SlideShare a Scribd company logo
IMAGE SEGMENTATION
Segmentation Based on Image Discontinuities
Partitioning Image into discrete & non-overlapping Regions
R1 R2
R4
Homogenous Regions : R1, R2, R3, R4
R3
1. Primitive Detectors : Robert, Prewitt, Sobel, Kirsch
2. Vision : Marr Hildreth Poggio : LOG
3. Robotics : Canny Edge Detector
4. Edge Linking : Hough Transform
Point Detector
7 7 7 7 7 7 7
7 10 7 7 7 7 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7
7 7 7 7 4 7 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7
-1 -1 -1
-1 8 -1
-1 -1 -1
0 0 0 0 0 0 0
0 24 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 -24 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
I
P
0 0 0 0 0 0 0
0 24 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 24 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Line Detector
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 3
1 1 1 1 1 1 3 1
1 1 1 1 1 3 1 1
3 3 3 3 3 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
6 6 6 1 0 0
12 12 12 6 2 2
6 6 6 4 2 0
0 0 0 0 0 0
-1 -1 -1
2 2 2
-1 -1 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 -1 2
-1 2 -1
2 -1 -1
2 -1 -1
-1 2 -1
-1 -1 2
I
H V
0 0 0 0 0 4
0 0 0 0 4 12
0 0 0 0 12 4
0 0 0 4 4 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Line Detector
0 0 0 0 0 4
0 0 0 0 4 12
6 6 6 1 12 4
12 12 12 6 4 2
6 6 6 4 2 0
0 0 0 0 0 0
-1 -1 -1
2 2 2
-1 -1 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 -1 2
-1 2 -1
2 -1 -1
2 -1 -1
-1 2 -1
-1 -1 2
I
H V
L
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 3
1 1 1 1 1 1 3 1
1 1 1 1 1 3 1 1
3 3 3 3 3 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Edge Detectors
1 1 1 1 2 2 2
1 1 1 1 2 2 2
1 1 1 1 2 2 2
2 2 2 2 1 1 1
2 2 2 2 1 1 1
2 2 2 2 1 1 1
2 2 2 2 1 1 1
Class Work
Robert
1 0
0 -1
0 1
-1 0
Prewitt
-1 -1 -1
0 0 0
1 1 1
-1 0 1
-1 0 1
-1 0 1
Sobel
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
Edge Detectors
1 2 2 2 2 2 2
1 1 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 2 2 2
1 1 1 2 2 2 2
1 1 2 2 2 2 2
1 2 2 2 2 2 2
Class Work
Robert
1 0
0 -1
0 1
-1 0
Prewitt
-1 -1 -1
0 0 0
1 1 1
-1 0 1
-1 0 1
-1 0 1
Sobel
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
Canny Edge Detector
Characteristics:
1. Criterion 1 : Good Detection : Robustness to noise :The
optimum detector must minimize the probability of false
positive as well as false negative.
2. Criterion 2 : Good Localization : The edge must be as close as
possible to the true edges.
3. Criterion 3 : Strong Response Constraint : Not too many or too
few responses : The detector must return one point only for each
point.
Steps :
1. Smoothing with Gaussian Filter
2. Compute Derivative of filter image
3. Find magnitude & orientation of gradient
4. Apply Non Maxima Suppression
5. Apply Hysteresis Threshold
Canny Edge Detector
1. Smoothing with Gaussian Filter
Image I(r,c)
DiscreteApproximation of Gaussian Kernels
source :wikipedia
1 2 1
2 4 2
1 2 1
1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1
0 0 1 2 1 0 0
0 3 13 22 13 3 0
1 13 59 97 59 13 1
2 22 97 150 87 22 2
1 13 59 97 59 13 1
0 3 13 22 13 3 0
0 0 1 2 1 0 0
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
Canny Edge Detector
2. Compute Derivative of Filter Image
Sobel
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
I
-3 -1 0 0 0
-3 -1 -1 0 0
-1 -3 -4 -4 -4
0 -1 -3 -4 -4
0 0 0 0 0
3 1 0 0 0
3 3 1 0 0
1 3 2 0 0
0 1 1 0 0
0 0 0 0 0
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
