑃𝐷𝐻 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 5 𝐴𝑇𝑃 [∵ 1 𝑁𝐴𝐷𝐻 ≈ 2.5 𝐴𝑇𝑃 𝑣𝑖𝑎 𝐸𝑇𝐶 ] ∴ 𝑁𝑒𝑡 𝐴𝑇𝑃 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = −2 + 4 + 5 = 𝟕 𝑨𝑻𝑷 𝐶6𝐻12𝑂6 + 2 𝐴𝐷𝑃 + 2𝑃𝑖 + 2 𝑁𝐴𝐷+ 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 2 𝐶𝐻3 − 𝐶 − 𝐶𝑂𝑂𝐻 + 2 𝐴𝑇𝑃 + 2 𝑁𝐴𝐷𝐻 + 2𝐻+ + 2 𝐻2𝑂 𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝑂
  • 18. • 𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠: 𝑖 𝐶𝑖𝑡𝑟𝑖𝑐 𝐴𝑐𝑖𝑑 𝐶𝑦𝑐𝑙𝑒 𝑖𝑖 𝑇𝑟𝑖𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝐴𝑐𝑖𝑑 𝑇𝐶𝐴 𝐶𝑦𝑐𝑙𝑒 𝑪𝒊𝒕𝒓𝒂𝒕𝒆 𝑰𝒔𝒐𝒄𝒊𝒕𝒓𝒂𝒕𝒆 𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆 𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨 𝑺𝒖𝒄𝒄𝒊𝒏𝒂𝒕𝒆 𝑭𝒖𝒎𝒂𝒓𝒂𝒕𝒆 𝑴𝒂𝒍𝒂𝒕𝒆 𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆 𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨 𝑲𝑹𝑬𝑩′𝑺 𝑪𝒀𝑪𝑳𝑬
  • 19. 𝑆 − 𝐶𝑜𝐴 𝐶𝐻3 𝐶 = 𝑂 𝐶𝐻2 𝑂 = 𝐶 − 𝐶𝑂𝑂− 𝐶𝑂𝑂− 𝐶𝑂𝑂− 𝐻𝑂 − 𝐶 − 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝑖𝑡𝑟𝑎𝑡𝑒 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 𝟐 𝟏 𝟑 𝟒 𝟏 𝟐 𝐶𝑜𝐴 − 𝑆𝐻 𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆 𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨 𝑪𝒊𝒕𝒓𝒂𝒕𝒆 𝟐 𝟑 𝟒 𝟏 𝟓 𝟔
  • 20. 𝐶𝑂𝑂− 𝐻𝑂 − 𝐶 − 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝑂𝑂− 𝐻 − 𝐶 − 𝐻 𝑪𝒊𝒕𝒓𝒂𝒕𝒆 𝟐 𝟑 𝟒 𝟏 𝟓 𝟔 𝐶𝑂𝑂− 𝐻 − 𝐶 − 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝑂𝑂− 𝐻𝑂 − 𝐶 − 𝐻 𝑰𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆 𝟐 𝟑 𝟒 𝟏 𝟓 𝟔 𝐴𝑐𝑜𝑛𝑖𝑡𝑎𝑠𝑒 𝐴𝑐𝑜𝑛𝑖𝑡𝑎𝑠𝑒 𝑪𝒊𝒔 − 𝒂𝒄𝒐𝒏𝒊𝒕𝒂𝒕𝒆 𝑯𝟐𝑶 𝑯𝟐𝑶 (𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒)
  • 21. 𝐶𝑂𝑂− 𝐶𝐻 − 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝑂𝑂− 𝐶𝐻 − 𝑂𝐻 𝑰𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆 𝟐 𝟑 𝟒 𝟏 𝟓 𝟔 𝐼𝑠𝑜 − 𝑐𝑖𝑡𝑟𝑎𝑡𝑒 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑪𝑶𝟐 ↑ 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝐻2 𝐶𝑂𝑂− 𝐶 = 𝑂 𝟐 𝟑 𝟒 𝟏 𝟓 𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆 𝑁𝐴𝐷+ 𝑵𝑨𝑫𝑯 +𝑯+ • 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒊𝒔𝒐 − 𝒄𝒊𝒕𝒓𝒂𝒕𝒆 • 𝑹𝒆𝒎𝒐𝒗𝒂𝒍 𝒐𝒇 𝟏 𝑪 & 𝒓𝒆𝒍𝒆𝒂𝒔𝒆 𝒐𝒇 𝑪𝑶𝟐 • 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑵𝑨𝑫𝑯
