SlideShare a Scribd company logo
D E C E M B E R 8 - 9 , 2 0 1 6
BigML, Inc 2
Poul Petersen
CIO, BigML, Inc.
Cluster AnalysisFinding Similarities
BigML, Inc 3Clusters
Trees vs Clusters
Trees/LR (Supervised Learning)
Provide: labeled data
Learning Task: be able to predict label
Clusters (Unsupervised Learning)
Provide: unlabeled data
Learning Task: group data by similarity
BigML, Inc 4Clusters
Trees vs Clusters
sepal

length
sepal

width
petal

length
petal

width
species
5,1 3,5 1,4 0,2 setosa
5,7 2,6 3,5 1,0 versicolor
6,7 2,5 5,8 1,8 virginica
… … … … …
sepal

length
sepal

width
petal

length
petal

width
5,1 3,5 1,4 0,2
5,7 2,6 3,5 1,0
6,7 2,5 5,8 1,8
… … … …
Inputs “X” Label “Y”
Learning Task:
Find function “f” such that:
f(X)≈Y
Learning Task:
Find “k” clusters such that
the data in each cluster is self
similar
BigML, Inc 5Clusters
Use Cases
• Customer segmentation
• Item discovery
• Similarity
• Recommender
• Active learning
BigML, Inc 6Clusters
Customer Segmentation
GOAL: Cluster the users by usage
statistics. Identify clusters with a
higher percentage of high LTV users.
Since they have similar usage
patterns, the remaining users in
these clusters may be good
candidates for up-sell.
• Dataset of mobile game users.
• Data for each user consists of usage
statistics and a LTV based on in-game
purchases
• Assumption: Usage correlates to LTV
0%
3%
1%
BigML, Inc 7Clusters
Item Discovery
GOAL: Cluster the whiskies by flavor
profile to discover whiskies that have
similar taste.
• Dataset of 86 whiskies
• Each whiskey scored on a scale from
0 to 4 for each of 12 possible flavor
characteristics.
Smoky
Fruity
BigML, Inc 8
Clustering Demo #1
BigML, Inc 9Clusters
Similarity
GOAL: Cluster the loans by
application profile to rank loan
quality by percentage of trouble
loans in population
• Dataset of Lending Club Loans
• Mark any loan that is currently or has
even been late as “trouble”
0%
3%
7%
1%
BigML, Inc 10Clusters
Active Learning
GOAL:
Rather than sample randomly, use clustering to group
patients by similarity and then test a sample from each
cluster to label the data.
• Dataset of diagnostic measurements
of 768 patients.
• Want to test each patient for diabetes
and label the dataset to build a model
but the test is expensive*.
BigML, Inc 11Clusters
Active Learning
*For a more realistic example of high cost, imagine a dataset
with a billion transactions, each one needing to be labelled as
fraud/not-fraud. Or a million images which need to be labeled as
cat/not-cat.
2323
BigML, Inc 12Clusters
Human Expert
Cluster into 3 groups…
BigML, Inc 13Clusters
Human Expert
BigML, Inc 14Clusters
Human Expert
• Jesa used prior knowledge to select possible
features that separated the objects.
• “round”, “skinny”, “edges”, “hard”, etc
• Items were then clustered based on the chosen
features
• Separation quality was then tested to ensure:
• met criteria of K=3
• groups were sufficiently “distant”
• no crossover
BigML, Inc 15Clusters
Human Expert
• Length/Width
• greater than 1 => “skinny”
• equal to 1 => “round”
• less than 1 => invert
• Number of Surfaces
• distinct surfaces require “edges” which have corners
• easier to count
Create features that capture these object differences
BigML, Inc 16Clusters
Clustering Features
Object Length / Width Num Surfaces
penny 1 3
dime 1 3
knob 1 4
eraser 2,75 6
box 1 6
block 1,6 6
screw 8 3
battery 5 3
key 4,25 3
bead 1 2
BigML, Inc 17Clusters
Plot by Features
Num

Surfaces
Length / Width
box block eraser
knob
penny

dime
bead
key battery screw
K-Means Key Insight:

We can find clusters using distances

in n-dimensional feature space
K=3
BigML, Inc 18Clusters
Plot by Features
Num

Surfaces
Length / Width
box block eraser
knob
penny

dime
bead
key battery screw
K-Means

Find “best” (minimum distance)

circles that include all points
BigML, Inc 19Clusters
K-Means Algorithm
K=3
BigML, Inc 20Clusters
K-Means Algorithm
K=3
BigML, Inc 21Clusters
Features Matter
Metal Other
Wood
BigML, Inc 22Clusters
Convergence
Convergence guaranteed

but not necessarily unique

Starting points important (K++)
BigML, Inc 23Clusters
Starting Points
• Random points or instances in n-dimensional space
• Chose points “farthest” away from each other
• but this is sensitive to outliers
• k++
• the first center is chosen randomly from instances
• each subsequent center is chosen from the
remaining instances with probability proportional to
its squared distance from the point's closest existing
cluster center
BigML, Inc 24Clusters
Scaling Matters
price
number of bedrooms
d = 160,000
d = 1
BigML, Inc 25Clusters
Other Tricks
• What is the distance to a “missing value”?
• What is the distance between categorical values?
• What is the distance between text features?
• Does it have to be Euclidean distance?
• Unknown “K”?
BigML, Inc 26Clusters
Distance to Missing?
• Nonsense! Try replacing missing values with:
• Maximum
• Mean
• Median
• Minimum
• Zero
• Ignore instances with missing values
BigML, Inc 27Clusters
Distance to Categorical?
• Special distance function
• if xA == xB then

