SlideShare a Scribd company logo
The Ideal Monatomic
Gas
Canonical ensemble: N, V, T
2
Canonical partition function for ideal monatomic gas
A system of N non-interacting identical atoms:
!
N
q
Q
N

states i energy levels
of a single atom
j
i
j
q e e





 
 
   
2
2 2 2
2 3
, ,
8
x y z x y z
h
l l l l l l
mV
   
From quantum mechanics:
Atom of ideal gas in cubic box
of volume V
3
Canonical partition function for ideal monatomic gas
Translational quantum numbers
, , :
x y z
l l l
 
2 2 2 2
2 3
2 2
2 2 2 2
2 3 2 3 2 3
8
states i
8 8 8
x y z
i
x y z
y
x z
x y z
h l l l
mV
l l l
h l
h l h l
mV mV mV
x y z
l l l
q e e
e e e q q q



 
 


  
  
 
   
 
    
 
  
 
  
 
  
4
With suitable assumptions:
3 2
2
2m
q V
h


 
  
 
• Approximate each sum and solve as an
integral
• Then compute q
• Then compute Q
5
The calculated Q is the canonical partition
function for ideal monatomic gas
We have considered the contribution of atomic translation to
the partition function
However, we have not included other effects, such as
contribution of the electronic and nuclear energy states.
We will get back to this matter later in this slide set.
6
Canonical partition function for ideal
monatomic gas
Then:
!
N
q
Q
N

3 2
2
2
! !
N
N
N
m
V
h
q
Q
N N


 
 
 
 
2
3 2
ln ln ln ln ln !
! 2
N
q m
Q N N V N
N h


   
   
   
 
 
7
Canonical partition function for ideal monatomic gas
The internal energy of a N-particle monatomic ideal gas is:
,
ln 3
2
V N
Q N
U
 
 

  
 

 
But U of a monatomic ideal gas is known to be:
,
ln 3
2
V N
Q
U NkT

 

  
 

 
8
Canonical partition function for ideal monatomic gas
Then:
1
kT
 
Note that is only a function of the thermal reservoir,
regardless of the system details. Therefore, this
identification is valid for any system.

9
Relationship of Q to thermodynamic properties
Then:
We showed that:
 
,
ln , ,
V N
Q V N
U E



 
   

 
2
,
ln
V N
Q
U kT
T

 
  

 
10
Relationship of Q to thermodynamic properties
Multiplying by kT2:
For a system with fixed number of particles N:
, ,
ln ln
ln
V N T N
Q Q
d Q dT dV
T V
 
   
 
   
 
   
2 2 2
, ,
ln ln
ln
V N T N
Q Q
kT d Q kT dT kT dV
T V
 
   
 
   
 
   
2 2
,
ln
ln
T N
Q
kT d Q UdT kT dV
V

 
   

  11
Relationship of Q to thermodynamic properties
Combining:
But: 2
2
1
U U U
d dU dT UdT T d TdU
T T T T
   
     
   
   
dV
V
Q
kT
Q
d
kT
T
U
d
T
TdU
dV
V
Q
kT
Q
d
kT
T
U
d
T
TdU
dV
V
Q
kT
Q
d
kT
UdT
T
U
d
T
dT
T
Q
kT
TdU
T
U
d
T
UdT
TdU
N
T
N
T
N
T
N
V
,
2
2
2
,
2
2
2
,
2
2
2
,
2
2
ln
ln
ln
ln
ln
ln
ln




































































12
Therefore:
,
, ,
ln
ln
ln ln
ln
T N
V N T N
U Q
dU kTd Q kT dV
kT V
Q Q
kTd Q T kT dV
T V

   
   
   

   
 
 
   
 
 
   
 
 
   
 
13
Relationship of Q to thermodynamic properties
We identify that:
Comparing this result with:
dU TdS PdV
 
,
,
ln
ln
ln
T N
V N
Q
P kT
V
Q
dS kd Q T
T

 
  

 
 

 
 
 
 
 

 
 
14
Relationship of Q to thermodynamic properties
The entropy:
,
ln
ln
V N
Q
S Q T
T

 
   

 
The Helmholtz free energy:
   
, , ln , ,
A T V N kT Q T V N
 
2
, ,
ln ln
ln
V N V N
Q Q
A U TS kT kT Q T
T T
   
 
   
    
   
   
   
 
   
   
15
Relationship of Q to thermodynamic properties
The Helmholtz energy:
   
, , ln , ,
A T V N kT Q T V N
 
This is a very important equation – knowing the canonical
partition function is equivalent to having an expression for
the Helmholtz energy as function of temperature, volume
and number of molecules (or moles). From such
expression, it is possible to derive any thermodynamic
property
16
Relationship of Q to thermodynamic properties
The chemical potential of a pure substance:
The enthalpy:
   
, ,
, , ln , ,
T V T V
A T V N Q T V N
kT
N N

 
   
  
   
 
   