  • 22. 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑪𝑶𝟐 ↑ 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝐻2 𝐶𝑂𝑂− 𝐶 = 𝑂 𝟐 𝟑 𝟒 𝟏 𝟓 𝜶 − 𝑲𝒆𝒕𝒐𝒈𝒍𝒖𝒕𝒂𝒓𝒂𝒕𝒆 𝑁𝐴𝐷+ 𝑵𝑨𝑫𝑯 +𝑯+ 𝑪𝒐𝑨 − 𝑺𝑯 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝐻2 𝐶 = 𝑂 𝟐 𝟑 𝟒 𝟏 𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨 𝑆 − 𝐶𝑜𝐴
  • 23. 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝐻2 𝐶 = 𝑂 𝟐 𝟑 𝟒 𝟏 𝑺𝒖𝒄𝒄𝒊𝒏𝒚𝒍 𝑪𝒐𝑨 𝑆 − 𝐶𝑜𝐴 𝐶𝑂𝑂− 𝐶𝐻2 𝐶𝐻2 𝐶𝑂𝑂− 𝟐 𝟑 𝟒 𝟏 𝑺𝒖𝒄𝒄𝒊𝒏𝒂𝒕𝒆 𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 𝐶𝑜𝐴 − 𝑆𝐻 𝐺𝐷𝑃 𝐴𝐷𝑃 𝑮𝑻𝑷 𝑨𝑻𝑷
  • 26. 𝑴𝒂𝒍𝒂𝒕𝒆 𝐶𝑂𝑂− 𝐶𝐻2 𝐻𝑂 − 𝐶 − 𝐻 𝐶𝑂𝑂− 𝟐 𝟑 𝟒 𝟏 𝑶𝒙𝒂𝒍𝒐𝒂𝒄𝒆𝒕𝒂𝒕𝒆 𝐶𝑂𝑂− 𝐶𝐻2 𝐶 = 𝑂 𝐶𝑂𝑂− 𝟐 𝟑 𝟒 𝟏 𝑀𝑎𝑙𝑎𝑡𝑒 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑁𝐴𝐷+ 𝑵𝑨𝑫𝑯 +𝑯+
  • 27. 𝑆𝑟. 𝑁𝑜. 𝑅𝐸𝐴𝐶𝑇𝐼𝑂𝑁𝑆 𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 1) 𝐼𝑠𝑜 − 𝑐𝑖𝑡𝑟𝑎𝑡𝑒 ⟶ 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒 𝑁𝐴𝐷+ → 𝑁𝐴𝐷𝐻 + 𝐻+ 2) 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒 ⟶ 𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴 𝑁𝐴𝐷+ → 𝑁𝐴𝐷𝐻 + 𝐻+ 3) 𝑆𝑢𝑐𝑐𝑖𝑛𝑦𝑙 𝐶𝑜𝐴 ⟶ 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 𝐺𝐷𝑃 → 𝐺𝑇𝑃 4) 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ⇌ 𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 𝐹𝐴𝐷 → 𝐹𝐴𝐷𝐻2 5) 𝑀𝑎𝑙𝑎𝑡𝑒 ⟶ 𝑂𝑥𝑎𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑁𝐴𝐷+ → 𝑁𝐴𝐷𝐻 + 𝐻+
  • 28. 𝑨𝒄𝒆𝒕𝒚𝒍 𝑪𝒐𝑨 + 3𝑁𝐴𝐷+ + 𝐹𝐴𝐷 + 𝐺𝐷𝑃 + 𝑃𝑖 𝟐 𝑪𝑶𝟐 ↑ + 𝐶𝑜𝐴𝑆𝐻 + 3 𝑁𝐴𝐷𝐻 + 3𝐻+ + 𝐹𝐴𝐷𝐻2 + 𝐺𝑇𝑃 ∵ 1 𝑁𝐴𝐷𝐻 ≈ 2.5 𝐴𝑇𝑃(𝑣𝑖𝑎 𝐸𝑇𝐶), ∴ 3 𝑁𝐴𝐷𝐻 = 𝟕. 𝟓 𝑨𝑻𝑷 𝐴𝑙𝑠𝑜, 1 𝐹𝐴𝐷𝐻2 = 𝟏. 𝟓 𝑨𝑻𝑷 𝐺𝑇𝑃 + 𝐴𝐷𝑃 ⟶ 𝐺𝐷𝑃 + 𝐴𝑇𝑃 𝐻𝑒𝑛𝑐𝑒, 1 𝐺𝑇𝑃 ≈ 𝟏 𝑨𝑻𝑷 ∴ 𝑇𝑜𝑡𝑎𝑙 𝐴𝑇𝑃 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 7.5 + 1.5 + 1 = 𝟏𝟎 𝑨𝑻𝑷.