x distance = 0 (or scaling value) 

else 

x distance = 1
• Assign centroid the most common category of the
member instances
Approach: similar to “k-prototypes”
BigML, Inc 28Clusters
Distance to Categorical?
feature_1 feature_2 feature_3
instance_1 red cat ball
instance_2 red cat ball
instance_3 red cat box
instance_4 blue dog fridge
D = 0
D = 1
D = sqrt(3)
Compute Euclidean distance between discrete vectors
BigML, Inc 29Clusters
Text Vectors
1
Cosine Similarity
0
-1
"hippo" "safari" "zebra" ….
3 0 1 …
2 4 0 …
0 5 7 …
Text Field #1
Text Field #2
Cosine Distance = 1 - Cosine Similarity

CD(TF1, TF2) = 0.575736
Features(thousands)
BigML, Inc 30Clusters
Finding K: G-Means
BigML, Inc 31Clusters
Finding K: G-Means
BigML, Inc 32Clusters
Finding K: G-Means
Let K=2
Keep 1, Split 1
New K=3
BigML, Inc 33Clusters
Finding K: G-Means
Let K=3
Keep 1, Split 2
New K=5
BigML, Inc 34Clusters
Finding K: G-Means
Let K=5
K=5
BigML, Inc 35
Clustering Demo #2
BigML, Inc 36
Poul Petersen
CIO, BigML, Inc.
Anomaly DetectionFinding the Unusual
BigML, Inc 37Anomaly Detection
Clusters vs Anomalies
Clusters (Unsupervised Learning)

Provide: unlabeled data

Learning Task: group data by similarity

Anomalies (Unsupervised Learning)
Provide: unlabeled data
Learning Task: Rank data by dissimilarity
BigML, Inc 38Anomaly Detection
Clusters vs Anomalies
sepal
length
sepal
width
petal
length
petal
width
5,1 3,5 1,4 0,2
5,7 2,6 3,5 1,0
6,7 2,5 5,8 1,8
… … … …
Learning Task:
Find “k” clusters such that the data
in each cluster is self similar
sepal
length
sepal
width
petal
length
petal
width
5,1 3,5 1,4 0,2
5,7 2,6 3,5 1,0
6,7 2,5 5,8 1,8
… … … …
Learning Task:
Assign value from 0 (similar) to 1
(dissimilar) to each instance.
BigML, Inc 39Anomaly Detection
Use Cases
• Unusual instance discovery
• Intrusion Detection
• Fraud
• Identify Incorrect Data
• Remove Outliers
• Model Competence / Input Data Drift
BigML, Inc 40Anomaly Detection
Removing Outliers
• Models need to generalize
• Outliers negatively impact generalization
GOAL: Use anomaly detector to identify most anomalous
points and then remove them before modeling.
DATASET FILTERED
DATASET
ANOMALY
DETECTOR
CLEAN
MODEL
BigML, Inc 41Anomaly Detection
Diabetes Anomalies
DIABETES
SOURCE
DIABETES
DATASET
TRAIN SET
TEST SET
ALL
MODEL
CLEAN
DATASET
FILTER
ALL
MODEL
ALL
EVALUATION
CLEAN
EVALUATION
COMPARE
EVALUATIONS
ANAOMALY
DETECTOR
BigML, Inc 42
Anomaly Demo #1
BigML, Inc 43Anomaly Detection
Intrusion Detection
GOAL: Identify unusual command line behavior per user and
across all users that might indicate an intrusion.
• Dataset of command line history for users
• Data for each user consists of commands,
flags, working directories, etc.
• Assumption: Users typically issue the same
flag patterns and work in certain directories
Per User Per Dir All User All Dir
BigML, Inc 44Anomaly Detection
Fraud
• Dataset of credit card transactions
• Additional user profile information
GOAL: Cluster users by profile and use multiple anomaly
scores to detect transactions that are anomalous on multiple
levels.
Card Level User Level Similar User Level
BigML, Inc 45Anomaly Detection
Model Competence
• After putting a model it into production, data that is being
predicted can become statistically different than the
training data.
• Train an anomaly detector at the same time as the model.
GOAL: For every prediction, compute an anomaly score. If the
anomaly score is high, then the model may not be competent
and should not be trusted.
Prediction T T
Confidence 86 % 84 %
Anomaly Score 0,5367 0,7124
Competent? Y N
At Prediction TimeAt Training Time
DATASET
MODEL
ANOMALY
DETECTOR
BigML, Inc 46Anomaly Detection
Univariate Approach
• Single variable: heights, test scores, etc
• Assume the value is distributed “normally”
• Compute standard deviation
• a measure of how “spread out” the numbers are
• the square root of the variance (The average of the
squared differences from the Mean.)
• Depending on the number of instances, choose a
“multiple” of standard deviations to indicate an anomaly.
A multiple of 3 for 1000 instances removes ~ 3 outliers.
BigML, Inc 47Anomaly Detection
Univariate Approach
measurement
frequency
outliersoutliers
• Available in BigML API
BigML, Inc 48Anomaly Detection
Benford’s Law
• In real-life numeric sets the small digits occur disproportionately often as
leading significant digits.
• Applications include:
• accounting records
• electricity bills
• street addresses
• stock prices
• population numbers
• death rates
• lengths of rivers
• Available in BigML API
BigML, Inc 49Anomaly Detection
Multivariate Matters
BigML, Inc 50Anomaly Detection
Multivariate Matters
BigML, Inc 51Anomaly Detection
Human Expert
Most Unusual?
BigML, Inc 52Anomaly Detection
Human Expert
“Round”“Skinny” “Corners”
“Skinny”
but not “smooth”
No
“Corners”
Not
“Round”
Key Insight