Canny Edge Detector
3. Compute magnitude & Orientation of Gradient
Sobel
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
I
-3 -1 0 0 0
-3 -1 -1 0 0
-1 -3 -4 -4 -4
0 -1 -3 -4 -4
0 0 0 0 0
3 1 0 0 0
3 3 1 0 0
1 3 2 0 0
0 1 1 0 0
0 0 0 0 0
4.2 1.4 0 0 0
4.2 3.2 1.4 0 0
1.4 4.2 4.5 4 4
0 1.4 3.2 4 4
0 0 0 0 0
Gradient Magnitude
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
I
Canny Edge Detector
3. Compute magnitude & Orientation of Gradient
Sobel
-3 -1 0 0 0
-3 -3 -1 0 0
-1 -3 -4 -4 -4
0 -1 -3 -4 -4
0 0 0 0 0
3 1 0 0 0
3 3 1 0 0
1 3 2 0 0
0 1 1 0 0
0 0 0 0 0
D D D
D D
D
D D D D D
Gradient Orientation
Canny Edge Detector
4.Apply Non Maxima Suppression
Exploring Pixels for
NonMaxima Suppression
D D D
D D
D
D D D D D
Gradient Orientation
D D D
D D
D
D D D D D
Colour Coded Orientation
4.2 1.4 0 0 0
4.2 3.2 1.4 0 0
1.4 4.2 4.5 4 4
0 1.4 3.2 4 4
0 0 0 0 0
Gradient Magnitude
Canny Edge Detector
4.Apply Non Maxima Suppression
Gradient Magnitude with
D D D
D D
D
D D D D D
Colour Coded Orientation
Exploring Pixels for
NonMaxima Suppression
4.3 1.4 0 0 0
4.1 3.3 1.5 0 0
1.3 4.3 4.4 4.1 4.0
0 1.5 3.3 4.0 3.9
0 0 0 0 0
4.3 0 0 0 0
4.1 3.3 0 0 0
0 4.3 4.4 4.1 4.0
0 0 0 0 0
0 0 0 0 0
Additive Noise : Dithering
Gradient Magnitude after
NonMaxima Suppression
Canny Edge Detector
4.Apply Non Maxima Suppression
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
I Gradient Magnitude Gradient Magnitude after
Non Maxima Suppression
4.3 1.4 0 0 0
4.1 3.3 1.5 0 0
1.3 4.3 4.4 4.1 4.0
0 1.5 3.3 4.0 3.9
0 0 0 0 0
4.3 0 0 0 0
4.1 3.3 0 0 0
0 4.3 4.4 4.1 4.0
0 0 0 0 0
0 0 0 0 0
Canny Edge Detector 40 50 60
60 80 70 60
10 55 90
80 100 70
40 70
80 40 60
60 20 40 50
0.4 0.5 0.6
0.6 0.8 0.7 0.6
0.1 0.5 0.9
0.8 1.0 0.7
0.4 0.7
0.8 0.4 0.6
0.6 0.2 0.4 0.5
5.Apply Hysteresis Thresholding
Gradient
Image
Normalised
Gradient
Image
pixel
source : cv-tricks.com
0.4 0.5 0.6
0.6 0.8 0.7 0.6
0.1 0.5 0.9
0.8 1.0 0.7
0.4 0.7
0.8 0.4 0.6
0.6 0.2 0.4 0.5
After Double Thresholding No Edges
Strong Weak
0.4 0.5 0.6
0.6 0.8 0.7 0.6
0.5 0.9
0.8 1.0 0.7
0.4 0.7
0.8 0.4 0.6
0.6 0.4 0.5
0.4 0.5 0.6
0.6 0.8 0.7 0.6
0.5 0.9
0.8 1.0 0.7
0.4 0.7
0.8 0.4 0.6
0.6 0.4 0.5
After Hysteresis Thresholding
Canny Edge Detector
5.Apply Hysteresis Thresholding
Algorithm :
4. For all Valid Pixels, Mark a 8-Neighbour Connected
Weak Pixel as Valid
Continue 4. till at least one weak pixel turns valid
5. The remaining weak pixels are invalid
40 50 60
60 80 70 60
10 55 90
80 100 70
40 70
80 40 60
60 20 40 50
Edge Map
Gradient Image
Canny Edge Detector
Sobel
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 2 2 2
1 1 1 1 1 1 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
I
-4 -3 -1 0 0
-3 -4 -3 -1 0
0 -1 -3 -4 -3
0 0 -1 -3 -4
0 0 0 0 -1
2 1 1 0 0
1 2 3 1 0
0 1 3 2 1
0 0 1 1 2
0 0 0 0 1
Class Work
Will Require
Calculator
Canny Edge Detector
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 2 2 2
1 1 1 1 1 1 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
-4 -3 -1 0 0
-3 -4 -3 -1 0
0 -1 -3 -4 -3
0 0 -1 -3 -4
0 0 0 0 -1
2 1 1 0 0
1 2 3 1 0
0 1 3 2 1
0 0 1 1 2
0 0 0 0 1
I
Class Work Find Edge Magnitude & Edge Orientation for Image I. Apply
Non Maxima Suppression.
4.5 3.2 1.4 0 0
3.2 4.5 4.2 1.4 0
0 1.4 4.2 4.5 3.2
0 0 1.4 3.2 4.5
0 0 0 0 1.4
Class Work Solution
D D
D
D
D D
D D D D
Magnitude Orientation
Canny Edge Detector
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 2 2 2