2
, ,
ln ln
V N T N
Q Q
H U PV kT kTV
T V
 
   
   
   
 
   
17
Relationship of Q to thermodynamic properties
Heat capacity at constant volume:
2
,
,
,
2
2
2
, ,
ln
ln ln
2
V N
V
V N
V N
V N V N
Q
kT
T
U
C
T T
Q Q
kT kT
T T
 
 

 

 
 
 

 

   
 
  
   
 
 
 
 
 
 
 
 
  
 
 
   
18
Relationship of Q to thermodynamic properties
The previous expression can also be written as:
2
2 2 2
2 2
, ,
,
2
V
V N V N
V N
kT Q kT Q kT Q
C
Q T Q T Q T
 
  
   
  
 
   
  
   
 
This form will be useful when discussing fluctuations, later
in this slide set
19
Thermodynamic properties of monatomic ideal
gases
The previous slides showed how to evaluate thermodynamic
properties given Q
It is time to discuss the effect of the electronic and nuclear
energy states to the single atom partition function before
proceeding with additional derivations
We will assume the Born-Oppenheimer approximation:
translational energy states are independent of the electronic
and nuclear states
Besides, we will assume the electronic and nuclear states are
independent of each other
20
Thermodynamic properties of monatomic ideal
gases
With these assumptions:
trans elec nuc
   
  
The single atom partition function is:
 
states of the atom
trans elec nuc
kT
q e
  
 

 
As discussed in the previous class for independent energy
modes:
trans elec nuc
q q q q

21
Thermodynamic properties of monoatomic ideal gases
In which:
,
translational states i
trans i
kT
trans
q e


 
,
electronic states i
elec i
kT
elec
q e


 
,
nuclear states i
nuc i
kT
nuc
q e


 
22
Thermodynamic properties of monatomic ideal
gases
3 2 3 2
2 2
2 2
trans
m m kT
q V V
h h
 

   
   
 
 
 
3
trans
V
q 

2
2
h
m kT

 
   
 
 De Broglie wavelength: based on dual
wave-particle nature of matter
23
Thermodynamic properties of monatomic ideal
gases
The electronic partition function:
 
,
,
,1 ,2 ,3
,2 ,1 ,3
,1
,
electronic states i electronic levels j
,1 ,2 ,3
,1 ,2 ,3
...
elec j
elec i
elec elec elec
elec elec elec
elec
kT kT
elec elec j
kT kT kT
elec elec elec
kT kT
elec elec elec
q e e
e e e
e e e


  
  


  
  
 
  

  
  
   
 
 
 
,1
,1 ,2 ,3
,1 ,2 ,3
...
...
elec
elec elec elec
kT
kT kT kT
elec elec elec
e e e

  
  

 
  
 
 
 
 
 
 
  
 
 
  24
Thermodynamic properties of monatomic ideal
gases
The electronic partition function:
,1 ,2 ,3
,1 ,2 ,3 ...
elec elec elec
kT kT kT
elec elec elec elec
q e e e
  
  
 
  
 
   
 
 
 
Additional information and approximations:
-The degeneracy of the ground energy level is equal to 1 in
noble gases, 2 in alkali metals, 3 in Oxygen;
-The ground energy level is the reference for the
calculations – it is conventional to set it to zero;
-The differences in electronic levels are high. For example,
argon:
,2 1521
elec
kJ
mol

  At room T:
,2
450
0
elec
kT
e e




  25
Thermodynamic properties of monatomic ideal
gases
Then, the electronic partition function is approximated as:
,1
elec elec
q 

26
Thermodynamic properties of monatomic ideal
gases
The nuclear partition function:
The analysis is similar to that of the electronic partition function,
only that the energy levels are even farther apart.
It results:
,1
nuc nuc
q 

Also, in situations of common interest to chemical engineers,
the atomic nucleus remains largely undisturbed. The nuclear
partition function becomes only a multiplicative factor that will
cancel out in calculations
27
Thermodynamic properties of monatomic ideal
gases
Compiling all these intermediate results:
trans elec nuc
q q q q

3 2
,1 ,1 2
2
elec nuc
m kT
q V
h

 
 
  
 
3 2
,1 ,1 2
2
! !
N
elec nuc
N
m kT
V
h
q
Q
N N

 
 
 
 
 
 
 
 
 
28
Thermodynamic properties of monatomic ideal
gases
For the monoatomic ideal gas, the logarithm of the
canonical partition function is:
3 2
,1 ,1 2
,1 ,1 2
2
ln ln ln
! !
3 2
ln ln ln ln ln !
2
N
elec nuc
N
elec nuc
m kT
V
h
q
Q
N N
m kT
N N N N V N
h

 

 
 
 
 
 
 
 
   
  
 
 
 
   
 
 
29
Thermodynamic properties of monatomic ideal
gases
Let us now use this expression to compute several
properties, beginning with the pressure:
,
ln
T N
Q NkT
P kT
V V

 
 
