SlideShare a Scribd company logo
Advanced Thermodynamics 
Note 5 
Thermodynamic Properties of Fluids 
Lecturer: 郭修伯
Property relations for homogeneous phases 
First law for a closed system d(nU) = dQ + dW 
a special reversible process 
rev rev d(nU) = dQ + dW 
dW Pd(nV) rev = - dQ Td(nS) rev = 
d(nU) = Td(nS) - Pd(nV ) 
Only properties of system are involved: 
It can be applied to any process in a closed system (not necessarily 
reversible processes). 
The change occurs between equilibrium states.
The primary thermodynamic properties: P,V, T,U, and S 
The enthalpy: H ºU + PV 
The Helmholtz energy: A ºU -TS 
The Gibbs energy: G º H -TS 
For one mol of homogeneous fluid of constant composition: 
dU = TdS - PdV 
d(nU) = Td(nS) - Pd(nV ) 
dH = TdS +VdP 
dA = -PdV - SdT 
P 
= - ¶ ÷ø 
ö çè 
÷ø 
æ 
¶ 
S V S 
T 
¶ 
æ 
ö ¶ 
V 
çèV 
= ¶ ÷ø 
ö çè 
÷ø 
æ 
¶ 
S P S 
T 
¶ 
æ 
ö ¶ 
P 
çè 
S 
= ¶ ÷ø 
ö çè 
÷ø 
æ 
¶ 
¶ 
ö çè 
V T V 
P 
æ 
¶ 
T 
S 
V 
= - ¶ ÷ø 
ö çè 
¶ 
dG =VdP - SdT Maxwell’s equations 
P T P 
T 
÷ø 
æ 
¶ 
æ 
ö ¶ 
çè
Enthalpy, entropy and internal energy change calculations f (P,T) 
= ¶ dP 
dP 
dT H 
+ ¶ ÷ø 
æ 
ö ¶ 
P 
çè 
dH H 
T 
÷ø 
P T 
æ 
ö ¶ 
çè 
dT S 
+ ¶ ÷ø 
æ 
ö ¶ 
P 
çè 
dS = ¶ 
S 
T 
÷ø 
P T 
æ 
ö ¶ 
çè 
dH = TdS +VdP 
P 
H = ÷ø 
P 
C 
æ 
ö ¶ 
T 
çè 
¶ 
V 
T S 
= ¶ ÷ø 
æ 
ö ¶ 
P 
çè 
H 
P 
+ ÷ø 
T T 
¶ 
æ 
ö ¶ 
çè 
¶ 
æ 
H 
= ¶ ÷ø 
= + ¶ 
T S 
ö çè 
P ÷ ÷ø 
V dP 
dH C dT T S 
P 
T 
ö 
ç çè 
+ ÷ø 
æ 
¶ 
S 
= - ¶ ÷ø 
ö çè 
P T P 
V 
T 
÷ø 
æ 
¶ 
¶ 
æ 
ö ¶ 
çè 
dP 
æ 
dH = C dT + V - T ¶ 
V 
ö çè 
P ÷ ÷ø 
T 
P 
ö 
ç çè 
÷ø 
æ 
¶ 
S C 
P 
T 
¶ 
T 
= ÷ø 
P 
æ 
ö ¶ 
çè 
= - ¶ ÷ø 
ö çè 
dP 
V 
V 
¶ 
= - ¶ 
æ 
ö ¶ 
T 
çè 
dS C dT 
T 
P 
P ÷ø 
P P T 
T 
÷øö çè 
æ 
¶ 
æ 
ö ¶ 
çè 
S 
P T P 
T 
÷ø 
æ 
¶ 
æ 
ö ¶ 
çè 
H ºU + PV 
V 
P V 
+ ¶ ÷ø 
æ 
ö ¶ 
P 
çè 
U 
= ¶ ÷ø 
æ 
ö ¶ 
P 
çè 
H 
P 
+ ÷ø 
T T T 
¶ 
æ 
ö ¶ 
çè 
P V 
T V 
- ¶ ÷ø 
ö çè 
= - ¶ ÷ø 
P 
P 
T T T U 
P 
÷ø 
æ 
¶ 
æ 
ö ¶ 
çè 
¶ 
æ 
ö ¶ 
çè
Determine the enthalpy and entropy changes of liquid water for a 
change of state from 1 bar and 25°C to 1000 bar and 50°C. The data 
for water are given. 
H1 and S1 at 1 bar, 25°C 
H2 and S2 at 1 bar, 50°C H3 and S3 at 1000 bar, 50°C 
dP 
æ 
dH = C dT + V - T ¶ 
V 
ö çè 
P ÷ ÷ø 
T 
P 
ö 
ç çè 
÷ø 
æ 
¶ 
( H 75.310(323.15 298.15) 1 (513 10 - 
)(323.15) ) (18.204)(1000 1) 
3400J /mol 
dP 
V 
= - ¶ 
æ 
ö ¶ 
T 
çè 
dS C dT 
T 
P 
P ÷ø 
dH C dT ( T )VdP P = + 1-b 
( ) (1 ) ( ) 2 1 2 2 1 H C T T T V P P P D = - + - b - 
V 
V 
T 
b = ÷ø 
P 
¶ 
æ 
ö ¶ 
çè 
volume expansivity 
S C T P D = - b - 
2 V P P 
T 
ln ( ) 2 1 
1 
10 
6 
D = - + - ´ - = 
( 513 10 - 
) S (18.204)(1000 1) 
5.13J /mol 
10 