1 1 1 1 1 1 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
I
Class Work Solution
4.5 3.2 1.4 0 0
3.2 4.5 4.2 1.4 0
0 1.4 4.2 4.5 3.2
0 0 1.4 3.2 4.5
0 0 0 0 1.4
D D
D
D
D D
D D D D
Edge Magnitude Edge Orientation
Apply Non Maxima Suppression.
D D
D
D
D D
D D D D
Colour Coded Edge Orientation
Canny Edge Detector Class Work Solution
2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 1 1 2 2 2 2
1 1 1 1 2 2 2
1 1 1 1 1 1 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
4.5 3.2 1.4 0 0
3.2 4.5 4.2 1.4 0
0 1.4 4.2 4.5 3.2
0 0 1.4 3.2 4.5
0 0 0 0 1.4
D D
D
D
D D
D D D D
I Edge Magnitude Edge Orientation
D D
D
D
D D
D D D D
4.5 0 0 0 0
0 4.5 4.2 0 0
0 0 4.2 4.5 0
0 0 0 0 4.5
0 0 0 0 1.4
Colour Coded Edge Orientation
Edge Magnitude after Non Maxima Suppression
Canny Edge Detector
0.2 0.6
0.3 0.8
0.4
0.5
0.6
0.4 0.7
0.4 0.8
Fig a
Class Work
Representation & Description
R1 R2
R3
R4
Result of Segmentation
External Characteristics :
Primal Focus is Shape Characteristics
Representation : Boundary
Description as Features –
Length, Orientation of st lines,
No of concavities
Internal Characteristics :Pixel
Primal Focus is Colour, Texture
Representation: Pixel
Description as Features :
Histogram, Covariance, Co-occurrence
Ideally Features to be Translation,
Rotation & Scale Invariant
Boundary Following
Moore Boundary Tracking Algorithm
No L T CT O/B Boundary
Points
1 (1,1) O (1,1) F
2 (1,0) B
3 (0,0) B
4 (0,1) B
5 (0,2) B
6 (0,2) (1,2) O (1,2) S
7 (0,2) B
8 (0,3) B
9 (0,3) (1,3) O (1,3)
10 (0,3) B
11 (0,4) B
12 (1,4) B
13 (2,4) B
14 (2,4) (2,3) O (2.3)
15 (2,4) B
16 (3.4) B
17 (3,4) (3,3) O (3,3)
18 (3.4) B
19 (4,4) B
20 (4.3) B
0 1 2 3 4
0
1
2
3
4
No L T CT O/B Boundary
Points
21 (4,2) B
22 (3.2) B
23 (3,2) (2,2) O (2,2)
24 (3,2) B
25 (3,1) B
25 (2,1) B
26 (2.1) (1,1) O (1,1) =F
28 (2,1) B
29 (2,0) B
30 (1,0) B
31 (0,0) B
32 (0,1) B
33 (0,2) B
34 (1,2) O (1,2)=S
35 T
Current Traversal CT
Last Traversal LT
Object/Background Point O/
Termination T
R
Boundary Following
Determine the Traversal Table & Boundary Points for a
Region R in Fig a by Moore Boundary Tracking Algorithm
No L T CT O/B Boundary
Points
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0 1 2 3
0
1
2
3
Fig a
ClassWork
ClassWork Solution Boundary Following
No L T CT O/B Boundary
Points
1 (1,0) (1.1) O (1,1) F
2 (1,0) B
3 (0,0) B
4 (0,1) B
5 (0,2) B
6 (0,2) (1,2) O (1,2) S
7 (0,2) B
8 (0,3) B
9 (1,3) B
10 (2,3) B
11 (2,3) (2,2) O (2,2)
12 (2,3) B
13 (3.3) B
14 (3,2) B
15 (3.1) B
16 (3,1) (2,1) O (2,1)
17 (3,1) B
18 (3,0) B
19 (2,0) B
20 (1,0) B
0 1 2 3
0
1
2
3
Fig a
No L T CT O/B Boundary
Points
21 (1,0) (1,1) O (1,1) = F
22 (1,0) B
23 (0,0) B
24 (0,1) B
25 (0,2) B
25 (0,2) (1,2) O (1,2) =S
26 T
Determine the Traversal Table & Boundary Points for a
Region R in Fig a by Moore Boundary Tracking Algorithm
Freeman Chain Code
0
1
2
3
4
5
6
7
P1
P2
Code :
P1: 07575443121
P2: 12107575443
First Difference :
Circular First Difference:
Shape No:
Order :
7626707617
77626707617
07617776267
11
Find Minima
77626707617
77762670761
17776267076
61777626707
76177762670
07617776267
70761777626
67076177762
26707617776
62670761777
76267076177
0
1
3
4
5
Class Work
2
6
7
Freeman Chain Code
P P
Find Chain Code, Difference Code, Shape No & Order for Fig a & b.
Fig a Fig b
1
3
4 0
5
Class Work Solution
2
6
7
Freeman Chain Code
P P
Code : 0642
First Difference : 666
Circular First Difference: 6666
Shape No: 6666
Order : 4
7531
666
6666
6666
Thank You