  • 29. • 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑓𝑜𝑟 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 • 𝐿𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 & 𝑝𝑙𝑎𝑠𝑡𝑖𝑑𝑠 • 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ∶ 𝑖 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝐴𝐷𝑃𝐻 𝑖𝑖 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑖𝑏𝑜𝑠𝑒 5 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 (𝑓𝑜𝑟 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠, 𝑛𝑢𝑐𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑𝑠) 𝟐 𝑷𝒉𝒂𝒔𝒆𝒔 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝑷𝒉𝒂𝒔𝒆 𝑵𝒐𝒏 − 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝑷𝒉𝒂𝒔𝒆
  • 30. 𝐻 − 𝐶 − 𝑂𝐻 𝐻𝑂 − 𝐶 − 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 𝐻 − 𝐶 − 𝑂𝐻 𝐶𝐻2 − 𝑶𝑷𝑶𝟑 𝟐− 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝐶 = 𝑂 𝐻𝑂 − 𝐶 − 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 𝐻 − 𝐶 − 𝑂𝐻 𝐶𝐻2 − 𝑶𝑷𝑶𝟑 𝟐− 𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐 𝒈𝒍𝒖𝒄𝒐𝒏𝒐𝒍𝒂𝒄𝒕𝒐𝒏𝒆 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝑂 𝑂 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃. 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑁𝐴𝐷𝑃+ 𝑵𝑨𝑫𝑷𝑯 +𝑯+ 𝑀𝑔2+
  • 31. 𝐶 = 𝑂 𝐻𝑂 − 𝐶 − 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 𝐻 − 𝐶 − 𝑂𝐻 𝐶𝐻2 − 𝑶𝑷𝑶𝟑 𝟐− 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝐶 = 𝑂 𝐻𝑂 − 𝐶 − 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐶𝐻2 − 𝑶𝑷𝑶𝟑 𝟐− 𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐 𝒈𝒍𝒖𝒄𝒐𝒏𝒐𝒍𝒂𝒄𝒕𝒐𝒏𝒆 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝑂 𝐺𝑙𝑢𝑐𝑜𝑛𝑜 − 𝑙𝑎𝑐𝑡𝑜𝑛𝑎𝑠𝑒 𝑂− 𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒖𝒄𝒐𝒏𝒂𝒕𝒆
  • 32. 𝐶 = 𝑂 𝐻𝑂 − 𝐶 − 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐶𝐻2 − 𝑶𝑷𝑶𝟑 𝟐− 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝑂− 𝟔 − 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒈𝒍𝒖𝒄𝒐𝒏𝒂𝒕𝒆 6 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 −𝑔𝑙𝑢𝑐𝑜𝑛𝑎𝑡𝑒 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑁𝐴𝐷𝑃+ 𝑵𝑨𝑫𝑷𝑯 +𝑯+ 𝐻 𝐶 = 𝑂 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻2𝐶 − 𝑶𝑷𝑶𝟑 𝟐− 𝟏 𝟐 𝟑 𝟒 𝟓 𝑪𝑶𝟐 𝑹𝒊𝒃𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
  • 33. 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑝𝑒𝑛𝑡𝑜𝑠𝑒 𝐼𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒 𝐻 𝐶 = 𝑂 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻2𝐶 − 𝑶𝑷𝑶𝟑 𝟐− 𝟏 𝟐 𝟑 𝟒 𝟓 𝑹𝒊𝒃𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐶 = 𝑂 𝐻 − 𝐶 − 𝑂𝐻 𝐻 − 𝐶 − 𝑂𝐻 𝐻2𝐶 − 𝑶𝑷𝑶𝟑 𝟐− 𝟏 𝟐 𝟑 𝟒 𝟓 𝑹𝒊𝒃𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝐾𝑒𝑡𝑜𝑠𝑒 𝐴𝑙𝑑𝑜𝑠𝑒
  • 34. 𝑂 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂 𝑂𝐻 𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂𝑃𝑂3 2− 𝑂 𝑂𝐻 𝑂𝐻 𝑹𝒊𝒃𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑿𝒚𝒍𝒖𝒍𝒐𝒔𝒆 𝟓 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑺𝒆𝒅𝒐𝒉𝒆𝒑𝒕𝒖𝒍𝒐𝒔𝒆 𝟕 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑮𝒍𝒚𝒄𝒆𝒓𝒂𝒍𝒅𝒆𝒉𝒚𝒅𝒆 𝟑 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑭𝒓𝒖𝒄𝒕𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑬𝒓𝒚𝒕𝒉𝒓𝒐𝒔𝒆 𝟒 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝟑 𝑪) (𝟒 𝑪) (𝟕 𝑪) (𝟓 𝑪) (𝟔 𝑪) (𝟓 𝑪) 𝐸𝑝𝑖𝑚𝑒𝑟𝑎𝑠𝑒 𝑇𝑟𝑎𝑛𝑠 − 𝑘𝑒𝑡𝑜𝑙𝑎𝑠𝑒 𝑇𝑟𝑎𝑛𝑠 − 𝑎𝑙𝑑𝑜𝑙𝑎𝑠𝑒
  • 35. 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑠𝑒 4 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑃ℎ𝑜𝑠𝑝ℎ𝑜ℎ𝑒𝑥𝑜𝑠𝑒 𝑖𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑋𝑦𝑙𝑢𝑙𝑜𝑠𝑒 5 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 3 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑇𝑟𝑎𝑛𝑠 − 𝑘𝑒𝑡𝑜𝑙𝑎𝑠𝑒 [× 𝟐]
  • 36. 𝑰𝒏 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆: 𝑰𝒏 𝒏𝒐𝒏 − 𝒐𝒙𝒊𝒅𝒂𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆: 3 𝐺6𝑃 + 3 2 𝑁𝐴𝐷𝑃+ ⟶ 3 5𝐶 𝑠𝑢𝑔𝑎𝑟𝑠 + 3 𝐶𝑂2 ↑ + 3 2 𝑁𝐴𝐷𝑃𝐻 + 2𝐻+ ≈ 𝟔𝑵𝑨𝑫𝑷𝑯 3 5𝐶 𝑠𝑢𝑔𝑎𝑟𝑠 ⇌ 2 𝐺6𝑃 + 𝐺𝐴𝑃
  • 37.