75.310ln 323.15 
298.15 
6 
D = - ´ - =
Internal energy and entropy change calculations f (V,T) 
= ¶ dV 
dV 
dT U 
+ ¶ ÷ø 
æ 
ö ¶ 
V 
çè 
dU U 
ö T 
çè 
÷ø 
V T 
æ 
¶ 
dT S 
+ ¶ ÷ø 
æ 
ö ¶ 
V 
çè 
dS = ¶ 
S 
ö T 
çè 
÷ø 
V T 
æ 
¶ 
V 
U = ÷ø 
ö çè 
V 
C 
æ 
¶ 
T 
¶ 
T S 
U 
= ¶ ÷ø 
æ 
ö ¶ 
çè 
¶ 
V ÷ ÷ø ö 
- ÷ø 
P dV 
æ 
dU = C dT + T ¶ 
S 
ö V 
çè 
T 
ç çè 
- ÷ø 
æ 
¶ 
P 
= - ¶ ÷ø 
ö çè 
T V T 
S 
¶ 
V 
÷ø 
æ 
¶ 
æ 
ö ¶ 
çè 
æ 
= + ¶ 
ö çè 
V ÷ ÷ø 
P dV 
dU C dT T P 
T 
V 
ö 
ç çè 
- ÷ø 
æ 
¶ 
T S 
= ¶ ÷ø 
ö çè 
S C 
V 
T 
¶ 
ö T 
çè 
= ÷ø 
V 
æ 
¶ 
= - ¶ ÷ø 
ö çè 
dV 
S 
P 
¶ 
= + ¶ 
ö çè 
V ÷ø 
T 
dS C dT 
T 
V 
æ 
¶ 
P 
V 
V 
T T 
æ 
ö ¶ 
çè 
V V T 
U 
T 
÷ø 
æ 
¶ 
¶ 
æ 
ö ¶ 
çè 
P 
T V T 
V 
÷ø 
æ 
¶ 
æ 
ö ¶ 
çè
Gibbs energy G = G (P,T) 
dG =VdP - SdT 
dT 
d G dG G 
2 
RT 
º 1 - ÷ø 
ö çè 
RT RT 
æ 
Thermodynamic property of great potential utility 
dG =VdP - SdT 
dT 
÷ø 
çè 
d æ 
G ö º V 
dP - H 
RT 
RT 
RT 
2 G º H -TS 
dT 
dP G RT 
+ ¶ ÷ø 
æ ( / ) ( / ) 
ö T 
çè 
G RT 
P 
d G 
RT 
÷ø 
æ 
¶ 
T P 
æ 
ö ¶ 
çè 
= ¶ ÷ø 
ö çè 
G RT 
= ¶( / ) 
ö çè 
T P 
V 
RT 
÷ø 
æ 
¶ 
T G RT 
= - ¶( / ) 
ö çè 
P T 
H 
RT 
÷ø 
æ 
¶ 
G/RT = g (P,T) 
The Gibbs energy serves as a generating function 
for the other thermodynamic properties.
Residual properties 
• The definition for the generic residual property: 
M R º M -Mig 
– M and Mig are the actual and ideal-gas properties, 
respectively. 
– M is the molar value of any extensive thermodynamic 
properties, e.g., V, U, H, S, or G. 
• The residual Gibbs energy serves as a generating 
function for the other residual properties: 
dT 
ö 
R R R 
dP H 
RT 
V 
RT 
æ 
d G 
RT 
2 - = ÷ ÷ø 
ç çè
R R 
= ÷ ÷ø 
æ 
æ const T dP 
dT 
ö 
R R R 
dP H 
RT 
V 
RT 
d G 
RT 
2 - = ÷ ÷ø 
ç çè 
V 
RT 
d G 
RT 
ö 
ç çè 
= òR P R 
dP 
V 
RT 
G 
RT 
0 
RT 
P 
V R =V -V ig = ZRT - 
P 
= - ¶( / ) 
ö çè 
( 1) P T 
= ò - R P 
Z dP 
P 
G 
RT 
0 
T G RT 
H 
RT 
÷ø 
æ 
¶ 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
P 
R 
dP 
P 
T 
H 
RT 
0 
dP 
T Z 
= - ¶ P P 
æ 
ö ¶ 
çè 
Z dP 
ò ò - - ÷ø 
P 
R 
P 
P 
T 
S 
R 
0 0 
( 1) 
S R R G 
R 
RT 
H 
RT 
R 
= - 
const T 
const T 
Z = PV/RT: experimental measurement .Given PVT data or an appropriate equation 
of state, we can evaluate HR and SR and hence all other residual properties.
{ } 
þ ý ü î í ì 
H = H + H = H + C dT + - RT ¶ 
Z 
ö çè 
÷ø 
dP 
0 
H R ICPH T T A B C D RT Z 
= + ´ + - ¶ 
{ } 
{ ( )} 
{ ( )} 
þ ý ü 
î í ì 
( , ; , , , ) 
H C T T RT Z 
= + - + - ¶ 
ö çè 
dP 
dP 
0 
2 
0 0 
H R MCPH T T A B C D T T RT Z 
= + ´ - + - ¶ 
ö çè 
÷ø 
æ 
¶ 
þ ý ü 
î í ì 
÷ø 
æ 
¶ 
þ ý ü 
î í ì 
÷øö çè 
æ 
¶ 
æ 
¶ 
ò 
ò 
ò 
ò ò 
P 
P 
ig 
P 
P 
H 
ig 
P 