More Related Content

What's hot

convolutional neural network (CNN, or ConvNet)
convolutional neural network (CNN, or ConvNet)convolutional neural network (CNN, or ConvNet)
convolutional neural network (CNN, or ConvNet)
RakeshSaran5
 

What's hot (20)

AlexNet
AlexNetAlexNet
AlexNet
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
 
Content Based Image Retrieval
Content Based Image Retrieval Content Based Image Retrieval
Content Based Image Retrieval
 
Neural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR ImagesNeural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR Images
 
Canny Edge Detection
Canny Edge DetectionCanny Edge Detection
Canny Edge Detection
 
convolutional neural network (CNN, or ConvNet)
convolutional neural network (CNN, or ConvNet)convolutional neural network (CNN, or ConvNet)
convolutional neural network (CNN, or ConvNet)
 
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
 
CNN and its applications by ketaki
CNN and its applications by ketakiCNN and its applications by ketaki
CNN and its applications by ketaki
 
Machine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkMachine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural Network
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 
Hough Transform By Md.Nazmul Islam
Hough Transform By Md.Nazmul IslamHough Transform By Md.Nazmul Islam
Hough Transform By Md.Nazmul Islam
 
Lec3: Pre-Processing Medical Images
Lec3: Pre-Processing Medical ImagesLec3: Pre-Processing Medical Images
Lec3: Pre-Processing Medical Images
 
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
 
Image segmentation based on color
Image segmentation based on colorImage segmentation based on color
Image segmentation based on color
 
EDGE DETECTION
EDGE DETECTIONEDGE DETECTION
EDGE DETECTION
 
Lec11: Active Contour and Level Set for Medical Image Segmentation
Lec11: Active Contour and Level Set for Medical Image SegmentationLec11: Active Contour and Level Set for Medical Image Segmentation
Lec11: Active Contour and Level Set for Medical Image Segmentation
 
Comparative Study of Spatial Domain Image Steganography Techniques
Comparative Study of Spatial Domain Image Steganography TechniquesComparative Study of Spatial Domain Image Steganography Techniques
Comparative Study of Spatial Domain Image Steganography Techniques
 
Gan seminar
Gan seminarGan seminar
Gan seminar
 
Lec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation MethodsLec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation Methods
 
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
 

Similar to Canny Edge & Image Representation.pptx

11b Hazard Mapping.ppt
11b Hazard Mapping.ppt11b Hazard Mapping.ppt
11b Hazard Mapping.ppt
Jorge Atau
 
Double bit locks group 1
Double bit locks  group 1Double bit locks  group 1
Double bit locks group 1
Luckylocks Ltd
 
