This document provides an overview of algebraic techniques in combinatorics, including linear algebra concepts, partially ordered sets (posets), and examples of problems solved using these techniques. Some key points discussed are:
- Useful linear algebra facts such as rank, determinants, and vector/matrix properties
- Definitions and representations of posets, including Dilworth's theorem relating chains and antichains
- Examples of combinatorial problems solved using linear algebra tools such as vectors/matrices or applying Dilworth's theorem to obtain a divisibility relation poset