 

  Av
R
k
N

Av Av
NkT NRT NRT
P PV
V N V N
   
where N is the number of molecules and Nav is Avogadro’s
number.
30
Thermodynamic properties of monatomic ideal
gases
PV nRT

31
Thermodynamic properties of monatomic ideal
gases
PV nRT

We derived this very famous equation from very
fundamental principles – an amazing result
32
Thermodynamic properties of monatomic ideal
gases
Internal energy and heat capacity at constant volume:
2
,
ln
V N
Q
U kT
T

 
  

 
,1 ,1 2
3 2
ln ln ln ln ln ln !
2
elec nuc
m kT
Q N N N N V N
h

 
 
    
 
 
2 3 3
2 2
N
U kT NkT
T
 
,
3
2
V
V N
U
C Nk
T

 
 
 

 
These expressions are more complicated if excited energy
levels are taken into account – see eq. 3.4.12 and Problem
3.2 33
Thermodynamic properties of monatomic ideal
gases
Helmholtz energy:
Before obtaining its expression, let us introduce Stirling’s
approximation:
ln ! ln ln ln
N N N N N N N e
   
This approximation is increasingly accurate the larger N is. Since
N here represents the number of atoms, it is typically a very large
number and this approximation is excellent.
34
Thermodynamic properties of monatomic ideal
gases
Helmholtz energy:
3
2
,1 ,1
2
2
ln ln elec nuc
Ve
m kT
A kT Q NkT
h N
 

 
 
 
     
 
 
 
Ignoring the nuclear partition function by setting it equal to
1:
3
2
,1
2
2
ln ln elec
Ve
m kT
A kT Q NkT
h N


 
 
 
     
 
 
 
35
Thermodynamic properties of monatomic ideal
gases
Entropy:
U A
A U TS S
T

   
5
3
2
2
,1
2
2
ln elec
Ve
m kT
S Nk
h N


 
 
 
  
 
 
 
 
known as Sackur-Tetrode equation 36
Thermodynamic properties of monatomic ideal
gases
Chemical potential:
 
,
ln , ,
T V
Q T V N
kT
N


 
   

 
37
Thermodynamic properties of monatomic ideal gases
,1 ,1 2
,
,1 2
3 3
2 2
,1 ,1
2 2
3 2
ln ln ln ln ln
2
3 2
ln ln ln ln
2
2 2
ln ln
elec nuc
T V
elec
elec elec
m kT
N N N N V N N N
h
kT
N
m kT
kT V N
h
m kT V m kT kT
kT kT
h N h P

 



 
 
 
 
 
     
 
 
 
 
 
 
  
 

 
 
 
 
    
 
 
 
 
   
   
  
  
   
  
   
   
3
2
,1 2
0 0
3
2
,1 2
0 0
2
ln ln ln
2
ln ln
elec
elec
m kT kT kT kT
kT kT kT
h P P P
m kT kT P
kT kT
h P P




 

     
 
 
   
   
 
 
     
 
   
 
 
   
 
 
   
 
38
Thermodynamic properties of monatomic ideal
gases
Now compare this formula and the formula well-known to
chemical engineers of the chemical potential of a pure
ideal gas:
   
0
0
, , ln
P
T P T P kT
P
 
 
3
2
,1 2
0 0
2
ln ln
elec
m kT kT P
kT kT
h P P

 
 
 
 
  
 
 
 
 
39
Energy fluctuations in the canonical ensemble
In the canonical ensemble, the temperature, volume, and
number of molecules are fixed.
The energy may fluctuate. Assume its fluctuations follow a
Gaussian distribution:
 
2
1
2
1
2
x x
f x e

 
 

  
 
 

x 
Mean of the distribution Standard deviation
x  
f x
Variable Probability density
40
Energy fluctuations in the canonical ensemble
Given this distribution, the average value of any function
G(x) is calculated as follows:
     
2
1
2
1
2
x x
G f x G x dx e G x dx

 
 

    
 
 
 
 
 
The variance (standard deviation to power 2) is:
41
   
2 2 2 2
2 2 2 2
2 2
x x x xx x x xx x x x
          
 2
x  2
x  2
x  2
x
Energy fluctuations in the canonical ensemble
Let us apply this formalism to the average energy and its
fluctuation:
3
3
2
2
E
E U NkT x
NkT
   
3
2
E
x
NkT

 
2 2
2 2 2
2
1
3
2
x x E E
NkT
    
 
 
 
42
 2
E  2
E
Energy fluctuations in the canonical ensemble
 
2 2
2 2 2
2
1
3
2
x x E E
NkT
    
 
 
 
2
2
states i
2 states i
2 2
1
3
2
i
i
E
E
kT
kT
i
i
E e
E e
Q Q
NkT



 
 
 
 
 
 
 
 
   
   
   