Frequency vs community impact
Frequency vs community impactFrequency vs community impact
Frequency vs community impact
holdsteady
 
Thesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti EngineeringThesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti Engineering
Marcus Ljungblad
 
Christian Hennig- Assessing the quality of a clustering
Christian Hennig- Assessing the quality of a clusteringChristian Hennig- Assessing the quality of a clustering
Christian Hennig- Assessing the quality of a clustering
PyData
 

Similar to Canny Edge & Image Representation.pptx (20)

11b Hazard Mapping.ppt
11b Hazard Mapping.ppt11b Hazard Mapping.ppt
11b Hazard Mapping.ppt
 
Data Encryption Standard (DES)
Data Encryption Standard (DES)Data Encryption Standard (DES)
Data Encryption Standard (DES)
 
0240041
02400410240041
0240041
 
Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algo...
Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algo...Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algo...
Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algo...
 
Tab vicente amigo morente
Tab vicente amigo morenteTab vicente amigo morente
Tab vicente amigo morente
 
Double bit locks group 1
Double bit locks  group 1Double bit locks  group 1
Double bit locks group 1
 
sequential and combinational circuits exam
sequential and combinational circuits examsequential and combinational circuits exam
sequential and combinational circuits exam
 
die diesem Kleid ein so romantisches Gefühl verleihen
die diesem Kleid ein so romantisches Gefühl verleihendie diesem Kleid ein so romantisches Gefühl verleihen
die diesem Kleid ein so romantisches Gefühl verleihen
 
Ihre Freundschaftstraditionen zu feiern und zu festigen
Ihre Freundschaftstraditionen zu feiern und zu festigenIhre Freundschaftstraditionen zu feiern und zu festigen
Ihre Freundschaftstraditionen zu feiern und zu festigen
 
Frequency vs community impact
Frequency vs community impactFrequency vs community impact
Frequency vs community impact
 
Evaluation of chem lab software.
Evaluation of chem lab software.Evaluation of chem lab software.
Evaluation of chem lab software.
 
Thesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti EngineeringThesis-presentation: Tuenti Engineering
Thesis-presentation: Tuenti Engineering
 
Estado del Arte de la IA
Estado del Arte de la IAEstado del Arte de la IA
Estado del Arte de la IA
 
Transformers ASR.pdf
Transformers ASR.pdfTransformers ASR.pdf
Transformers ASR.pdf
 
Christian Hennig- Assessing the quality of a clustering
Christian Hennig- Assessing the quality of a clusteringChristian Hennig- Assessing the quality of a clustering
Christian Hennig- Assessing the quality of a clustering
 
20220927 Analyze Contamination Metal On Cap.pptx
20220927 Analyze Contamination Metal On Cap.pptx20220927 Analyze Contamination Metal On Cap.pptx
20220927 Analyze Contamination Metal On Cap.pptx
 
Dona dona
Dona donaDona dona
Dona dona
 
Analisis dinamico de un portico
Analisis dinamico de un porticoAnalisis dinamico de un portico
Analisis dinamico de un portico
 
Day1 2 5
Day1 2 5Day1 2 5
Day1 2 5
 
Geneve Monitoring event - InfluxDb and Loud ML presentation
Geneve Monitoring event - InfluxDb and Loud ML presentationGeneve Monitoring event - InfluxDb and Loud ML presentation
Geneve Monitoring event - InfluxDb and Loud ML presentation
 

Recently uploaded

Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
Kamal Acharya
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
Atif Razi
 
Hall booking system project report .pdf
Hall booking system project report  .pdfHall booking system project report  .pdf
Hall booking system project report .pdf
Kamal Acharya
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
Kamal Acharya
 

Recently uploaded (20)

Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Kraków
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
A case study of cinema management system project report..pdf
A case study of cinema management system project report..pdfA case study of cinema management system project report..pdf
A case study of cinema management system project report..pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientist
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Hall booking system project report .pdf
Hall booking system project report  .pdfHall booking system project report  .pdf
Hall booking system project report .pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
 
Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 

Canny Edge & Image Representation.pptx

  • 2. Segmentation Based on Image Discontinuities Partitioning Image into discrete & non-overlapping Regions R1 R2 R4 Homogenous Regions : R1, R2, R3, R4 R3 1. Primitive Detectors : Robert, Prewitt, Sobel, Kirsch 2. Vision : Marr Hildreth Poggio : LOG 3. Robotics : Canny Edge Detector 4. Edge Linking : Hough Transform
  • 3. Point Detector 7 7 7 7 7 7 7 7 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 -1 -1 -1 -1 8 -1 -1 -1 -1 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I P 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • 4. Line Detector 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 1 0 0 12 12 12 6 2 2 6 6 6 4 2 0 0 0 0 0 0 0 -1 -1 -1 2 2 2 -1 -1 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 2 -1 2 -1 2 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 I H V 0 0 0 0 0 4 0 0 0 0 4 12 0 0 0 0 12 4 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • 5. Line Detector 0 0 0 0 0 4 0 0 0 0 4 12 6 6 6 1 12 4 12 12 12 6 4 2 6 6 6 4 2 0 0 0 0 0 0 0 -1 -1 -1 2 2 2 -1 -1 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 2 -1 2 -1 2 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 I H V L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  • 6. Edge Detectors 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 Class Work Robert 1 0 0 -1 0 1 -1 0 Prewitt -1 -1 -1 0 0 0 1 1 1 -1 0 1 -1 0 1 -1 0 1 Sobel -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1
  • 7. Edge Detectors 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 2 1 2 2 2 2 2 2 Class Work Robert 1 0 0 -1 0 1 -1 0 Prewitt -1 -1 -1 0 0 0 1 1 1 -1 0 1 -1 0 1 -1 0 1 Sobel -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1
  • 8. Canny Edge Detector Characteristics: 1. Criterion 1 : Good Detection : Robustness to noise :The optimum detector must minimize the probability of false positive as well as false negative. 2. Criterion 2 : Good Localization : The edge must be as close as possible to the true edges. 3. Criterion 3 : Strong Response Constraint : Not too many or too few responses : The detector must return one point only for each point. Steps : 1. Smoothing with Gaussian Filter 2. Compute Derivative of filter image 3. Find magnitude & orientation of gradient 4. Apply Non Maxima Suppression 5. Apply Hysteresis Threshold
  • 9. Canny Edge Detector 1. Smoothing with Gaussian Filter Image I(r,c) DiscreteApproximation of Gaussian Kernels source :wikipedia 1 2 1 2 4 2 1 2 1 1 4 7 4 1 4 16 26 16 4 7 26 41 26 7 4 16 26 16 4 1 4 7 4 1 0 0 1 2 1 0 0 0 3 13 22 13 3 0 1 13 59 97 59 13 1 2 22 97 150 87 22 2 1 13 59 97 59 13 1 0 3 13 22 13 3 0 0 0 1 2 1 0 0
  • 10. 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Canny Edge Detector 2. Compute Derivative of Filter Image Sobel -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1 I -3 -1 0 0 0 -3 -1 -1 0 0 -1 -3 -4 -4 -4 0 -1 -3 -4 -4 0 0 0 0 0 3 1 0 0 0 3 3 1 0 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 0
  • 11. 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Canny Edge Detector 3. Compute magnitude & Orientation of Gradient Sobel -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1 I -3 -1 0 0 0 -3 -1 -1 0 0 -1 -3 -4 -4 -4 0 -1 -3 -4 -4 0 0 0 0 0 3 1 0 0 0 3 3 1 0 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 0 4.2 1.4 0 0 0 4.2 3.2 1.4 0 0 1.4 4.2 4.5 4 4 0 1.4 3.2 4 4 0 0 0 0 0 Gradient Magnitude