The “most unusual” object

is different in some way from

every partition of the features.
Most unusual
BigML, Inc 53Anomaly Detection
Human Expert
• Human used prior knowledge to select possible
features that separated the objects.
• “round”, “skinny”, “smooth”, “corners”
• Items were then separated based on the chosen
features
• Each cluster was then examined to see which
object fit the least well in its cluster and did not fit
any other cluster
BigML, Inc 54Anomaly Detection
Human Expert
• Length/Width
• greater than 1 => “skinny”
• equal to 1 => “round”
• less than 1 => invert
• Number of Surfaces
• distinct surfaces require “edges” which have corners
• easier to count
• Smooth - true or false
Create features that capture these object differences
BigML, Inc 55Anomaly Detection
Anomaly Features
Object Length / Width Num Surfaces Smooth
penny 1 3 TRUE
dime 1 3 TRUE
knob 1 4 TRUE
eraser 2,75 6 TRUE
box 1 6 TRUE
block 1,6 6 TRUE
screw 8 3 FALSE
battery 5 3 TRUE
key 4,25 3 FALSE
bead 1 2 TRUE
BigML, Inc 56Anomaly Detection
Random Splits
smooth = True
length/width > 5
box
blockeraser
knob
penny

dime
bead
key
battery
screw
num surfaces = 6
length/width =1
length/width < 2
Know that “splits” matter - don’t know the order
BigML, Inc 57Anomaly Detection
Isolation Forest
Grow a random decision tree until
each instance is in its own leaf
“easy” to isolate
“hard” to isolate
Depth
Now repeat the process several times and
use average Depth to compute anomaly
score: 0 (similar) -> 1 (dissimilar)
BigML, Inc 58Anomaly Detection
Isolation Forest Scoring
f_1 f_2 f_3
i_1 red cat ball
i_2 red cat ball
i_3 red cat box
i_4 blue dog pen
D = 3
D = 6
D = 2
Score
BigML, Inc 59Anomaly Detection
Model Competence
• A low anomaly score means the loan is similar to the
modeled loans.
• A high anomaly score means you can not trust the
model.
Prediction T T
Confidence
86 % 84 %
Anomaly
Score
0,5367 0,7124
Competent? Y N
OPEN LOANS
PREDICTION
ANOMALY
SCORE
CLOSED LOAN
MODEL
CLOSED LOAN
ANOMALY DETECTOR
BigML, Inc 60
Anomaly Demo #2
BSSML16 L3. Clusters and Anomaly Detection

More Related Content

What's hot

BSSML17 - Logistic Regressions
BSSML17 - Logistic RegressionsBSSML17 - Logistic Regressions
BSSML17 - Logistic Regressions
BigML, Inc
 
BSSML17 - Basic Data Transformations
BSSML17 - Basic Data TransformationsBSSML17 - Basic Data Transformations
BSSML17 - Basic Data Transformations
BigML, Inc
 
BSSML17 - Ensembles
BSSML17 - EnsemblesBSSML17 - Ensembles
BSSML17 - Ensembles
BigML, Inc
 
BSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, EvaluationsBSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, Evaluations
BigML, Inc
 
VSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic RegressionsVSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic Regressions
BigML, Inc
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1
BigML, Inc
 
VSSML16 LR2. Summary Day 2
VSSML16 LR2. Summary Day 2VSSML16 LR2. Summary Day 2
VSSML16 LR2. Summary Day 2
BigML, Inc
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and Deepnets
BigML, Inc
 
VSSML17 L3. Clusters and Anomaly Detection
VSSML17 L3. Clusters and Anomaly DetectionVSSML17 L3. Clusters and Anomaly Detection
VSSML17 L3. Clusters and Anomaly Detection
BigML, Inc
 
BSSML17 - Deepnets
BSSML17 - DeepnetsBSSML17 - Deepnets
BSSML17 - Deepnets
BigML, Inc
 
L5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringL5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature Engineering
Machine Learning Valencia
 
Feature Engineering
Feature Engineering Feature Engineering
Feature Engineering
odsc
 
VSSML17 L5. Basic Data Transformations and Feature Engineering
VSSML17 L5. Basic Data Transformations and Feature EngineeringVSSML17 L5. Basic Data Transformations and Feature Engineering
VSSML17 L5. Basic Data Transformations and Feature Engineering
BigML, Inc
 
BSSML17 - Topic Models
BSSML17 - Topic ModelsBSSML17 - Topic Models
BSSML17 - Topic Models
BigML, Inc
 
DutchMLSchool. ML: A Technical Perspective
DutchMLSchool. ML: A Technical PerspectiveDutchMLSchool. ML: A Technical Perspective
DutchMLSchool. ML: A Technical Perspective
BigML, Inc
 
BSSML17 - Feature Engineering
BSSML17 - Feature EngineeringBSSML17 - Feature Engineering
BSSML17 - Feature Engineering
BigML, Inc
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 Sessions
BigML, Inc
 
BSSML17 - Time Series
BSSML17 - Time SeriesBSSML17 - Time Series
BSSML17 - Time Series
BigML, Inc
 
Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)
Hayim Makabee
 
L15. Machine Learning - Black Art
L15. Machine Learning - Black ArtL15. Machine Learning - Black Art
L15. Machine Learning - Black Art
Machine Learning Valencia
 

What's hot (20)

BSSML17 - Logistic Regressions
BSSML17 - Logistic RegressionsBSSML17 - Logistic Regressions
BSSML17 - Logistic Regressions
 
BSSML17 - Basic Data Transformations
BSSML17 - Basic Data TransformationsBSSML17 - Basic Data Transformations
BSSML17 - Basic Data Transformations
 
BSSML17 - Ensembles
BSSML17 - EnsemblesBSSML17 - Ensembles
BSSML17 - Ensembles
 
BSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, EvaluationsBSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, Evaluations
 
VSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic RegressionsVSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic Regressions
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1
 
VSSML16 LR2. Summary Day 2
VSSML16 LR2. Summary Day 2VSSML16 LR2. Summary Day 2
VSSML16 LR2. Summary Day 2
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and Deepnets
 
VSSML17 L3. Clusters and Anomaly Detection
VSSML17 L3. Clusters and Anomaly DetectionVSSML17 L3. Clusters and Anomaly Detection
VSSML17 L3. Clusters and Anomaly Detection
 
BSSML17 - Deepnets
BSSML17 - DeepnetsBSSML17 - Deepnets
BSSML17 - Deepnets
 
L5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringL5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature Engineering
 
Feature Engineering
Feature Engineering Feature Engineering
Feature Engineering
 
VSSML17 L5. Basic Data Transformations and Feature Engineering
VSSML17 L5. Basic Data Transformations and Feature EngineeringVSSML17 L5. Basic Data Transformations and Feature Engineering
VSSML17 L5. Basic Data Transformations and Feature Engineering
 
BSSML17 - Topic Models
BSSML17 - Topic ModelsBSSML17 - Topic Models
BSSML17 - Topic Models
 
DutchMLSchool. ML: A Technical Perspective
DutchMLSchool. ML: A Technical PerspectiveDutchMLSchool. ML: A Technical Perspective
DutchMLSchool. ML: A Technical Perspective
 
BSSML17 - Feature Engineering
BSSML17 - Feature EngineeringBSSML17 - Feature Engineering
BSSML17 - Feature Engineering
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 Sessions
 
BSSML17 - Time Series
BSSML17 - Time SeriesBSSML17 - Time Series
BSSML17 - Time Series
 
Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)
 
L15. Machine Learning - Black Art
L15. Machine Learning - Black ArtL15. Machine Learning - Black Art
L15. Machine Learning - Black Art
 

Viewers also liked

API, WhizzML and Apps
API, WhizzML and AppsAPI, WhizzML and Apps
API, WhizzML and Apps
BigML, Inc
 
Anomaly Detection - New York Machine Learning
Anomaly Detection - New York Machine LearningAnomaly Detection - New York Machine Learning
Anomaly Detection - New York Machine Learning
Ted Dunning
 
Anomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) EnglishAnomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) English
Adam Gibson
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detection
Carol Hargreaves
 
Anomaly detection in deep learning
Anomaly detection in deep learningAnomaly detection in deep learning
Anomaly detection in deep learning
Adam Gibson
 
Anomaly detection, part 1
Anomaly detection, part 1Anomaly detection, part 1
Anomaly detection, part 1
David Khosid
 
A Practical Guide to Anomaly Detection for DevOps
A Practical Guide to Anomaly Detection for DevOpsA Practical Guide to Anomaly Detection for DevOps
A Practical Guide to Anomaly Detection for DevOps
BigPanda
 
Chapter 10 Anomaly Detection
Chapter 10 Anomaly DetectionChapter 10 Anomaly Detection
Chapter 10 Anomaly Detection
Khalid Elshafie
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detection
DataminingTools Inc
 

Viewers also liked (9)

API, WhizzML and Apps
API, WhizzML and AppsAPI, WhizzML and Apps
API, WhizzML and Apps
 
Anomaly Detection - New York Machine Learning
Anomaly Detection - New York Machine LearningAnomaly Detection - New York Machine Learning
Anomaly Detection - New York Machine Learning
 
Anomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) EnglishAnomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) English
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detection
 
Anomaly detection in deep learning
Anomaly detection in deep learningAnomaly detection in deep learning
Anomaly detection in deep learning
 
Anomaly detection, part 1
Anomaly detection, part 1Anomaly detection, part 1
Anomaly detection, part 1
 
A Practical Guide to Anomaly Detection for DevOps
A Practical Guide to Anomaly Detection for DevOpsA Practical Guide to Anomaly Detection for DevOps
A Practical Guide to Anomaly Detection for DevOps
 
Chapter 10 Anomaly Detection
Chapter 10 Anomaly DetectionChapter 10 Anomaly Detection
Chapter 10 Anomaly Detection
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detection
 

Similar to BSSML16 L3. Clusters and Anomaly Detection

VSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet AllocationVSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet Allocation
BigML, Inc
 
MLSEV. Cluster Analysis and Anomaly Detection
MLSEV. Cluster Analysis and Anomaly DetectionMLSEV. Cluster Analysis and Anomaly Detection
MLSEV. Cluster Analysis and Anomaly Detection
BigML, Inc
 
L13. Cluster Analysis
L13. Cluster AnalysisL13. Cluster Analysis
L13. Cluster Analysis
Machine Learning Valencia
 