43
44
 
N
V
N
V
j
kT
E
j
j
kT
E
j
N
V
N
V
N
V
N
V
N
V
N
V
N
V
N
V
N
V
j
kT
E
j
N
V
N
V
j
kT
E
j
N
V
N
V
j
kT
E
j
j
kT
E
T
Q
Q
kT
T
Q
kT
Q
kT
Q
e
E
and
e
E
QkT
T
Q
Q
E
T
Q
Q
kT
T
Q
Q
kT
T
Q
Q
kT
Then
T
Q
Q
kT
T
Q
Q
kT
T
Q
Q
kT
T
E
T
Q
Q
kT
T
Q
kT
E
Since
e
E
QkT
T
Q
Q
E
T
E
e
kT
E
T
Q
E
Q
T
E
e
E
e
E
j
j
j
j
j
j
,
2
2
2
2
,
2
/
2
/
2
2
,
2
,
2
2
,
2
2
2
,
2
,
2
2
,
2
2
2
,
,
2
,
2
/
2
2
,
,
/
2
2
,
,
/
/
)
(
2
1
2
2
ln
1








































































































































































Energy fluctuations in the canonical ensemble
     
2 2
2
2 2 2
2
2
2 2 2
, ,
,
1
2
3
2
V N V N
V N
kT kT
kT T
Q Q Q
Q T Q T Q T
NkT

 
 
  
   
 
  
     
 
  
   
   
 
 
 
2
2 2 2
2 2
, ,
,
2
V
V N V N
V N
kT Q kT Q kT Q
C
Q T Q T Q T
 
  
   
  
 
   
  
   
 
We previously found that:
45
Energy fluctuations in the canonical ensemble
The 2/3 factor is a particularity of using monoatomic ideal
gases as example. However, the factor is common
and shows that relative fluctuations decrease as the
number of molecules increases.
Comparing these two expressions:
2
2
2
2 2
3
2 1
2
3
3 3
2 2
V
kT Nk
kT C
N
NkT NkT

 
 
 
   
   
   
   
2 1
3 N
  
1 N
46
Energy fluctuations in the canonical ensemble
47
d = [E/(3NkT/2)]-1
Gibbs entropy equation
But, using relationships developed in previous slides:
,
ln
ln
V N
Q
S Q T
T

 
   

 
2
, ,
states j
2
states j
,
ln 1
1 1
j
j
V N V N
E
kT
E
j
kT
V N
U Q Q
kT T Q T
e
E
e
Q T Q kT


 
   
  
   
 
   
 

 
  
 

 
 
 


48
Gibbs entropy equation
   
 
 
 
 
 
states j
states j
states j
, , ln , ,
ln ln , ,
, ,
1
ln , ,
, ,
ln , ,
j j
j
j j
E E
kT kT
E
kT
j
p N V E p N V E
e e Q N V T
Q N V T
E e
Q N V T
kT Q N V T
U
Q N V T
kT
 


 

 
 
  
  
 



49
Q
T
Q
T ln
ln











Gibbs entropy equation
Combining the expressions developed in the two previous
slides (algebra omitted here):
50
)
,
,
(
ln
)
,
,
(
ln
ln
,
j
statesj
j
N
V
E
V
N
p
E
V
N
p
k
T
Q
T
Q
k
S





















Gibbs entropy equation
If there is only one possible state:
   
states j
, , ln , , 1 ln1 0
j j
S k p N V E p N V E k
      

If there are only two possible states, assumed to have
equal probability:
   
states j
1 1 1 1
, , ln , , ln ln 0.693
2 2 2 2
j j
S k p N V E p N V E k k
 
   
      
   
 
   
 

If there are only three possible states, assumed to have
equal probability:
1 1 1 1 1 1
ln ln ln 1.0986
3 3 3 3 3 3
S k k
 
     
     
     
 
     
 
51

More Related Content

What's hot

Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
Getachew Solomon
 
Lecture7
Lecture7Lecture7
Lecture7
Heather Kulik
 
PPT Partition function.pptx
PPT Partition function.pptxPPT Partition function.pptx
PPT Partition function.pptx
SharayuThorat
 
Introduction statistical thermodynamics.pptx
Introduction statistical thermodynamics.pptxIntroduction statistical thermodynamics.pptx
Introduction statistical thermodynamics.pptx
SharayuThorat
 
The heat capacity of a solid
The heat capacity of a solid The heat capacity of a solid
The heat capacity of a solid Kumar
 
Quantum course
Quantum courseQuantum course
Quantum course
FLI
 
Tight binding
Tight bindingTight binding
Tight binding
University of Kentucky
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
utpal sarkar
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)David David
 
Nuclear Shell models
Nuclear Shell modelsNuclear Shell models
Nuclear Shell models
NumanUsama
 
Einestein model density of states
Einestein model density of statesEinestein model density of states
Einestein model density of states
Sandeep raju Kodamanchili
 
Statistical thermodynamics part 1
Statistical thermodynamics part 1Statistical thermodynamics part 1
Statistical thermodynamics part 1
gauravbartwal4
 