  • 12. 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1 I Canny Edge Detector 3. Compute magnitude & Orientation of Gradient Sobel -3 -1 0 0 0 -3 -3 -1 0 0 -1 -3 -4 -4 -4 0 -1 -3 -4 -4 0 0 0 0 0 3 1 0 0 0 3 3 1 0 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 0 D D D D D D D D D D D Gradient Orientation
  • 13. Canny Edge Detector 4.Apply Non Maxima Suppression Exploring Pixels for NonMaxima Suppression D D D D D D D D D D D Gradient Orientation D D D D D D D D D D D Colour Coded Orientation
  • 14. 4.2 1.4 0 0 0 4.2 3.2 1.4 0 0 1.4 4.2 4.5 4 4 0 1.4 3.2 4 4 0 0 0 0 0 Gradient Magnitude Canny Edge Detector 4.Apply Non Maxima Suppression Gradient Magnitude with D D D D D D D D D D D Colour Coded Orientation Exploring Pixels for NonMaxima Suppression 4.3 1.4 0 0 0 4.1 3.3 1.5 0 0 1.3 4.3 4.4 4.1 4.0 0 1.5 3.3 4.0 3.9 0 0 0 0 0 4.3 0 0 0 0 4.1 3.3 0 0 0 0 4.3 4.4 4.1 4.0 0 0 0 0 0 0 0 0 0 0 Additive Noise : Dithering Gradient Magnitude after NonMaxima Suppression
  • 15. Canny Edge Detector 4.Apply Non Maxima Suppression 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Gradient Magnitude Gradient Magnitude after Non Maxima Suppression 4.3 1.4 0 0 0 4.1 3.3 1.5 0 0 1.3 4.3 4.4 4.1 4.0 0 1.5 3.3 4.0 3.9 0 0 0 0 0 4.3 0 0 0 0 4.1 3.3 0 0 0 0 4.3 4.4 4.1 4.0 0 0 0 0 0 0 0 0 0 0
  • 16. Canny Edge Detector 40 50 60 60 80 70 60 10 55 90 80 100 70 40 70 80 40 60 60 20 40 50 0.4 0.5 0.6 0.6 0.8 0.7 0.6 0.1 0.5 0.9 0.8 1.0 0.7 0.4 0.7 0.8 0.4 0.6 0.6 0.2 0.4 0.5 5.Apply Hysteresis Thresholding Gradient Image Normalised Gradient Image pixel source : cv-tricks.com 0.4 0.5 0.6 0.6 0.8 0.7 0.6 0.1 0.5 0.9 0.8 1.0 0.7 0.4 0.7 0.8 0.4 0.6 0.6 0.2 0.4 0.5 After Double Thresholding No Edges Strong Weak 0.4 0.5 0.6 0.6 0.8 0.7 0.6 0.5 0.9 0.8 1.0 0.7 0.4 0.7 0.8 0.4 0.6 0.6 0.4 0.5 0.4 0.5 0.6 0.6 0.8 0.7 0.6 0.5 0.9 0.8 1.0 0.7 0.4 0.7 0.8 0.4 0.6 0.6 0.4 0.5 After Hysteresis Thresholding
  • 17. Canny Edge Detector 5.Apply Hysteresis Thresholding Algorithm : 4. For all Valid Pixels, Mark a 8-Neighbour Connected Weak Pixel as Valid Continue 4. till at least one weak pixel turns valid 5. The remaining weak pixels are invalid 40 50 60 60 80 70 60 10 55 90 80 100 70 40 70 80 40 60 60 20 40 50 Edge Map Gradient Image
  • 18. Canny Edge Detector Sobel 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -2 -1 0 0 0 1 2 1 -1 0 1 -2 0 2 -1 0 1 I -4 -3 -1 0 0 -3 -4 -3 -1 0 0 -1 -3 -4 -3 0 0 -1 -3 -4 0 0 0 0 -1 2 1 1 0 0 1 2 3 1 0 0 1 3 2 1 0 0 1 1 2 0 0 0 0 1 Class Work Will Require Calculator
  • 19. Canny Edge Detector 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -4 -3 -1 0 0 -3 -4 -3 -1 0 0 -1 -3 -4 -3 0 0 -1 -3 -4 0 0 0 0 -1 2 1 1 0 0 1 2 3 1 0 0 1 3 2 1 0 0 1 1 2 0 0 0 0 1 I Class Work Find Edge Magnitude & Edge Orientation for Image I. Apply Non Maxima Suppression. 4.5 3.2 1.4 0 0 3.2 4.5 4.2 1.4 0 0 1.4 4.2 4.5 3.2 0 0 1.4 3.2 4.5 0 0 0 0 1.4 Class Work Solution D D D D D D D D D D Magnitude Orientation