  • 38. 𝑎) 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 −−−−→ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑏) 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 −−−−→ 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑐) 𝑃𝐸𝑃 −−−−→ 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝐴𝑇𝑃↷𝐴𝐷𝑃 𝐴𝑇𝑃↷𝐴𝐷𝑃 𝐴𝐷𝑃↷𝐴𝑇𝑃
  • 39. 𝑳𝒂𝒄𝒕𝒂𝒕𝒆 𝜶 − 𝑲𝒆𝒕𝒐 𝒂𝒄𝒊𝒅𝒔 𝐶𝐻3 − 𝐶 𝑂 − 𝐶𝑂𝑂𝐻 𝑷𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝑂𝑥𝑎𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑪𝒊𝒕𝒓𝒊𝒄 𝑨𝒄𝒊𝒅 𝑪𝒚𝒄𝒍𝒆 𝐶𝐻2 = 𝐶 𝑂𝑃𝑂3 2− − 𝐶𝑂𝑂𝐻 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒆𝒏𝒐𝒍𝒑𝒚𝒓𝒖𝒗𝒂𝒕𝒆 𝐴𝑇𝑃 𝐴𝐷𝑃 + 𝑃𝑖 𝐺𝑇𝑃 𝐺𝐷𝑃 + 𝑃𝑖 𝑪𝑶𝟐 𝑪𝑶𝟐
  • 40. 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑒𝑛𝑜𝑙𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 2 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 3 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 1,3 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 𝐷𝐻𝐴𝑃 + 𝐺𝐴𝑃 ⇌ ⇌ ⇌ 𝐺𝐴𝑃 ⇌ ⇌ 2 𝐺𝐴𝑃 → → ⇌ 𝑻𝒉𝒆𝒔𝒆 𝒇𝒆𝒘 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝒐𝒇 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔: 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐸𝑛𝑜𝑙𝑎𝑠𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑚𝑢𝑡𝑎𝑠𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑦𝑐𝑒𝑟𝑎𝑡𝑒 𝐾𝑖𝑛𝑎𝑠𝑒 𝐺𝐴𝑃 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝐸𝑛𝑜𝑙𝑎𝑠𝑒 𝐴𝑙𝑑𝑜𝑙𝑎𝑠𝑒 𝟐 𝑨𝑻𝑷 𝟐 𝑨𝑫𝑷 ↷ 𝟐 𝑵𝑨𝑫𝑯 + 𝟐𝑯+ 𝟐 𝑵𝑨𝑫+ ↷ 𝑮𝒍𝒚𝒄𝒆𝒓𝒐𝒍
  • 41. 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 1,6 − 𝑏𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔 𝑮𝒍𝒖𝒄𝒐𝒏𝒆𝒐𝒈𝒆𝒏𝒆𝒔𝒊𝒔 1,6 − 𝐵𝑖𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑖𝑠𝑜𝑚𝑒𝑟𝑎𝑠𝑒 𝑷𝒊 ⟵ 𝑷𝒊 ⟵ 𝑺𝒕𝒆𝒑 𝟐: 𝑺𝒕𝒆𝒑 𝟑: 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 −𝑓𝑟𝑢𝑐𝑡𝑜 𝑘𝑖𝑛𝑎𝑠𝑒 𝐴𝑇𝑃 𝐴𝐷𝑃 𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒 𝐴𝑇𝑃 𝐴𝐷𝑃
  • 43. 𝑂 𝑂𝐻 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑂 𝑂𝐻 𝑂𝐻 𝐻2𝐶 − 𝑂𝑃𝑂3 2− 𝑂𝐻 𝑂𝐻 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝟔 𝑂 𝑂𝐻 𝑂𝑃𝑂3 2− 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝟏 𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒 𝐴𝑇𝑃 𝐴𝐷𝑃
  • 44. 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 − 𝑃 − 𝑂− 𝑂 𝑂− − 𝑂 − 𝑃 − 𝑂 − 𝑃 − 𝑂− 𝑂 𝑂− 𝑂 𝑂− 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 + 𝑼𝒓𝒂𝒄𝒊𝒍 (𝑵 − 𝒃𝒂𝒔𝒆) 𝑹𝒊𝒃𝒐𝒔𝒆 (𝑺𝒖𝒈𝒂𝒓) 𝑼𝒓𝒊𝒅𝒊𝒏𝒆 𝑻𝒓𝒊𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 (𝑼𝑻𝑷) 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑃𝑦𝑟𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 + 𝑷𝒚𝒓𝒐𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆
  • 45. • 𝐴 𝑠𝑚𝑎𝑙𝑙 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝒑𝒓𝒆 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒈𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑎𝑐𝑡𝑠 𝑎𝑠 𝑎 𝒑𝒓𝒊𝒎𝒆𝒓. • 𝐴 𝑝𝑟𝑜𝑡𝑒𝑖𝑛, 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏𝒊𝒏, 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑛𝑖𝑡𝑠 𝑡𝑜 𝑓𝑜𝑟𝑚 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 𝑝𝑟𝑖𝑚𝑒𝑟. −𝑂𝐻 + 𝑈𝐷𝑃 − 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑆𝑦𝑛𝑡𝑎𝑠𝑒 𝑈𝐷𝑃 ↓ −𝑂 − 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏𝒊𝒏 𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑷𝒓𝒊𝒎𝒆𝒓
  • 46. 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑼𝑫𝑷 𝑂 𝑂 ⋯ 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 + 𝑼𝑫𝑷 − 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 [ 𝒏 − 𝟏 𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔] 𝑵𝒐𝒏 𝒓𝒆𝒅𝒖𝒄𝒊𝒏𝒈 𝒆𝒏𝒅 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑺𝒚𝒏𝒕𝒂𝒔𝒆 𝑂 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂 𝑂 ⋯ ⋯ 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑵𝒐𝒏 𝒓𝒆𝒅𝒖𝒄𝒊𝒏𝒈 𝒆𝒏𝒅 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 (𝒏 − 𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔) 𝟒 𝟏 𝟒 𝟏 𝟒 𝟏
  • 47. • 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑒𝑛𝑧𝑦𝑚𝑒: 𝑮𝒍𝒖𝒄𝒐𝒔𝒚𝒍 𝜶 (𝟒 − 𝟔) 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒂𝒔𝒆 • 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 5 − 8 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑛 − 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑒𝑛𝑑. • 𝐵𝑜𝑛𝑑𝑠 𝑏𝑟𝑜𝑘𝑒𝑛: 𝛼 − 1,4 𝑔𝑙𝑦𝑐𝑜𝑠𝑖𝑑𝑖𝑐 𝑏𝑜𝑛𝑑𝑠 • 𝐵𝑜𝑛𝑑𝑠 𝑓𝑜𝑟𝑚𝑒𝑑: 𝜶 − 𝟏, 𝟔 𝒈𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒃𝒐𝒏𝒅𝒔 𝜶 − 𝟏, 𝟒 𝑮𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒍𝒊𝒏𝒌𝒂𝒈𝒆𝒔 𝜶 − 𝟏, 𝟔 𝑮𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒍𝒊𝒏𝒌𝒂𝒈𝒆 𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑪𝒉𝒂𝒊𝒏 𝑩𝒓𝒂𝒏𝒄𝒉𝒆𝒅 𝑪𝒉𝒂𝒊𝒏
  • 49.
