The document reports on the results of three image processing projects. The first project implemented Lloyd-Max quantization to reduce image file sizes and Retinex theory to compensate for uneven illumination. The second project used principal component analysis to compute eigenfaces for face recognition. The third project performed linear discriminant analysis and tensor-based linear discriminant analysis for binary classification and visual object recognition. Illumination compensation subtracted an estimated illumination plane from image intensities to reduce shadows. Eigenfaces were the principal components of a training set of face images. Tensor-based linear discriminant analysis treated images as higher-order tensors to outperform conventional LDA.