ig 
P 
P 
ig 
P 
P 
T 
T 
ig 
P 
ig R ig 
dP 
P 
T 
P 
T 
P 
T 
P 
T 
0 
2 
0 0 0 
0 
2 
0 0 
0 
2 
0 
( , ; , , , ) 
þ ý ü 
R T Z 
+ - ¶ 
ö çè 
dP 
R P 
S S S S C dT 
ò ò ò 
ln ( 1) 
R T Z 
+ - ¶ 
ö çè 
dP 
Z dP 
ò ò 
0 
( , ; , , , ) ln ( 1) 
ln ln ( 1) 
î í ì 
Z dP 
R T Z 
dP 
+ - ¶ 
ö çè 
Z dP 
Z dP 
dP 
- - ÷ø 
æ 
¶ 
þ ý ü 
S R ICPS T T A B C D R P 
R T Z 
+ - ¶ 
ö çè 
R P 
S C T 
î í ì 
î í ì = + ´ - 
þ ý ü 
- - ÷ø 
æ 
¶ 
þ ý ü 
î í ì 
= + - 
þ ý ü 
î í ì 
- - ÷ø 
æ 
¶ 
þ ý ü 
î í ì 
= + ´ - 
þ ý ü 
î í ì 
- - ÷ø 
æ 
¶ 
þ ý ü 
î í ì 
= + = + - 
ò ò 
ò ò 
P P 
P 
S ig 
R MCPS T T A B C D T 
P P 
P 
S 
ig 
P 
ig 
P P 
P 
ig 
P P 
P 
T 
T 
ig 
P 
ig R ig 
P 
P 
T 
R P 
P 
T 
P 
P 
T 
P 
T 
P 
P 
T 
P 
P 
P 
T 
P 
T 
0 0 
0 0 
0 0 
0 0 
0 0 
0 
0 0 
0 
0 0 
0 0 
0 
0 
( , ; , , , ) ln ln ( 1)
Calculate the enthalpy and entropy of saturated isobutane vapor at 360 
K from the following information: (1) compressibility-factor for 
isobutane vapor; (2) the vapor pressure of isobutane at 360 K is 15.41 
bar; (3) at 300K and 1 bar, Hig = 18115 J /mol Sig = 295.976 J /mol ×K 0 0 
(4) the 
ideal-gas heat capacity of isobutane vapor: 
Cig / R =1.7765 + 33.037´10-3 
T 
P 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
P 
R 
dP 
P 
T 
H 
RT 
dP 
T Z 
= - ¶ P P 
æ 
ö ¶ 
çè 
Z dP 
S 
0 ò ò - - ÷ø 
P 
R 
P 
P 
T 
R 
0 0 
( 1) 
Z 
¶ 
Graphical integration requires plots of P and (Z-1)/P vs. P. 
T 
/ ÷ø 
P 
æ 
ö ¶ 
çè 
dP 
T Z 
= - ¶ - òP 
(360)(26.37 10 4 ) 0.9493 
0 
ö çè 
- = ´ - = ÷ø 
æ 
¶ 
P 
R 
P 
T 
H 
RT 
dP 
T Z 
= - ò ¶ òP P 
ö çè 
Z dP 
- = - - - = - - ÷ø 
( 1) 0.9493 ( 0.02596) 0.6897 
æ 
¶ 
0 0 
P 
R 
P 
P 
T 
S 
R 
H R = -2841.3J /mol 
S R = -5.734J /mol ×K 
H = { Hig + R ´ ICPH(300,360;1.7765,33.037E - 3,0.0,0.0) } + H R = 
21598.5 J 0 mol 
{ } mol K 
S Sig R ICPS E R S R J 
× 
(300,360;1.7765,33.037 3,0.0,0.0) ln 15.41 0 
= + ´ - - + = 286.676 
1
Residual properties by equation 
of state 
• If Z = f (P,T): 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
dP 
T Z 
= - ¶ P P 
æ 
ö ¶ 
çè 
R 
Z dP 
S 
÷ø 
ò - ò - 0 P 
R 
dP 
P 
T 
H 
RT 
0 0 
P 
P 
P 
T 
R 
( 1) 
• The calculation of residual properties for gases 
and vapors through use of the virial equations and 
cubic equation of state.
Use of the virial equation of state 
Z -1 = BP 
RT 
= ò - R P 
Z dP 
P 
G 
RT 
0 
( 1) 
two-term virial equation 
BP 
RT 
GR 
RT 
= 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
P 
R 
dP 
P 
T 
H 
RT 
= - ¶ P 
BP 
æ + 
ö ¶ 
çè 
H 
Z -1 = BP 
0 ò ÷ø 
P 
R 
dP 
P 
RT 
T 
T 
RT 
0 
(1 ) 
ö 
T æ 
P 
ö çè 
B 
dB 
1 
ö çè 
ò ÷ ÷ø 
ç çè 
÷ø 
æ - ÷ø 
= - æ P 
P 
R 
dP 
P 
T 
dT 
R T 
H 
RT 
0 2 
RT 