DutchMLSchool. Clusters and Anomalies
DutchMLSchool. Clusters and AnomaliesDutchMLSchool. Clusters and Anomalies
DutchMLSchool. Clusters and Anomalies
BigML, Inc
 
07 learning
07 learning07 learning
07 learning
ankit_ppt
 
L14. Anomaly Detection
L14. Anomaly DetectionL14. Anomaly Detection
L14. Anomaly Detection
Machine Learning Valencia
 
Large Scale Data Clustering: an overview
Large Scale Data Clustering: an overviewLarge Scale Data Clustering: an overview
Large Scale Data Clustering: an overview
Vahid Mirjalili
 
Introduction to data mining and machine learning
Introduction to data mining and machine learningIntroduction to data mining and machine learning
Introduction to data mining and machine learning
Tilani Gunawardena PhD(UNIBAS), BSc(Pera), FHEA(UK), CEng, MIESL
 
DutchMLSchool. Logistic Regression, Deepnets, Time Series
DutchMLSchool. Logistic Regression, Deepnets, Time SeriesDutchMLSchool. Logistic Regression, Deepnets, Time Series
DutchMLSchool. Logistic Regression, Deepnets, Time Series
BigML, Inc
 
PPT s10-machine vision-s2
PPT s10-machine vision-s2PPT s10-machine vision-s2
PPT s10-machine vision-s2
Binus Online Learning
 
Clustering: A Scikit Learn Tutorial
Clustering: A Scikit Learn TutorialClustering: A Scikit Learn Tutorial
Clustering: A Scikit Learn Tutorial
Damian R. Mingle, MBA
 
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Simplilearn
 
Mathematics online: some common algorithms
Mathematics online: some common algorithmsMathematics online: some common algorithms
Mathematics online: some common algorithms
Mark Moriarty
 
DutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in MLDutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in ML
BigML, Inc
 
DutchMLSchool. Automating Decision Making
DutchMLSchool. Automating Decision MakingDutchMLSchool. Automating Decision Making
DutchMLSchool. Automating Decision Making
BigML, Inc
 
15857 cse422 unsupervised-learning
15857 cse422 unsupervised-learning15857 cse422 unsupervised-learning
15857 cse422 unsupervised-learning
Anil Yadav
 
MODULE 4_ CLUSTERING.pptx
MODULE 4_ CLUSTERING.pptxMODULE 4_ CLUSTERING.pptx
MODULE 4_ CLUSTERING.pptx
nikshaikh786
 
LR2. Summary Day 2
LR2. Summary Day 2LR2. Summary Day 2
LR2. Summary Day 2
Machine Learning Valencia
 
machine learning - Clustering in R
machine learning - Clustering in Rmachine learning - Clustering in R
machine learning - Clustering in R
Sudhakar Chavan
 

Similar to BSSML16 L3. Clusters and Anomaly Detection (20)

VSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet AllocationVSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet Allocation
 
MLSEV. Cluster Analysis and Anomaly Detection
MLSEV. Cluster Analysis and Anomaly DetectionMLSEV. Cluster Analysis and Anomaly Detection
MLSEV. Cluster Analysis and Anomaly Detection
 
L13. Cluster Analysis
L13. Cluster AnalysisL13. Cluster Analysis
L13. Cluster Analysis
 
DutchMLSchool. Clusters and Anomalies
DutchMLSchool. Clusters and AnomaliesDutchMLSchool. Clusters and Anomalies
DutchMLSchool. Clusters and Anomalies
 
07 learning
07 learning07 learning
07 learning
 
L14. Anomaly Detection
L14. Anomaly DetectionL14. Anomaly Detection
L14. Anomaly Detection
 
Large Scale Data Clustering: an overview
Large Scale Data Clustering: an overviewLarge Scale Data Clustering: an overview
Large Scale Data Clustering: an overview
 
Introduction to data mining and machine learning
Introduction to data mining and machine learningIntroduction to data mining and machine learning
Introduction to data mining and machine learning
 
DutchMLSchool. Logistic Regression, Deepnets, Time Series
DutchMLSchool. Logistic Regression, Deepnets, Time SeriesDutchMLSchool. Logistic Regression, Deepnets, Time Series
DutchMLSchool. Logistic Regression, Deepnets, Time Series
 
PPT s10-machine vision-s2
PPT s10-machine vision-s2PPT s10-machine vision-s2
PPT s10-machine vision-s2
 
Clustering: A Scikit Learn Tutorial
Clustering: A Scikit Learn TutorialClustering: A Scikit Learn Tutorial
Clustering: A Scikit Learn Tutorial
 
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
 
Presentation on K-Means Clustering
Presentation on K-Means ClusteringPresentation on K-Means Clustering
Presentation on K-Means Clustering
 
Mathematics online: some common algorithms
Mathematics online: some common algorithmsMathematics online: some common algorithms
Mathematics online: some common algorithms
 
DutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in MLDutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in ML
 
DutchMLSchool. Automating Decision Making
DutchMLSchool. Automating Decision MakingDutchMLSchool. Automating Decision Making
DutchMLSchool. Automating Decision Making
 
15857 cse422 unsupervised-learning
15857 cse422 unsupervised-learning15857 cse422 unsupervised-learning
15857 cse422 unsupervised-learning
 
MODULE 4_ CLUSTERING.pptx
MODULE 4_ CLUSTERING.pptxMODULE 4_ CLUSTERING.pptx
MODULE 4_ CLUSTERING.pptx
 