  • 50. 𝑂 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂 𝑂 ⋯ ⋯ 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝟒 𝟏 𝟒 𝟏 𝟒 𝟏 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 𝑂 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂 ⋯ ⋯ 𝟒 𝟏 𝟒 𝟏 𝑂𝑃𝑂3 2− 𝟒 𝟏 + 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝑃𝑖 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 [𝑛 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠] 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 [ 𝑛 − 1 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠]
  • 52. • 𝐷𝑒𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑒𝑛𝑧𝑦𝑚𝑒 𝑖𝑠 𝑎 𝑩𝒊𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒏𝒛𝒚𝒎𝒆. 2 𝑒𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑓𝑜𝑢𝑛𝑑 𝑜𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑙𝑦𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑐ℎ𝑎𝑖𝑛. • 𝐸𝑛𝑧𝑦𝑚𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑟𝑒: 𝟏) 𝑮𝒍𝒚𝒄𝒐𝒔𝒚𝒍 𝟒: 𝟒 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒂𝒔𝒆 [𝑎. 𝑘. 𝑎. 𝑂𝑙𝑖𝑔𝑜 𝛼 − 1,4 → 1,4 𝑔𝑙𝑢𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒] 𝟐) 𝑨𝒎𝒚𝒍𝒐 𝜶 − 𝟏, 𝟔 𝒈𝒍𝒖𝒄𝒐𝒔𝒊𝒅𝒂𝒔𝒆
  • 53. 𝑩𝒓𝒂𝒏𝒄𝒉𝒊𝒏𝒈 𝒑𝒐𝒊𝒏𝒕 𝟏 𝟑 𝟒 𝟐 𝟏 𝟑 𝟒 𝟐 𝟏 𝟑 𝟒 𝟐 𝟓 𝟕 𝟔 𝟏 𝐺𝑙𝑦𝑐𝑜𝑠𝑦𝑙 4: 4 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒
  • 54. 𝜶 − 𝟏, 𝟔 𝒈𝒍𝒚𝒄𝒐𝒔𝒊𝒅𝒊𝒄 𝒍𝒊𝒏𝒌𝒂𝒈𝒆 𝑂 𝑂𝐻 𝑂𝐻 𝐶𝐻2𝑂𝐻 𝑂𝐻 𝑂𝐻 + 𝐴𝑚𝑦𝑙𝑜 𝛼 − 1,6 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 𝒇𝒓𝒆𝒆 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑩𝒓𝒂𝒏𝒄𝒉 𝒘𝒊𝒕𝒉 𝟏 𝒈𝒍𝒖𝒄𝒐𝒔𝒚𝒍 𝒓𝒆𝒔𝒊𝒅𝒖𝒆
  • 56. 𝑮𝑳𝒀𝑪𝑶𝑮𝑬𝑵 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 1 − 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 𝑮𝑳𝑼𝑪𝑶𝑺𝑬 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟔 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 𝐻𝑒𝑥𝑜𝑘𝑖𝑛𝑎𝑠𝑒 𝑨𝑫𝑷 𝑨𝑻𝑷 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 𝑷𝒊 ↓ 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 −𝑔𝑙𝑢𝑐𝑜 −𝑚𝑢𝑡𝑎𝑠𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜 𝑔𝑙𝑢𝑐𝑜 𝑚𝑢𝑡𝑎𝑠𝑒 ← 𝑼𝑻𝑷 𝑼𝑫𝑷 ← → 𝑷𝑷𝒊 𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ← 𝑷𝒊 𝑈𝐷𝑃 − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑃𝑦𝑟𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐷𝑒𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝐸𝑛𝑧𝑦𝑚𝑒
  • 57.