dB 
B 
ö çè 
÷ø 
P 
= æ - 
dT 
T 
R 
H R 
RT 
S R R G 
R 
RT 
H 
RT 
R 
= - 
P 
dB 
R 
dT 
S R 
RT 
= -
Z -1 = Br +Cr 2 
Three-term virial equation 
= ò - R P 
Z dP 
P 
G 
RT 
0 
( 1) 
= 2 r + 3 r 2 - 
B C Z 
GR 
RT 
ln 
2 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
P 
R 
dP 
P 
T 
H 
RT 
ù 
T é 
B 
dC 
C 
r 1 r 
dB 
= æ - 2 
ö çè 
ö çè 
H R 
0 úû 
êë 
÷ø 
æ - + ÷ø 
2 
dT 
T 
dT 
T 
RT 
S R R G 
R 
RT 
H 
RT 
R 
= - 
P = ZrRT 
Application up to moderate pressure
Use of the cubic equation of state 
• The generic cubic equation of state: 
a T 
( ) 
V b V b 
( )( ) 
P RT 
V b 
+e +s 
- 
- 
= 
1 
q r 
b 
b b 
b 
r + + 
1 (1 )(1 ) 
Z 
er sr 
- 
- 
= 
q º a(T) 
bRT 
ò r (Z -1) d r 
= -ln(1- r 
b) - qI 
0 
r 
I 
Z = - ÷ø 
d dq 
dT 
¶ òr 
æ 
ö ¶ 
T 
çè 
r 
r r 
0 
const T 
I ò d ( r 
b) 
+ + 
b b 
º r 
er sr 
0 (1 )(1 ) 
qI 
é 
Z d T 
1 lna ( ) 
= - + -1 
d T 
H 
RT 
r 
r 
R 
ù 
úû 
êë 
ln 
é 
Z d T 
ù 
ln b lna ( ) 
( ) qI 
= - + -1 
d T 
S 
R 
r 
r 
R 
úû 
êë 
ln 
b º bP 
RT
Find values for the residual enthalpy HR and the residual entropy SR 
for n-butane gas at 500 K and 50 bar as given by Redlich/Kwong 
equation. 
T = 500 = 1.317 
r 1.176 
425.1 
= 50 = r P = W = 0.09703 
37.96 
b P ( ) = 3.8689 
r 
T 
r 
q = Y 
a T 
r 
T 
W 
r 
Z q Z 
= + - - 
b b b 
Z Z 
+ + 
( )( ) 
1 
eb sb 
e = 0 
s =1 Z = 0.685 
qI 
I ò d ( r 
b) 
+ + 
é 
Z d T 
1 lna ( ) 
= - + -1 
d T 
H 
RT 
r 
r 
R 
ù 
úû 
êë 
ln 
é 
Z d T 
ù 
ln b lna ( ) 
( ) qI 
= - + -1 
d T 
S 
R 
r 
r 
R 
úû 
êë 
ln 
const T 
b b 
º r 
er sr 
0 (1 )(1 ) 
ö 
æ 
+ 
sb 
I Z 
13247 . 0 ln 1 = ÷ ÷ø 
ç çè 
+ 
- 
= 
eb 
s e Z 
H R = -4505 J 
mol 
S R J 
mol × 
K 
= -6.546
Two-phase systems 
• Whenever a phase transition at constant 
temperature and pressure occurs, 
– The molar or specific volume, internal energy, 
enthalpy, and entropy changes abruptly. The exception 
is the molar or specific Gibbs energy, which for a pure 
species does not change during a phase transition. 
– For two phases α and β of a pure species coexisting at 
equilibrium: 
Ga = Gb 
where Gα and Gβ are the molar or specific Gibbs energies of the individual phases
Ga = Gb dGa = dGb 
dG =VdP - SdT 
ab 
a b 
S 
S S 
dPsat 
= D 
= - 
Va dPsat - Sa dT =V b dPsat - Sb dT a b 
ab 
V 
V V 
dT 
D 
- 
dH = TdS +VdP DHab = TDSab 
The latent heat of phase transition 
ab 
ab 
H 
= D 
T V 
dPsat 
dT 
D 
The Clapeyron equation 
DVab =V = RT 
sat 
v 
P 
Ideal gas, and Vl << Vg 
H R d P 
sat 
ln 
d T 
(1/ ) 
D lv = - 
The Clausius/Clapeyron equation
ab 
ab 
H 
= D 
T V 
dPsat 
dT 
D 
The Clapeyron equation: a vital connection between the properties of different phases. 
P = f (T) 