Bose einstein condensation
Bose einstein condensationBose einstein condensation
Bose einstein condensation
Bigil Gupta
 
Crystal Field Theory (CFT)
Crystal Field Theory (CFT)Crystal Field Theory (CFT)
Crystal Field Theory (CFT)
ڈاکٹر محمد اسلم عطاری
 
Band theory
Band theoryBand theory
Band theory
RAHEELA Khan
 
Chapter 4a
Chapter 4aChapter 4a
Chapter 4a
Gabriel O'Brien
 
Rydberg-Ritz combination principle.pdf
Rydberg-Ritz combination principle.pdfRydberg-Ritz combination principle.pdf
Rydberg-Ritz combination principle.pdf
SaiKalyani11
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
Claudio Attaccalite
 

What's hot (20)

Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Lecture7
Lecture7Lecture7
Lecture7
 
PPT Partition function.pptx
PPT Partition function.pptxPPT Partition function.pptx
PPT Partition function.pptx
 
Introduction statistical thermodynamics.pptx
Introduction statistical thermodynamics.pptxIntroduction statistical thermodynamics.pptx
Introduction statistical thermodynamics.pptx
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
The heat capacity of a solid
The heat capacity of a solid The heat capacity of a solid
The heat capacity of a solid
 
Quantum course
Quantum courseQuantum course
Quantum course
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
Tight binding
Tight bindingTight binding
Tight binding
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
 
Nuclear Shell models
Nuclear Shell modelsNuclear Shell models
Nuclear Shell models
 
Einestein model density of states
Einestein model density of statesEinestein model density of states
Einestein model density of states
 
Statistical thermodynamics part 1
Statistical thermodynamics part 1Statistical thermodynamics part 1
Statistical thermodynamics part 1
 
Bose einstein condensation
Bose einstein condensationBose einstein condensation
Bose einstein condensation
 
Crystal Field Theory (CFT)
Crystal Field Theory (CFT)Crystal Field Theory (CFT)
Crystal Field Theory (CFT)
 
Band theory
Band theoryBand theory
Band theory
 
Chapter 4a
Chapter 4aChapter 4a
Chapter 4a
 
Rydberg-Ritz combination principle.pdf
Rydberg-Ritz combination principle.pdfRydberg-Ritz combination principle.pdf
Rydberg-Ritz combination principle.pdf
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
 

Similar to Canonical Partition Function Parameters.ppt

aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.ppt
LucasB32
 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Lecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happinessLecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happiness
jagannathsahoopapun
 
Lecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for educationLecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for education
jagannathsahoopapun
 
Lecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education andLecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education and
jagannathsahoopapun
 
The statistical mechanical derivation of the van der waals equation of state
The statistical mechanical derivation of the van der waals equation of stateThe statistical mechanical derivation of the van der waals equation of state
The statistical mechanical derivation of the van der waals equation of state
UNICAMP
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
ssuserab8987
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
sami717280
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
MichaelTegegn
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
GOBINATHS18
 
UNIT No-2 Atomic Structure of atoms.pptx
UNIT No-2 Atomic Structure of atoms.pptxUNIT No-2 Atomic Structure of atoms.pptx
UNIT No-2 Atomic Structure of atoms.pptx
AbdulHannan819750
 
Thermodynamics course notes
Thermodynamics course notesThermodynamics course notes
Thermodynamics course notes
ssuser022dab
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
sureshkcet
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
MIHIR RANJAN SAHOO
 
Kinetic theory of gases_physics
Kinetic theory of gases_physicsKinetic theory of gases_physics
Kinetic theory of gases_physics
Arpita Sen
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
dineshprabhu41
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
Sc Pattar
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
Mercyjiren
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Yuri Melliza
 

Similar to Canonical Partition Function Parameters.ppt (20)

aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.ppt
 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Thermodynamic, part 2
 
Lecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happinessLecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happiness
 
Lecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for educationLecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for education
 
Lecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education andLecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education and
 
The statistical mechanical derivation of the van der waals equation of state
The statistical mechanical derivation of the van der waals equation of stateThe statistical mechanical derivation of the van der waals equation of state
The statistical mechanical derivation of the van der waals equation of state
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
UNIT No-2 Atomic Structure of atoms.pptx
UNIT No-2 Atomic Structure of atoms.pptxUNIT No-2 Atomic Structure of atoms.pptx
UNIT No-2 Atomic Structure of atoms.pptx
 
Thermodynamics course notes
Thermodynamics course notesThermodynamics course notes
Thermodynamics course notes
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Kinetic theory of gases_physics
Kinetic theory of gases_physicsKinetic theory of gases_physics
Kinetic theory of gases_physics
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
02 bsb 228 properties of fluids
02 bsb 228 properties of fluids02 bsb 228 properties of fluids
02 bsb 228 properties of fluids
 

Recently uploaded

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 

Recently uploaded (20)