  • 20. Canny Edge Detector 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Class Work Solution 4.5 3.2 1.4 0 0 3.2 4.5 4.2 1.4 0 0 1.4 4.2 4.5 3.2 0 0 1.4 3.2 4.5 0 0 0 0 1.4 D D D D D D D D D D Edge Magnitude Edge Orientation Apply Non Maxima Suppression. D D D D D D D D D D Colour Coded Edge Orientation
  • 21. Canny Edge Detector Class Work Solution 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4.5 3.2 1.4 0 0 3.2 4.5 4.2 1.4 0 0 1.4 4.2 4.5 3.2 0 0 1.4 3.2 4.5 0 0 0 0 1.4 D D D D D D D D D D I Edge Magnitude Edge Orientation D D D D D D D D D D 4.5 0 0 0 0 0 4.5 4.2 0 0 0 0 4.2 4.5 0 0 0 0 0 4.5 0 0 0 0 1.4 Colour Coded Edge Orientation Edge Magnitude after Non Maxima Suppression
  • 22. Canny Edge Detector 0.2 0.6 0.3 0.8 0.4 0.5 0.6 0.4 0.7 0.4 0.8 Fig a Class Work
  • 23. Representation & Description R1 R2 R3 R4 Result of Segmentation External Characteristics : Primal Focus is Shape Characteristics Representation : Boundary Description as Features – Length, Orientation of st lines, No of concavities Internal Characteristics :Pixel Primal Focus is Colour, Texture Representation: Pixel Description as Features : Histogram, Covariance, Co-occurrence Ideally Features to be Translation, Rotation & Scale Invariant
  • 24. Boundary Following Moore Boundary Tracking Algorithm No L T CT O/B Boundary Points 1 (1,1) O (1,1) F 2 (1,0) B 3 (0,0) B 4 (0,1) B 5 (0,2) B 6 (0,2) (1,2) O (1,2) S 7 (0,2) B 8 (0,3) B 9 (0,3) (1,3) O (1,3) 10 (0,3) B 11 (0,4) B 12 (1,4) B 13 (2,4) B 14 (2,4) (2,3) O (2.3) 15 (2,4) B 16 (3.4) B 17 (3,4) (3,3) O (3,3) 18 (3.4) B 19 (4,4) B 20 (4.3) B 0 1 2 3 4 0 1 2 3 4 No L T CT O/B Boundary Points 21 (4,2) B 22 (3.2) B 23 (3,2) (2,2) O (2,2) 24 (3,2) B 25 (3,1) B 25 (2,1) B 26 (2.1) (1,1) O (1,1) =F 28 (2,1) B 29 (2,0) B 30 (1,0) B 31 (0,0) B 32 (0,1) B 33 (0,2) B 34 (1,2) O (1,2)=S 35 T Current Traversal CT Last Traversal LT Object/Background Point O/ Termination T
  • 25. R Boundary Following Determine the Traversal Table & Boundary Points for a Region R in Fig a by Moore Boundary Tracking Algorithm No L T CT O/B Boundary Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 0 1 2 3 Fig a ClassWork
  • 26. ClassWork Solution Boundary Following No L T CT O/B Boundary Points 1 (1,0) (1.1) O (1,1) F 2 (1,0) B 3 (0,0) B 4 (0,1) B 5 (0,2) B 6 (0,2) (1,2) O (1,2) S 7 (0,2) B 8 (0,3) B 9 (1,3) B 10 (2,3) B 11 (2,3) (2,2) O (2,2) 12 (2,3) B 13 (3.3) B 14 (3,2) B 15 (3.1) B 16 (3,1) (2,1) O (2,1) 17 (3,1) B 18 (3,0) B 19 (2,0) B 20 (1,0) B 0 1 2 3 0 1 2 3 Fig a No L T CT O/B Boundary Points 21 (1,0) (1,1) O (1,1) = F 22 (1,0) B 23 (0,0) B 24 (0,1) B 25 (0,2) B 25 (0,2) (1,2) O (1,2) =S 26 T Determine the Traversal Table & Boundary Points for a Region R in Fig a by Moore Boundary Tracking Algorithm
  • 27. Freeman Chain Code 0 1 2 3 4 5 6 7 P1 P2 Code : P1: 07575443121 P2: 12107575443 First Difference : Circular First Difference: Shape No: Order : 7626707617 77626707617 07617776267 11 Find Minima 77626707617 77762670761 17776267076 61777626707 76177762670 07617776267 70761777626 67076177762 26707617776 62670761777 76267076177
  • 28. 0 1 3 4 5 Class Work 2 6 7 Freeman Chain Code P P Find Chain Code, Difference Code, Shape No & Order for Fig a & b. Fig a Fig b
  • 29. 1 3 4 0 5 Class Work Solution 2 6 7 Freeman Chain Code P P Code : 0642 First Difference : 666 Circular First Difference: 6666 Shape No: 6666 Order : 4 7531 666 6666 6666