ln Psat = A- B For the entire temperature range from the triple point 
T 
to the critical point 
Psat A B 
ln = - The Antoine equation, for a specific temperature range 
T + 
C 
= + + + 
t t t t 
- 
t 
1 
ln 
A B 1.5 C 3 D 6 Psat 
r 
The Wagner equation, over a wide 
temperature range. 
r t =1-T
Two-phase liquid/vapor systems 
• When a system consists of saturated-liquid and 
saturated-vapor phases coexisting in equilibrium, 
the total value of any extensive property of the 
two-phase system is the sum of the total properties 
of the phases: 
M = (1- xv )Ml + xvMv 
– M represents V, U, H, S, etc. 
– e.g., V = (1- xv )V v + xvV v
Thermodynamic diagrams and tables 
• A thermodynamic diagram represents the temperature, 
pressure, volume, enthalpy, and entropy of a substance on 
a single plot. Common diagrams are: 
– TS diagram 
– PH diagram (ln P vs. H) 
– HS diagram (Mollier diagram) 
• In many instances, thermodynamic properties are reported 
in tables. The steam tables are the most thorough 
compilation of properties for a single material.
Fig. 6.2
Fig. 6.3
Fig. 6.4
Superheated steam originally at P1 and T1 expands through a nozzle to an 
exhaust pressure P2. Assuming the process is reversible and adiabatic, determine 
the downstream state of the steam and ΔH for the following conditions: 
(a) P1 = 1000 kPa, T1 = 250°C, and P2 = 200 kPa. 
(b) P1 = 150 psia, T1 = 500°F, and P2 = 50 psia. 
Since the process is both reversible and adiabatic, the entropy change 
of the steam is zero. 
(a) From the steam stable and the use of interpolation, 
At P1 = 1000 kPa, T1 = 250°C: 
H1 = 2942.9 kJ/kg, S1 = 6.9252 kJ/kg.K 
At P2 = 200 kPa, 
S2 = S1= 6.9252 kJ/kg.K < Ssaturated vapor, 
the final state is in the two-phase liquid-vapor region: 
S xv Sl xvSv 2 2 2 2 2 = (1- ) + xv xv2 2 6.9252 =1.5301(1- ) + 7.1268 
0.9640 2 xv = 
H H H 315.9 kJ 2 1 D = - = - 
(1 0.964)(504.7) (0.964)(2706.3) 2627.0 2 kg H = - + =
(a) From the steam stable and the use of interpolation, 
At P1 = 150 psia, T1 = 500°F: 
H1 = 1274.3 Btu/lbm, S1 = 1.6602 Btu/lbm.R 
At P2 = 50 psia, 
S2 = S1= 1.6602 Btu/lbm.K > Ssaturated vapor, 
the final state is in the superheat region: 
T 283.28 F 2 = 
H H H 99.0 Btu 2 1 D = - = - 
lbm 
H 1175.3 Btu / lbm 2 =
A 1.5 m3 tank contains 500 kg of liquid water in equilibrium with pure water 
vapor, which fills the remainder of the tank. The temperature and pressure are 
100°C, and 101.33 kPa. From a water line at a constant temperature of 70°C and 
a constant pressure somewhat above 101.33 kPa, 750 kg of liquid is bled into 
the tank. If the temperature and pressure in the tank are not to change as a result 