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 

Canonical Partition Function Parameters.ppt

  • 3. Canonical partition function for ideal monatomic gas A system of N non-interacting identical atoms: ! N q Q N  states i energy levels of a single atom j i j q e e              2 2 2 2 2 3 , , 8 x y z x y z h l l l l l l mV     From quantum mechanics: Atom of ideal gas in cubic box of volume V 3
  • 4. Canonical partition function for ideal monatomic gas Translational quantum numbers , , : x y z l l l   2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 3 2 3 8 states i 8 8 8 x y z i x y z y x z x y z h l l l mV l l l h l h l h l mV mV mV x y z l l l q e e e e e q q q                                            4
  • 5. With suitable assumptions: 3 2 2 2m q V h          • Approximate each sum and solve as an integral • Then compute q • Then compute Q 5
  • 6. The calculated Q is the canonical partition function for ideal monatomic gas We have considered the contribution of atomic translation to the partition function However, we have not included other effects, such as contribution of the electronic and nuclear energy states. We will get back to this matter later in this slide set. 6
  • 7. Canonical partition function for ideal monatomic gas Then: ! N q Q N  3 2 2 2 ! ! N N N m V h q Q N N           2 3 2 ln ln ln ln ln ! ! 2 N q m Q N N V N N h                   7
  • 8. Canonical partition function for ideal monatomic gas The internal energy of a N-particle monatomic ideal gas is: , ln 3 2 V N Q N U              But U of a monatomic ideal gas is known to be: , ln 3 2 V N Q U NkT             8
  • 9. Canonical partition function for ideal monatomic gas Then: 1 kT   Note that is only a function of the thermal reservoir, regardless of the system details. Therefore, this identification is valid for any system.  9
  • 10. Relationship of Q to thermodynamic properties Then: We showed that:   , ln , , V N Q V N U E             2 , ln V N Q U kT T          10
  • 11. Relationship of Q to thermodynamic properties Multiplying by kT2: For a system with fixed number of particles N: , , ln ln ln V N T N Q Q d Q dT dV T V                   2 2 2 , , ln ln ln V N T N Q Q kT d Q kT dT kT dV T V                   2 2 , ln ln T N Q kT d Q UdT kT dV V           11
  • 12. Relationship of Q to thermodynamic properties Combining: But: 2 2 1 U U U d dU dT UdT T d TdU T T T T                   dV V Q kT Q d kT T U d T TdU dV V Q kT Q d kT T U d T TdU dV V Q kT Q d kT UdT T U d T dT T Q kT TdU T U d T UdT TdU N T N T N T N V , 2 2 2 , 2 2 2 , 2 2 2 , 2 2 ln ln ln ln ln ln ln                                                                     12
  • 13. Therefore: , , , ln ln ln ln ln T N V N T N U Q dU kTd Q kT dV kT V Q Q kTd Q T kT dV T V                                             13
  • 14. Relationship of Q to thermodynamic properties We identify that: Comparing this result with: dU TdS PdV   , , ln ln ln T N V N Q P kT V Q dS kd Q T T                            14
  • 15. Relationship of Q to thermodynamic properties The entropy: , ln ln V N Q S Q T T           The Helmholtz free energy:     , , ln , , A T V N kT Q T V N   2 , , ln ln ln V N V N Q Q A U TS kT kT Q T T T                                      15
  • 16. Relationship of Q to thermodynamic properties The Helmholtz energy:     , , ln , , A T V N kT Q T V N   This is a very important equation – knowing the canonical partition function is equivalent to having an expression for the Helmholtz energy as function of temperature, volume and number of molecules (or moles). From such expression, it is possible to derive any thermodynamic property 16
  • 17. Relationship of Q to thermodynamic properties The chemical potential of a pure substance: The enthalpy:     , , , , ln , , T V T V A T V N Q T V N kT N N                     2 , , ln ln V N T N Q Q H U PV kT kTV T V                     17
  • 18. Relationship of Q to thermodynamic properties Heat capacity at constant volume: 2 , , , 2 2 2 , , ln ln ln 2 V N V V N V N V N V N Q kT T U C T T Q Q kT kT T T                                                           18
  • 19. Relationship of Q to thermodynamic properties The previous expression can also be written as: 2 2 2 2 2 2 , , , 2 V V N V N V N kT Q kT Q kT Q C Q T Q T Q T                            This form will be useful when discussing fluctuations, later in this slide set 19
  • 20. Thermodynamic properties of monatomic ideal gases The previous slides showed how to evaluate thermodynamic properties given Q It is time to discuss the effect of the electronic and nuclear energy states to the single atom partition function before proceeding with additional derivations We will assume the Born-Oppenheimer approximation: translational energy states are independent of the electronic and nuclear states Besides, we will assume the electronic and nuclear states are independent of each other 20