  • 58. • 𝑇ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 & 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠. 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑮𝒍𝒖𝒄𝒐𝒔𝒆 𝟏 − 𝒑𝒉𝒐𝒔𝒑𝒉𝒂𝒕𝒆 ⇌ 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 ⊕ 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 ⊖ 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 ↓ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ↓ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 𝐴𝑀𝑃 ⊕ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃. 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐴𝑇𝑃 ⊖ ↑ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ↑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙𝑠 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6 − 𝑃. ⊕ 𝑺𝒕𝒂𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑾𝒆𝒍𝒍 − 𝒇𝒆𝒅 𝑺𝒕𝒂𝒈𝒆
  • 59. • 𝐻𝑜𝑟𝑚𝑜𝑛𝑒𝑠 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑮𝒍𝒖𝒄𝒂𝒈𝒐𝒏 & 𝑰𝒏𝒔𝒖𝒍𝒊𝒏 𝑎𝑛𝑑 𝑬𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆 & 𝑵𝒐𝒓𝒆𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆 (𝑓𝑟𝑜𝑚 𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠) (𝑓𝑟𝑜𝑚 𝐴𝑑𝑟𝑒𝑛𝑎𝑙 𝑔𝑙𝑎𝑛𝑑𝑠) 𝑐𝑎𝑟𝑟𝑦 𝑜𝑢𝑡 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒐𝒏 & 𝑫𝒆𝒑𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒐𝒏 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠
  • 60. • 𝑮𝒍𝒖𝒄𝒂𝒈𝒐𝒏 & 𝑬𝒑𝒊𝒏𝒆𝒑𝒉𝒓𝒊𝒏𝒆 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝐴𝑑𝑒𝑛𝑦𝑙𝑎𝑡𝑒 𝑐𝑦𝑐𝑙𝑎𝑠𝑒 𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑐𝐴𝑀𝑃. • 𝑰𝒏𝒔𝒖𝒍𝒊𝒏 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑑𝑖𝑒𝑠𝑡𝑒𝑟𝑎𝑠𝑒 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑐𝐴𝑀𝑃. • 𝐻𝑒𝑛𝑐𝑒, 𝒄𝑨𝑴𝑷 − 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒆𝒏𝒛𝒚𝒎𝒆𝒔 𝑎𝑟𝑒 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝐺𝑙𝑢𝑐𝑎𝑔𝑜𝑛 & 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑏𝑦 𝐼𝑛𝑠𝑢𝑙𝑖𝑛.
  • 61. • 𝑇ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑺𝒚𝒏𝒕𝒉𝒂𝒔𝒆 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 2 𝑓𝑜𝑟𝑚𝑠 ∶ 𝑨𝒄𝒕𝒊𝒗𝒆 𝑑𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 & 𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑆𝑦𝑛𝑡ℎ𝑎𝑠𝑒 𝑷 𝑐𝐴𝑀𝑃 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐾𝑖𝑛𝑎𝑠𝑒 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 − 1 𝐷𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑨𝑪𝑻𝑰𝑽𝑬 𝑰𝑵𝑨𝑪𝑻𝑰𝑽𝑬
  • 62. • 𝑇ℎ𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑮𝒍𝒚𝒄𝒐𝒈𝒆𝒏 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒔𝒆 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 2 𝑓𝑜𝑟𝑚𝑠 ∶ 𝑨𝒄𝒕𝒊𝒗𝒆 & 𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐾𝑖𝑛𝑎𝑠𝑒 𝑷 𝑐𝐴𝑀𝑃 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐾𝑖𝑛𝑎𝑠𝑒 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 𝐷𝑒𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 𝑰𝑵𝑨𝑪𝑻𝑰𝑽𝑬 𝑨𝑪𝑻𝑰𝑽𝑬 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝑷 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑠𝑒 𝐾𝑖𝑛𝑎𝑠𝑒