of the process, how much energy as heat must be transferred to the tank? 
d mU Energy balance: ( )cv =  + ¢ ¢ 
Q H m 
dt 
d mU ( )cv =  + ¢ cv 
Q H dm 
dt 
dt 
cv cv Q = D(mU) - H¢Dm 
H =U + PV 
cv cv cv Q = D(mH) - D(PmV ) - H¢Dm 
cv cv cv Q = (m H ) - (m H ) - H¢Dm 2 2 1 1 
At the end of the process, the tank still contains saturated liquid and 
saturated vapor in equilibrium at 100°C and 101.33 kPa.
Q = (m H ) - m H - H¢Dm 2 2 cv () 1 1 cv cv H¢ = 293.0 kJ saturated liquid @70 
C 
kg 
saturated liquid C 
kJ Hlcv 
= 419.1 @100 
kg 
saturated vapor C 
Hv kJ 
kg 
cv 
= 2676.0 @100 
From the steam table, the specific volumes of saturated liquid and saturated 
vapor at 100°C are 0.001044 and 1.673 m3/kg , respectively. 
( ) 500(419.1) 1.5 (500)(0.001044) 1 1 1 1 1 1 = + = + - = 
m H mlHl mvHv kJ 
cv (2676.0) 211616 
1.673 
= 500 + 1.5 - (500)(0.001044) + = + mv ml2 2 1.5 =1.673 + 0.001044 
m ml mv2 2 2 750 
1.673 
m H mlHl mvHv kJ 
( )cv 524458 2 2 2 2 2 2 = + = 
Q m H m H H m kJ ( )cv ( )cv cv 524458 211616 (750)(293.0) 93092 2 2 1 1 = - - ¢D = - - =
c r P = P P c r T = T T 
T Z 
= - ¶ P 
æ 
ö ¶ 
çè 
ò ÷ø 
P 
R 
dP 
P 
T 
H 
RT 
0 
dP 
T Z 
= - ¶ P P 
æ 
ö ¶ 
çè 
Z dP 
ò ò - - ÷ø 
P 
R 
P 
P 
T 
S 
R 
0 0 
( 1) 
ö 
æ 
¶ 
T Z 
= - ¶ r 
ò ÷ ÷ø 
ç çè 
r 
P 
dP 
r 
r 
r P 
r 
R 
c 
P 
T 
H 
RT 
0 
2 
ö 
æ 
¶ 
dP 
T Z 
= - ¶ r r 
Z dP 
P r 
ò ò - - ÷ ÷ø 
ç çè 
r 
P 
r 
r 
r 
r P 
r 
R 
P 
P 
T 
S 
R 
0 0 
( 1) 
Z = Z 0 +wZ1 
ù 
ú ú 
û 
é 
T Z 
dP 
T Z 
= - ò ¶ ò r 
- - ¶ 
ê ê 
ë 
ö 
÷ ÷ø 
æ 
¶ 
ç çè 
ù 
ú ú û 
é 
ê ê 
ë 
ö 
÷ ÷ø 
æ 
¶ 
ç çè 
r 
r 
r 
P 
dP 
r 
r 
r P 
r 
P 
r 
r 
r P 
r 
R 
c 
P 
T 
P 
T 
H 
RT 
0 
1 
2 
0 
0 
2 w 
ù 
ú ú 
û 
é 
dP 
T Z 
Z dP 
dP 
T Z 
= - ò ¶ ò - - ò r ¶ 
ò r 
ê ê 
ë 
ö 
Z dP 
P r 
- - ÷ ÷ø 
æ 
¶ 
ç çè 
ù 
ú ú 
û 
é 
ê ê 
ë 
ö 
P r 
- - ÷ ÷ø 
æ 
¶ 
ç çè 
r 
r r 
r 
P 
r 
r 
r 
r P 
r 
P 
r 
r 
r 
r P 
r 
R 
P 
P 
T 
P 
P 
T 
S 
R 
0 
1 
0 
1 
0 
0 
0 
0 
( 1) w ( 1) 
( ) ( ) ( , , ) 
é 
H 
0 H 
R 
1 
= +w 
HRB TR PR OMEGA 
RT 
RT 
( ) ( ) ( , , ) 
H 
R 
RT 
c 
c 
R 
c 
= 
ù 
ú úû 
ê êë 
é 
0 1 
= +w SRB TR PR OMEGA 
Table E5 ~ E12 
S R R S 
R 
R 
S 
R 
R 
= 
ù 
ú úû 
ê êë
T R 
T 
0 = + ò + 
H Hig 2 
C ig 
dT H2 0 P 
2 
T R 
T 
0 = + ò + 
H Hig 1 
C ig 
dT H1 0 P 
1 
T R R 
T 
D = ò + - 
H 2 
C ig 
dT H HP 2 1 
1 
S S C dT R P 
2 
T R 
T 
= + ò - ln + 
ig S 
ig 
P 
2 
P 
T 
0 
2 0 
2 
0 
S S C dT R P 
1 
T R 
T 
= + ò - ln + 
ig S 
ig 
P 
1 
P 
T 
0 
1 0 
1 
0 
ig 
P H C T T H H2 1 2 1 D = ( - ) + - 
R R 
S C dT R P 
2 1 
T R R 
T 
D = ò - ln + - 
ig 
P S S 
2 2 
1 
P 
T 
1 
H 
S C ig 
P S S 
P 2 1 
R R 
D = ln 2 + - 
S 
P 
1