  • 21. Thermodynamic properties of monatomic ideal gases With these assumptions: trans elec nuc        The single atom partition function is:   states of the atom trans elec nuc kT q e         As discussed in the previous class for independent energy modes: trans elec nuc q q q q  21
  • 22. Thermodynamic properties of monoatomic ideal gases In which: , translational states i trans i kT trans q e     , electronic states i elec i kT elec q e     , nuclear states i nuc i kT nuc q e     22
  • 23. Thermodynamic properties of monatomic ideal gases 3 2 3 2 2 2 2 2 trans m m kT q V V h h                  3 trans V q   2 2 h m kT           De Broglie wavelength: based on dual wave-particle nature of matter 23
  • 24. Thermodynamic properties of monatomic ideal gases The electronic partition function:   , , ,1 ,2 ,3 ,2 ,1 ,3 ,1 , electronic states i electronic levels j ,1 ,2 ,3 ,1 ,2 ,3 ... elec j elec i elec elec elec elec elec elec elec kT kT elec elec j kT kT kT elec elec elec kT kT elec elec elec q e e e e e e e e                                       ,1 ,1 ,2 ,3 ,1 ,2 ,3 ... ... elec elec elec elec kT kT kT kT elec elec elec e e e                                   24
  • 25. Thermodynamic properties of monatomic ideal gases The electronic partition function: ,1 ,2 ,3 ,1 ,2 ,3 ... elec elec elec kT kT kT elec elec elec elec q e e e                        Additional information and approximations: -The degeneracy of the ground energy level is equal to 1 in noble gases, 2 in alkali metals, 3 in Oxygen; -The ground energy level is the reference for the calculations – it is conventional to set it to zero; -The differences in electronic levels are high. For example, argon: ,2 1521 elec kJ mol    At room T: ,2 450 0 elec kT e e       25
  • 26. Thermodynamic properties of monatomic ideal gases Then, the electronic partition function is approximated as: ,1 elec elec q   26
  • 27. Thermodynamic properties of monatomic ideal gases The nuclear partition function: The analysis is similar to that of the electronic partition function, only that the energy levels are even farther apart. It results: ,1 nuc nuc q   Also, in situations of common interest to chemical engineers, the atomic nucleus remains largely undisturbed. The nuclear partition function becomes only a multiplicative factor that will cancel out in calculations 27
  • 28. Thermodynamic properties of monatomic ideal gases Compiling all these intermediate results: trans elec nuc q q q q  3 2 ,1 ,1 2 2 elec nuc m kT q V h           3 2 ,1 ,1 2 2 ! ! N elec nuc N m kT V h q Q N N                    28
  • 29. Thermodynamic properties of monatomic ideal gases For the monoatomic ideal gas, the logarithm of the canonical partition function is: 3 2 ,1 ,1 2 ,1 ,1 2 2 ln ln ln ! ! 3 2 ln ln ln ln ln ! 2 N elec nuc N elec nuc m kT V h q Q N N m kT N N N N V N h                                        29
  • 30. Thermodynamic properties of monatomic ideal gases Let us now use this expression to compute several properties, beginning with the pressure: , ln T N Q NkT P kT V V           Av R k N  Av Av NkT NRT NRT P PV V N V N     where N is the number of molecules and Nav is Avogadro’s number. 30
  • 31. Thermodynamic properties of monatomic ideal gases PV nRT  31
  • 32. Thermodynamic properties of monatomic ideal gases PV nRT  We derived this very famous equation from very fundamental principles – an amazing result 32
  • 33. Thermodynamic properties of monatomic ideal gases Internal energy and heat capacity at constant volume: 2 , ln V N Q U kT T          ,1 ,1 2 3 2 ln ln ln ln ln ln ! 2 elec nuc m kT Q N N N N V N h               2 3 3 2 2 N U kT NkT T   , 3 2 V V N U C Nk T           These expressions are more complicated if excited energy levels are taken into account – see eq. 3.4.12 and Problem 3.2 33
  • 34. Thermodynamic properties of monatomic ideal gases Helmholtz energy: Before obtaining its expression, let us introduce Stirling’s approximation: ln ! ln ln ln N N N N N N N e     This approximation is increasingly accurate the larger N is. Since N here represents the number of atoms, it is typically a very large number and this approximation is excellent. 34
  • 35. Thermodynamic properties of monatomic ideal gases Helmholtz energy: 3 2 ,1 ,1 2 2 ln ln elec nuc Ve m kT A kT Q NkT h N                      Ignoring the nuclear partition function by setting it equal to 1: 3 2 ,1 2 2 ln ln elec Ve m kT A kT Q NkT h N                     35