LR2. Summary Day 2
LR2. Summary Day 2LR2. Summary Day 2
LR2. Summary Day 2
 
machine learning - Clustering in R
machine learning - Clustering in Rmachine learning - Clustering in R
machine learning - Clustering in R
 

More from BigML, Inc

Digital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in ManufacturingDigital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in Manufacturing
BigML, Inc
 
DutchMLSchool 2022 - Automation
DutchMLSchool 2022 - AutomationDutchMLSchool 2022 - Automation
DutchMLSchool 2022 - Automation
BigML, Inc
 
DutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML ComplianceDutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML Compliance
BigML, Inc
 
DutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective AnomaliesDutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective Anomalies
BigML, Inc
 
DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector
BigML, Inc
 
DutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly DetectionDutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly Detection
BigML, Inc
 
DutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End MLDutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End ML
BigML, Inc
 
DutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven CompanyDutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven Company
BigML, Inc
 
DutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal SectorDutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal Sector
BigML, Inc
 
DutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe StadiumsDutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe Stadiums
BigML, Inc
 
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing PlantsDutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
BigML, Inc
 
DutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at ScaleDutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at Scale
BigML, Inc
 
DutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AIDutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AI
BigML, Inc
 
Democratizing Object Detection
Democratizing Object DetectionDemocratizing Object Detection
Democratizing Object Detection
BigML, Inc
 
BigML Release: Image Processing
BigML Release: Image ProcessingBigML Release: Image Processing
BigML Release: Image Processing
BigML, Inc
 
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your FutureMachine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
BigML, Inc
 
Machine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail SectorMachine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail Sector
BigML, Inc
 
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a LawyerbotML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
BigML, Inc
 
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
BigML, Inc
 
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and ComplianceML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
BigML, Inc
 

More from BigML, Inc (20)

Digital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in ManufacturingDigital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in Manufacturing
 
DutchMLSchool 2022 - Automation
DutchMLSchool 2022 - AutomationDutchMLSchool 2022 - Automation
DutchMLSchool 2022 - Automation
 
DutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML ComplianceDutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML Compliance
 
DutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective AnomaliesDutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective Anomalies
 
DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector
 
DutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly DetectionDutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly Detection
 
DutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End MLDutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End ML
 
DutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven CompanyDutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven Company
 
DutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal SectorDutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal Sector
 
DutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe StadiumsDutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe Stadiums
 
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing PlantsDutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
 
DutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at ScaleDutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at Scale
 
DutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AIDutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AI
 
Democratizing Object Detection
Democratizing Object DetectionDemocratizing Object Detection
Democratizing Object Detection
 
BigML Release: Image Processing
BigML Release: Image ProcessingBigML Release: Image Processing
BigML Release: Image Processing
 
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your FutureMachine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
 
Machine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail SectorMachine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail Sector
 
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a LawyerbotML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
 
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
 
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and ComplianceML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
 

Recently uploaded

一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
enxupq
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单
ewymefz
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
axoqas
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
mbawufebxi
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
v3tuleee
 
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
John Andrews
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Boston Institute of Analytics
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
ahzuo
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
axoqas
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
Opendatabay
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
NABLAS株式会社
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
ewymefz
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
AbhimanyuSinha9
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...
jerlynmaetalle
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
yhkoc
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Linda486226
 

Recently uploaded (20)