Estimate V, U, H, and S for 1-butene vapor at 200°C and 70 bar if H and S are 
set equal to zero for saturated liquid at 0°C. Assume that only data available are: 
T K c = 420 P bar c = 40.43 w = 0.191 T 266.9K (nomal boiling pt.) n = 
Cig / R 1.967 31.630 10 3T 9.837 10 6T 2 
P 
= + ´ - - ´ - 
=1.127 r T =1.731 r P 
0 1 
Z = Z +wZ 
= + 
0.485 (0.191)(0.142) 
0.512 
= 
cm 
mol 
V ZRT 
P 
3 
= = 287.8 
Assuming four steps: 
(a) Vaporization at T1 and P1 = Psat 
(b) Transition to the ideal-gas state at (T1, P1) 
(c) Change to (T2, P2) in the ideal-gas state 
(d) Transition to the actual final state at (T2, P2) 
Fig 6.7
Fig 6.7
Step (a) 
ln Psat = A- B 
T 
ln1.0133 = A- B 
266.9 
ln 40.43 = A- B 
420 
For = 273.15K, 
Psat = 1.2771 bar 
9.979 
lv 
n 
H 
D = - 
1.092(ln 1.013) = 
0.930 
- 
rn 
c 
n 
T 
P 
RT 
The latent heat at normal boiling point: 
The latent heat at 273.15 K: 
0.38 
æ 
- 
= 1 
- 
1 
ö 
÷ ÷ 
ø 
ç ç 
è 
H 
D 
D 
T 
r 
rn 
lv 
lv 
n 
T 
H 
DHlv = 21810 J 
mol 
DHab = TDSab 
Slv J 
mol × 
K 
D = 79.84 
Step (b) = 0.650 r T = 0.0316 r P 
( ) ( ) ( , , ) 0.0985 
é 
0 1 
= + HRB TR PR OMEGA 
= = - 
ù 
ú úû 
ê êë 
H 
R 
RT 
H 
RT 
H 
R 
RT 
c 
c 
R 
c 
w 
( ) ( ) ( , , ) 0.1063 
é 
0 1 
= + SRB TR PR OMEGA 
= = - 
ù 
ú úû 
S R R R 
ê êë 
S 
R 
S 
R 
R 
w 
H R 344 J 1 - = 
mol 
S R J 
mol × 
K 
- = 0.88 1
Step (c) 
DHig = 8.314´ ICPH(273.15,473.15;1.967,31.630E -3,-9.837E - 6,0.0) = 20564 J 
mol 
8.314 (273.15,473.15;1.967,31.630 3, 9.837 6,0.0) 8.314ln 70 
Sig ICPS E E 
D = ´ - - - - 
J 
mol × 
K 
= 
22.18 
1.2771 
Step (d) =1.127 r T =1.731 r P 
( ) ( ) 2.430 
é 
= + 
0 1 
= - 
ù 
ú úû 
H w 
ê êë 
R 
c 
c 
R 
R 
c 
H 
RT 
H 
RT 
RT 
( ) ( ) 1.705 
é 
= + 
0 1 
= - 
ù 
ú úû 
S R R R 
ê êë 
S 
R 
S 
R 
R 
w 
H R 8485 J 2 = - 
mol 
S R J 
mol × 
K 
= -14.18 2 
H = DH = 21810 - (-344) + 20564 -8485 = 34233 J 
mol 
S S J 
mol × 
K 
= D = 79.84 - (-0.88) + 22.18 -14.18 = 88.72 
Total 
U = H - PV= 34233- (70)(287.8) /10 = 32218 J 
mol
Gas mixtures 
• Simple linear mixing rules 
w ºå 
yw i i ºå 
i 
Pc i ci T y T ºå 
i 
Pc i ci P y P 
i 
Estimate V, HR, and SR for an equimolar mixture of carbon dioxide and propane 
at 450K and 140 bar 
T y T K 
= (0.5)(304.2) + (0.5)(369.8) = 337 
Pc ºå i ci i 
P y P bar 
Pc i ci ºå = (0.5)(73.83) + (0.5)(42.48) = 58.15 = 2.41 pr P 
i 
=1.335 pr T Z 0 = 0.697 
Z1 = 0.205 
188 . 0 ) 152 . 0 )( 5 . 0 ( ) 224 . 0 )( 5 . 0 ( = + = ºåi 
i i w yw Z = Z 0 +wZ1 = 0.736 
( ) ( ) = =196.7 cm 
1.762 
mol 
V ZRT 
P 
3 
H é 
0 1 
ù 
( ) ( ) = + 
w = - 
1.029 
ú úû 
ê êë 
R 
pc 
R 
pc 
R 
pc 
H 
RT 
H 
RT 
RT 
é 
= + 
0 1 
= - 
ù 
ú úû 
S R R R 
ê êë 
S 
R 
S 
R 
R 
w 
H R = -4937 J /mol S R = -8.56 J /mol ×K