  • 36. Thermodynamic properties of monatomic ideal gases Entropy: U A A U TS S T      5 3 2 2 ,1 2 2 ln elec Ve m kT S Nk h N                    known as Sackur-Tetrode equation 36
  • 37. Thermodynamic properties of monatomic ideal gases Chemical potential:   , ln , , T V Q T V N kT N            37
  • 38. Thermodynamic properties of monatomic ideal gases ,1 ,1 2 , ,1 2 3 3 2 2 ,1 ,1 2 2 3 2 ln ln ln ln ln 2 3 2 ln ln ln ln 2 2 2 ln ln elec nuc T V elec elec elec m kT N N N N V N N N h kT N m kT kT V N h m kT V m kT kT kT kT h N h P                                                                                           3 2 ,1 2 0 0 3 2 ,1 2 0 0 2 ln ln ln 2 ln ln elec elec m kT kT kT kT kT kT kT h P P P m kT kT P kT kT h P P                                                            38
  • 39. Thermodynamic properties of monatomic ideal gases Now compare this formula and the formula well-known to chemical engineers of the chemical potential of a pure ideal gas:     0 0 , , ln P T P T P kT P     3 2 ,1 2 0 0 2 ln ln elec m kT kT P kT kT h P P                     39
  • 40. Energy fluctuations in the canonical ensemble In the canonical ensemble, the temperature, volume, and number of molecules are fixed. The energy may fluctuate. Assume its fluctuations follow a Gaussian distribution:   2 1 2 1 2 x x f x e               x  Mean of the distribution Standard deviation x   f x Variable Probability density 40
  • 41. Energy fluctuations in the canonical ensemble Given this distribution, the average value of any function G(x) is calculated as follows:       2 1 2 1 2 x x G f x G x dx e G x dx                      The variance (standard deviation to power 2) is: 41     2 2 2 2 2 2 2 2 2 2 x x x xx x x xx x x x             2 x  2 x  2 x  2 x
  • 42. Energy fluctuations in the canonical ensemble Let us apply this formalism to the average energy and its fluctuation: 3 3 2 2 E E U NkT x NkT     3 2 E x NkT    2 2 2 2 2 2 1 3 2 x x E E NkT            42  2 E  2 E
  • 43. Energy fluctuations in the canonical ensemble   2 2 2 2 2 2 1 3 2 x x E E NkT            2 2 states i 2 states i 2 2 1 3 2 i i E E kT kT i i E e E e Q Q NkT                                  43
  • 44. 44   N V N V j kT E j j kT E j N V N V N V N V N V N V N V N V N V j kT E j N V N V j kT E j N V N V j kT E j j kT E T Q Q kT T Q kT Q kT Q e E and e E QkT T Q Q E T Q Q kT T Q Q kT T Q Q kT Then T Q Q kT T Q Q kT T Q Q kT T E T Q Q kT T Q kT E Since e E QkT T Q Q E T E e kT E T Q E Q T E e E e E j j j j j j , 2 2 2 2 , 2 / 2 / 2 2 , 2 , 2 2 , 2 2 2 , 2 , 2 2 , 2 2 2 , , 2 , 2 / 2 2 , , / 2 2 , , / / ) ( 2 1 2 2 ln 1                                                                                                                                                                        
  • 45. Energy fluctuations in the canonical ensemble       2 2 2 2 2 2 2 2 2 2 2 , , , 1 2 3 2 V N V N V N kT kT kT T Q Q Q Q T Q T Q T NkT                                           2 2 2 2 2 2 , , , 2 V V N V N V N kT Q kT Q kT Q C Q T Q T Q T                            We previously found that: 45
  • 46. Energy fluctuations in the canonical ensemble The 2/3 factor is a particularity of using monoatomic ideal gases as example. However, the factor is common and shows that relative fluctuations decrease as the number of molecules increases. Comparing these two expressions: 2 2 2 2 2 3 2 1 2 3 3 3 2 2 V kT Nk kT C N NkT NkT                        2 1 3 N    1 N 46
  • 47. Energy fluctuations in the canonical ensemble 47 d = [E/(3NkT/2)]-1
  • 48. Gibbs entropy equation But, using relationships developed in previous slides: , ln ln V N Q S Q T T           2 , , states j 2 states j , ln 1 1 1 j j V N V N E kT E j kT V N U Q Q kT T Q T e E e Q T Q kT                                         48
  • 49. Gibbs entropy equation               states j states j states j , , ln , , ln ln , , , , 1 ln , , , , ln , , j j j j j E E kT kT E kT j p N V E p N V E e e Q N V T Q N V T E e Q N V T kT Q N V T U Q N V T kT                       49 Q T Q T ln ln           
  • 50. Gibbs entropy equation Combining the expressions developed in the two previous slides (algebra omitted here): 50 ) , , ( ln ) , , ( ln ln , j statesj j N V E V N p E V N p k T Q T Q k S                     
  • 51. Gibbs entropy equation If there is only one possible state:     states j , , ln , , 1 ln1 0 j j S k p N V E p N V E k         If there are only two possible states, assumed to have equal probability:     states j 1 1 1 1 , , ln , , ln ln 0.693 2 2 2 2 j j S k p N V E p N V E k k                           If there are only three possible states, assumed to have equal probability: 1 1 1 1 1 1 ln ln ln 1.0986 3 3 3 3 3 3 S k k                               51