一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
 
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
 

BSSML16 L3. Clusters and Anomaly Detection

  • 1. D E C E M B E R 8 - 9 , 2 0 1 6
  • 2. BigML, Inc 2 Poul Petersen CIO, BigML, Inc. Cluster AnalysisFinding Similarities
  • 3. BigML, Inc 3Clusters Trees vs Clusters Trees/LR (Supervised Learning) Provide: labeled data Learning Task: be able to predict label Clusters (Unsupervised Learning) Provide: unlabeled data Learning Task: group data by similarity
  • 4. BigML, Inc 4Clusters Trees vs Clusters sepal length sepal width petal length petal width species 5,1 3,5 1,4 0,2 setosa 5,7 2,6 3,5 1,0 versicolor 6,7 2,5 5,8 1,8 virginica … … … … … sepal length sepal width petal length petal width 5,1 3,5 1,4 0,2 5,7 2,6 3,5 1,0 6,7 2,5 5,8 1,8 … … … … Inputs “X” Label “Y” Learning Task: Find function “f” such that: f(X)≈Y Learning Task: Find “k” clusters such that the data in each cluster is self similar
  • 5. BigML, Inc 5Clusters Use Cases • Customer segmentation • Item discovery • Similarity • Recommender • Active learning
  • 6. BigML, Inc 6Clusters Customer Segmentation GOAL: Cluster the users by usage statistics. Identify clusters with a higher percentage of high LTV users. Since they have similar usage patterns, the remaining users in these clusters may be good candidates for up-sell. • Dataset of mobile game users. • Data for each user consists of usage statistics and a LTV based on in-game purchases • Assumption: Usage correlates to LTV 0% 3% 1%
  • 7. BigML, Inc 7Clusters Item Discovery GOAL: Cluster the whiskies by flavor profile to discover whiskies that have similar taste. • Dataset of 86 whiskies • Each whiskey scored on a scale from 0 to 4 for each of 12 possible flavor characteristics. Smoky Fruity
  • 9. BigML, Inc 9Clusters Similarity GOAL: Cluster the loans by application profile to rank loan quality by percentage of trouble loans in population • Dataset of Lending Club Loans • Mark any loan that is currently or has even been late as “trouble” 0% 3% 7% 1%
  • 10. BigML, Inc 10Clusters Active Learning GOAL: Rather than sample randomly, use clustering to group patients by similarity and then test a sample from each cluster to label the data. • Dataset of diagnostic measurements of 768 patients. • Want to test each patient for diabetes and label the dataset to build a model but the test is expensive*.
  • 11. BigML, Inc 11Clusters Active Learning *For a more realistic example of high cost, imagine a dataset with a billion transactions, each one needing to be labelled as fraud/not-fraud. Or a million images which need to be labeled as cat/not-cat. 2323
  • 12. BigML, Inc 12Clusters Human Expert Cluster into 3 groups…
  • 14. BigML, Inc 14Clusters Human Expert • Jesa used prior knowledge to select possible features that separated the objects. • “round”, “skinny”, “edges”, “hard”, etc • Items were then clustered based on the chosen features • Separation quality was then tested to ensure: • met criteria of K=3 • groups were sufficiently “distant” • no crossover
  • 15. BigML, Inc 15Clusters Human Expert • Length/Width • greater than 1 => “skinny” • equal to 1 => “round” • less than 1 => invert • Number of Surfaces • distinct surfaces require “edges” which have corners • easier to count Create features that capture these object differences
  • 16. BigML, Inc 16Clusters Clustering Features Object Length / Width Num Surfaces penny 1 3 dime 1 3 knob 1 4 eraser 2,75 6 box 1 6 block 1,6 6 screw 8 3 battery 5 3 key 4,25 3 bead 1 2
  • 17. BigML, Inc 17Clusters Plot by Features Num Surfaces Length / Width box block eraser knob penny dime bead key battery screw K-Means Key Insight: We can find clusters using distances in n-dimensional feature space K=3
  • 18. BigML, Inc 18Clusters Plot by Features Num Surfaces Length / Width box block eraser knob penny dime bead key battery screw K-Means Find “best” (minimum distance) circles that include all points
  • 21. BigML, Inc 21Clusters Features Matter Metal Other Wood
  • 22. BigML, Inc 22Clusters Convergence Convergence guaranteed but not necessarily unique Starting points important (K++)
  • 23. BigML, Inc 23Clusters Starting Points • Random points or instances in n-dimensional space • Chose points “farthest” away from each other • but this is sensitive to outliers • k++ • the first center is chosen randomly from instances • each subsequent center is chosen from the remaining instances with probability proportional to its squared distance from the point's closest existing cluster center
  • 24. BigML, Inc 24Clusters Scaling Matters price number of bedrooms d = 160,000 d = 1
  • 25. BigML, Inc 25Clusters Other Tricks • What is the distance to a “missing value”? • What is the distance between categorical values? • What is the distance between text features? • Does it have to be Euclidean distance? • Unknown “K”?
  • 26. BigML, Inc 26Clusters Distance to Missing? • Nonsense! Try replacing missing values with: • Maximum • Mean • Median • Minimum • Zero • Ignore instances with missing values
  • 27. BigML, Inc 27Clusters Distance to Categorical? • Special distance function • if xA == xB then
 x distance = 0 (or scaling value) 
 else 
 x distance = 1 • Assign centroid the most common category of the member instances Approach: similar to “k-prototypes”
  • 28. BigML, Inc 28Clusters Distance to Categorical? feature_1 feature_2 feature_3 instance_1 red cat ball instance_2 red cat ball instance_3 red cat box instance_4 blue dog fridge D = 0 D = 1 D = sqrt(3) Compute Euclidean distance between discrete vectors
  • 29. BigML, Inc 29Clusters Text Vectors 1 Cosine Similarity 0 -1 "hippo" "safari" "zebra" …. 3 0 1 … 2 4 0 … 0 5 7 … Text Field #1 Text Field #2 Cosine Distance = 1 - Cosine Similarity CD(TF1, TF2) = 0.575736 Features(thousands)
  • 32. BigML, Inc 32Clusters Finding K: G-Means Let K=2 Keep 1, Split 1 New K=3
  • 33. BigML, Inc 33Clusters Finding K: G-Means Let K=3 Keep 1, Split 2 New K=5
  • 34. BigML, Inc 34Clusters Finding K: G-Means Let K=5 K=5