  • 63. BLOOD SUGAR SECRETION cAMP conc. Glycogen Synthase Glycogen Phosphorylase EFFECT HIGH INSULIN ↑ GLUCAGON↓ ↓ ACTIVE INACTIVE GLYCOGENESIS (Blood glucose↓) LOW GLUCAGON↑ INSULIN↓ ↑ INACTIVE ACTIVE GLYCOGENOLYSIS (Blood glucose↑)
  • 65. 𝑺𝒊𝒕𝒆 𝒐𝒇 𝑬𝒍𝒆𝒄𝒕𝒓𝒐𝒏 𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 𝑪𝒉𝒂𝒊𝒏 𝑂𝑢𝑡𝑒𝑟 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝐼𝑛𝑛𝑒𝑟 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝐼𝑛𝑡𝑒𝑟 − 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑠𝑝𝑎𝑐𝑒 𝐶𝑟𝑖𝑠𝑡𝑎𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑠 𝑫𝑵𝑨
  • 66. • 𝑬𝑻𝑪 𝒂𝒔𝒔𝒆𝒎𝒃𝒍𝒚 𝒂𝒏𝒅 𝑨𝑻𝑷 𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒊𝒏𝒈 𝒔𝒚𝒔𝒕𝒆𝒎 𝒂𝒓𝒆 𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒐𝒏 𝒕𝒉𝒆 𝑰𝒏𝒏𝒆𝒓 𝑴𝒆𝒎𝒃𝒓𝒂𝒏𝒆. • 𝑻𝒉𝒆 𝒉𝒊𝒈𝒉𝒍𝒚 𝒇𝒐𝒍𝒅𝒆𝒅 𝑪𝒓𝒊𝒔𝒕𝒂𝒆 𝒑𝒐𝒔𝒔𝒆𝒔𝒔 𝒔𝒑𝒆𝒄𝒊𝒂𝒍𝒊𝒛𝒆𝒅 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒚𝒍𝒂𝒕𝒊𝒏𝒈 𝒔𝒖𝒃𝒖𝒏𝒊𝒕𝒔. • 𝑹𝒊𝒃𝒐𝒔𝒐𝒎𝒆𝒔 𝒂𝒏𝒅 𝒎𝒊𝒕𝒐𝒄𝒉𝒐𝒏𝒅𝒓𝒊𝒂𝒍 𝑫𝑵𝑨 𝒂𝒓𝒆 𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒊𝒏 𝒕𝒉𝒆 𝒎𝒂𝒕𝒓𝒊𝒙. • 𝑻𝒉𝒆 𝑴𝒂𝒕𝒓𝒊𝒙 𝒊𝒔 𝒓𝒊𝒄𝒉 𝒊𝒏 𝒆𝒏𝒛𝒚𝒎𝒆𝒔 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒇𝒐𝒓: 𝒊 𝑪𝒊𝒕𝒓𝒊𝒄 𝑨𝒄𝒊𝒅 𝑪𝒚𝒄𝒍𝒆 𝒊𝒊 𝜷 − 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑭𝒂𝒕𝒕𝒚 𝑨𝒄𝒊𝒅𝒔 𝒊𝒊𝒊 𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑨𝒎𝒊𝒏𝒐 𝑨𝒄𝒊𝒅𝒔
  • 67. 𝑈𝑄 𝐶𝑦𝑡. 𝐶 𝑶𝒖𝒕𝒆𝒓 𝒎𝒆𝒎𝒃. 𝑰𝒏𝒏𝒆𝒓 𝒎𝒆𝒎𝒃. 𝑪𝒓𝒊𝒔𝒕𝒂𝒆 𝑰𝒏𝒕𝒆𝒓 𝒎𝒆𝒎𝒃. 𝒔𝒑𝒂𝒄𝒆 𝑵𝑨𝑫𝑯 +𝑯+ 𝑭𝑨𝑫𝑯𝟐 𝐹𝐴𝐷 𝑁𝐴𝐷+ 𝟒𝑯+ 𝟒𝑯+ 𝟐𝑯+ 𝒆− 𝒆− 𝒆− 𝒆− 𝒆− 𝟏 𝟐𝑶𝟐 𝑯𝟐𝑶 𝟐𝑯+ 𝑯+ 𝑯+ 𝑯+ 𝑯+ 𝑨𝑫𝑷 𝑨𝑻𝑷 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 𝑀𝐴𝑇𝑅𝐼𝑋 ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖
  • 68.
  • 69. 𝑁𝑖𝑐𝑜𝑡𝑖𝑛𝑎𝑚𝑖𝑑𝑒 (𝑁𝐴𝐷+ ) 𝑉𝑖𝑡𝑎𝑚𝑖𝑛 𝑵𝒊𝒂𝒄𝒊𝒏 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝐴𝐻2 + 𝑁𝐴𝐷+ 𝑺𝒖𝒃𝒔𝒕𝒓𝒂𝒕𝒆 𝐷𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝐴 + 𝑁𝐴𝐷𝐻 + 𝐻+ (𝑶𝒙𝒊𝒅𝒊𝒛𝒆𝒅) (𝑹𝒆𝒅𝒖𝒄𝒆𝒅) • 𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑮𝒍𝒚𝒄𝒐𝒍𝒚𝒔𝒊𝒔, 𝑲𝒓𝒆𝒃′𝒔 𝑪𝒚𝒄𝒍𝒆 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠. 𝐼𝑡 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰. • 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 𝑚𝑎𝑦 𝑏𝑒: 𝐺𝐴𝑃, 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒, 𝑖𝑠𝑜 − 𝐶𝑖𝑡𝑟𝑎𝑡𝑒, 𝛼 − 𝐾𝑒𝑡𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒, 𝑀𝑎𝑙𝑎𝑡𝑒
  • 70. 𝐹𝑀𝑁 𝐹𝐴𝐷 𝑷𝒓𝒐𝒔𝒕𝒉𝒆𝒕𝒊𝒄 𝒈𝒓𝒐𝒖𝒑 𝑜𝑓 𝑁𝐴𝐷𝐻 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒 𝑪𝒐 − 𝒆𝒏𝒛𝒚𝒎𝒆 𝑜𝑓 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜. 𝑖 𝑁𝐴𝐷𝐻 + 𝐻+ + 𝑭𝑴𝑵 𝑁𝐴𝐷+ + 𝑭𝑴𝑵𝑯𝟐 𝑖𝑖 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 + 𝑭𝑨𝑫 𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 + 𝑭𝑨𝑫𝑯𝟐 ↑ (𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑) ↓ 𝟐𝒆− 𝟐𝑯+ + 𝟐𝒆− ↑ (𝑅𝑒𝑑𝑢𝑐𝑒𝑑) ↓
  • 71. • 𝐹𝑒𝑆 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 2 𝑓𝑜𝑟𝑚𝑠, 𝒐𝒙𝒊𝒅𝒊𝒔𝒆𝒅 𝑭𝒆𝟑+ 𝑓𝑜𝑟𝑚 𝑜𝑟 𝒓𝒆𝒅𝒖𝒄𝒆𝒅 𝑭𝒆𝟐+ 𝑓𝑜𝑟𝑚. • 𝑇ℎ𝑒𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑒𝑠 𝑡𝑜 𝑪𝒐𝒆𝒏𝒛𝒚𝒎𝒆 𝑸 𝑎𝑛𝑑 𝒄𝒚𝒕𝒐𝒄𝒉𝒓𝒐𝒎𝒆𝒔 𝒃 & 𝒄𝟏. 𝐹𝑒3+ + 𝑒− 𝐹𝑒2+ ⟶ ⟶ ⟶ ⟶ ⟶ ⟶ 𝑒− 𝑒− 𝑒− 𝑒− 𝑒− 𝑒− 𝑒− 𝑒− 𝐹𝑒3+ 𝑒− 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑓𝑙𝑜𝑤
  • 72. • 𝑸𝒖𝒊𝒏𝒊𝒏𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑜𝑖𝑑 𝑠𝑖𝑑𝑒 𝑐ℎ𝑎𝑖𝑛𝑠. • 𝐼𝑛 𝑚𝑎𝑚𝑚𝑎𝑙𝑠, 𝟏𝟎 𝒊𝒔𝒐𝒑𝒓𝒆𝒏𝒐𝒊𝒅 𝒄𝒉𝒂𝒊𝒏𝒔 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡. 𝐻𝑒𝑛𝑐𝑒, 𝑖𝑡 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑪𝒐 − 𝒆𝒏𝒛𝒚𝒎𝒆 𝑸𝟏𝟎 𝑜𝑟 𝑪𝒐𝑸𝟏𝟎. • 𝐴𝑐𝑐𝑒𝑝𝑡𝑠 (𝒆−) 𝑓𝑟𝑜𝑚 𝐹𝑀𝑁𝐻2 𝑎𝑛𝑑 𝐹𝐴𝐷𝐻2 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑡𝑜 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑰𝑰
  • 73. • 𝑪𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆𝒅 𝒑𝒓𝒐𝒕𝒆𝒊𝒏𝒔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑯𝒆𝒎𝒆 𝒈𝒓𝒐𝒖𝒑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓 𝐻𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛 & 𝑀𝑦𝑜𝑔𝑙𝑜𝑏𝑖𝑛 . • 𝑯𝒆𝒎𝒆 ⟶ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑃𝑜𝑟𝑝ℎ𝑦𝑟𝑖𝑛 𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑰𝒓𝒐𝒏 𝒂𝒕𝒐𝒎 • 𝑈𝑛𝑙𝑖𝑘𝑒 ℎ𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛, ℎ𝑒𝑚𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑐𝑦𝑡𝑜𝑐ℎ𝑟𝑜𝑚𝑒𝑠 𝑖𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝒐𝒙𝒊𝒅𝒊𝒔𝒆𝒅 & 𝒓𝒆𝒅𝒖𝒄𝒆𝒅. 𝑭𝒆𝟑+ ⇌ 𝑭𝒆𝟐+ 𝑪𝒐𝑸 𝐶𝑦𝑡. 𝑏 ⟶ 𝐶𝑦𝑡. 𝑐1 𝐶𝑦𝑡. 𝑎 ⟶ 𝐶𝑦𝑡. 𝑎3 𝑪𝒚𝒕. 𝑪 ⟶ ⟶ ⟶ 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑰𝑰 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑰𝑽 • 𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑡𝑎𝑘𝑒𝑠 𝑝𝑙𝑎𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟:
  • 74. • 𝑪𝒚𝒕𝒐𝒄𝒉𝒓𝒐𝒎𝒆 𝑪 𝑖𝑠 𝑙𝑜𝑜𝑠𝑒𝑙𝑦 𝑏𝑜𝑢𝑛𝑑, 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑟𝑒𝑑𝑜𝑥 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙. • 𝑪𝒚𝒕. 𝒐𝒙𝒊𝒅𝒂𝒔𝒆 𝒂 + 𝒂𝟑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑐𝑜𝑝𝑝𝑒𝑟 𝑡ℎ𝑎𝑡 𝑢𝑛𝑑𝑒𝑟𝑔𝑜𝑒𝑠 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 & 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛. [𝑪𝒖𝟐+ ⇌ 𝑪𝒖+] • 𝐻𝑒𝑚𝑒 𝐼𝑟𝑜𝑛 𝑜𝑓 𝑐𝑦𝑡. 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 𝑐𝑎𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑎𝑐𝑡 𝑤𝑖𝑡ℎ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑥𝑦𝑔𝑒𝑛. 𝟏 𝟐𝑶𝟐 + 𝟐𝑯+ + 𝟐𝒆− ⟶ 𝑯𝟐𝑶
  • 76.
  • 78.
  • 79.
  • 80. 𝑬𝑻𝑪 𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒆𝒔 𝑰, 𝑰𝑰𝑰, 𝑰𝑽 ⟹ 𝑃𝑢𝑚𝑝 𝐻+ 𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑀𝑎𝑡𝑟𝑖𝑥 ⟹ 𝑖𝑛𝑡𝑜 𝐼𝑛𝑡𝑒𝑟 − 𝑚𝑒𝑚𝑏. 𝑠𝑝𝑎𝑐𝑒 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝐻+ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑯+ 𝑯+ 𝑯+ 𝑯+ 𝒇𝒍𝒐𝒘 𝒓𝒐𝒕𝒂𝒕𝒆𝒔 𝒓𝒐𝒕𝒐𝒓 𝒂𝒏𝒅 𝒂𝒙𝒍𝒆 𝑬𝒏𝒆𝒓𝒈𝒚 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝑨𝑫𝑷 𝑷𝒊 𝑨𝑻𝑷 [𝑨𝑿𝑳𝑬]