  • 36. BigML, Inc 36 Poul Petersen CIO, BigML, Inc. Anomaly DetectionFinding the Unusual
  • 37. BigML, Inc 37Anomaly Detection Clusters vs Anomalies Clusters (Unsupervised Learning) Provide: unlabeled data Learning Task: group data by similarity Anomalies (Unsupervised Learning) Provide: unlabeled data Learning Task: Rank data by dissimilarity
  • 38. BigML, Inc 38Anomaly Detection Clusters vs Anomalies sepal length sepal width petal length petal width 5,1 3,5 1,4 0,2 5,7 2,6 3,5 1,0 6,7 2,5 5,8 1,8 … … … … Learning Task: Find “k” clusters such that the data in each cluster is self similar sepal length sepal width petal length petal width 5,1 3,5 1,4 0,2 5,7 2,6 3,5 1,0 6,7 2,5 5,8 1,8 … … … … Learning Task: Assign value from 0 (similar) to 1 (dissimilar) to each instance.
  • 39. BigML, Inc 39Anomaly Detection Use Cases • Unusual instance discovery • Intrusion Detection • Fraud • Identify Incorrect Data • Remove Outliers • Model Competence / Input Data Drift
  • 40. BigML, Inc 40Anomaly Detection Removing Outliers • Models need to generalize • Outliers negatively impact generalization GOAL: Use anomaly detector to identify most anomalous points and then remove them before modeling. DATASET FILTERED DATASET ANOMALY DETECTOR CLEAN MODEL
  • 41. BigML, Inc 41Anomaly Detection Diabetes Anomalies DIABETES SOURCE DIABETES DATASET TRAIN SET TEST SET ALL MODEL CLEAN DATASET FILTER ALL MODEL ALL EVALUATION CLEAN EVALUATION COMPARE EVALUATIONS ANAOMALY DETECTOR
  • 43. BigML, Inc 43Anomaly Detection Intrusion Detection GOAL: Identify unusual command line behavior per user and across all users that might indicate an intrusion. • Dataset of command line history for users • Data for each user consists of commands, flags, working directories, etc. • Assumption: Users typically issue the same flag patterns and work in certain directories Per User Per Dir All User All Dir
  • 44. BigML, Inc 44Anomaly Detection Fraud • Dataset of credit card transactions • Additional user profile information GOAL: Cluster users by profile and use multiple anomaly scores to detect transactions that are anomalous on multiple levels. Card Level User Level Similar User Level
  • 45. BigML, Inc 45Anomaly Detection Model Competence • After putting a model it into production, data that is being predicted can become statistically different than the training data. • Train an anomaly detector at the same time as the model. GOAL: For every prediction, compute an anomaly score. If the anomaly score is high, then the model may not be competent and should not be trusted. Prediction T T Confidence 86 % 84 % Anomaly Score 0,5367 0,7124 Competent? Y N At Prediction TimeAt Training Time DATASET MODEL ANOMALY DETECTOR
  • 46. BigML, Inc 46Anomaly Detection Univariate Approach • Single variable: heights, test scores, etc • Assume the value is distributed “normally” • Compute standard deviation • a measure of how “spread out” the numbers are • the square root of the variance (The average of the squared differences from the Mean.) • Depending on the number of instances, choose a “multiple” of standard deviations to indicate an anomaly. A multiple of 3 for 1000 instances removes ~ 3 outliers.
  • 47. BigML, Inc 47Anomaly Detection Univariate Approach measurement frequency outliersoutliers • Available in BigML API
  • 48. BigML, Inc 48Anomaly Detection Benford’s Law • In real-life numeric sets the small digits occur disproportionately often as leading significant digits. • Applications include: • accounting records • electricity bills • street addresses • stock prices • population numbers • death rates • lengths of rivers • Available in BigML API
  • 49. BigML, Inc 49Anomaly Detection Multivariate Matters
  • 50. BigML, Inc 50Anomaly Detection Multivariate Matters
  • 51. BigML, Inc 51Anomaly Detection Human Expert Most Unusual?
  • 52. BigML, Inc 52Anomaly Detection Human Expert “Round”“Skinny” “Corners” “Skinny” but not “smooth” No “Corners” Not “Round” Key Insight The “most unusual” object is different in some way from every partition of the features. Most unusual
  • 53. BigML, Inc 53Anomaly Detection Human Expert • Human used prior knowledge to select possible features that separated the objects. • “round”, “skinny”, “smooth”, “corners” • Items were then separated based on the chosen features • Each cluster was then examined to see which object fit the least well in its cluster and did not fit any other cluster
  • 54. BigML, Inc 54Anomaly Detection Human Expert • Length/Width • greater than 1 => “skinny” • equal to 1 => “round” • less than 1 => invert • Number of Surfaces • distinct surfaces require “edges” which have corners • easier to count • Smooth - true or false Create features that capture these object differences
  • 55. BigML, Inc 55Anomaly Detection Anomaly Features Object Length / Width Num Surfaces Smooth penny 1 3 TRUE dime 1 3 TRUE knob 1 4 TRUE eraser 2,75 6 TRUE box 1 6 TRUE block 1,6 6 TRUE screw 8 3 FALSE battery 5 3 TRUE key 4,25 3 FALSE bead 1 2 TRUE
  • 56. BigML, Inc 56Anomaly Detection Random Splits smooth = True length/width > 5 box blockeraser knob penny dime bead key battery screw num surfaces = 6 length/width =1 length/width < 2 Know that “splits” matter - don’t know the order
  • 57. BigML, Inc 57Anomaly Detection Isolation Forest Grow a random decision tree until each instance is in its own leaf “easy” to isolate “hard” to isolate Depth Now repeat the process several times and use average Depth to compute anomaly score: 0 (similar) -> 1 (dissimilar)
  • 58. BigML, Inc 58Anomaly Detection Isolation Forest Scoring f_1 f_2 f_3 i_1 red cat ball i_2 red cat ball i_3 red cat box i_4 blue dog pen D = 3 D = 6 D = 2 Score
  • 59. BigML, Inc 59Anomaly Detection Model Competence • A low anomaly score means the loan is similar to the modeled loans. • A high anomaly score means you can not trust the model. Prediction T T Confidence 86 % 84 % Anomaly Score 0,5367 0,7124 Competent? Y N OPEN LOANS PREDICTION ANOMALY SCORE CLOSED LOAN MODEL CLOSED LOAN ANOMALY DETECTOR