More Related Content

What's hot

Entropy
EntropyEntropy
Entropy
Aakash Singh
 
distillation
distillationdistillation
distillation
Govind Manglani
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
secrurie2
 
Enthalpy and Internal Energy
Enthalpy and Internal EnergyEnthalpy and Internal Energy
Enthalpy and Internal EnergyLumen Learning
 
Lecture 13 - Gas Mixtures
Lecture 13 - Gas Mixtures Lecture 13 - Gas Mixtures
Lecture 13 - Gas Mixtures
Sijal Ahmed
 
Fugacity
FugacityFugacity
Fugacity
Abrar Abdullah
 
Thermodynamics III
Thermodynamics IIIThermodynamics III
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTIONAbdul Moiz Dota
 
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
Jay Patel
 
Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics
agsmeice
 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
Arun Sarasan
 
Thermodynamics, part 8
Thermodynamics, part 8Thermodynamics, part 8
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy models
Sunny Chauhan
 
1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid Equilibrium1.1 Vapor Liquid Equilibrium
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
PEC University Chandigarh
 
Heat transfer efficiency
 Heat transfer efficiency Heat transfer efficiency
Heat transfer efficiencyAcidBurntrm
 
Chilton Colburn Analogy - Overall Concept
Chilton Colburn Analogy - Overall ConceptChilton Colburn Analogy - Overall Concept
Chilton Colburn Analogy - Overall Concept
SyedHameedAnwarSahib
 
Van Laar & NRTL Equation in Chemical Engineering Thermodynamicas
Van Laar & NRTL Equation in Chemical Engineering ThermodynamicasVan Laar & NRTL Equation in Chemical Engineering Thermodynamicas
Van Laar & NRTL Equation in Chemical Engineering Thermodynamicas
Satish Movaliya
 

What's hot (20)

Entropy
EntropyEntropy
Entropy
 
distillation
distillationdistillation
distillation
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Enthalpy and Internal Energy
Enthalpy and Internal EnergyEnthalpy and Internal Energy
Enthalpy and Internal Energy
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
Lecture 13 - Gas Mixtures
Lecture 13 - Gas Mixtures Lecture 13 - Gas Mixtures
Lecture 13 - Gas Mixtures
 
Fugacity
FugacityFugacity
Fugacity
 
Thermodynamics III
Thermodynamics IIIThermodynamics III
Thermodynamics III
 
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTION
 
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
Lewis-Randall Rule ,Excess property,Excess Gibbs Energy &Activity Coefficient
 
Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics
 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Thermodynamic, part 2
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
Thermodynamics, part 8
Thermodynamics, part 8Thermodynamics, part 8
Thermodynamics, part 8
 
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy models
 
1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid Equilibrium1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid Equilibrium
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
 
Heat transfer efficiency
 Heat transfer efficiency Heat transfer efficiency
Heat transfer efficiency
 
Chilton Colburn Analogy - Overall Concept
Chilton Colburn Analogy - Overall ConceptChilton Colburn Analogy - Overall Concept
Chilton Colburn Analogy - Overall Concept
 
Van Laar & NRTL Equation in Chemical Engineering Thermodynamicas
Van Laar & NRTL Equation in Chemical Engineering ThermodynamicasVan Laar & NRTL Equation in Chemical Engineering Thermodynamicas
Van Laar & NRTL Equation in Chemical Engineering Thermodynamicas
 

Viewers also liked

Advanced thermodynamics
Advanced thermodynamicsAdvanced thermodynamics
Advanced thermodynamicsOrtal Levi
 
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSimEasy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
Isabelle Girard
 
Basic Thermodynamics 2 Mechanical Engineering Handwritten classes Notes (Stu...
Basic Thermodynamics 2  Mechanical Engineering Handwritten classes Notes (Stu...Basic Thermodynamics 2  Mechanical Engineering Handwritten classes Notes (Stu...
Basic Thermodynamics 2 Mechanical Engineering Handwritten classes Notes (Stu...
Khagendra Gautam
 
Thermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesThermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesMuhammad Surahman
 
P k-nag-solution 2
P k-nag-solution 2P k-nag-solution 2
P k-nag-solution 2
Nitesh Singh
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
Angel Darío González-Delgado
 
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th editionsolution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
Chandu Kolli
 

Viewers also liked (8)

Advanced thermodynamics
Advanced thermodynamicsAdvanced thermodynamics
Advanced thermodynamics
 
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSimEasy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
 
Basic Thermodynamics 2 Mechanical Engineering Handwritten classes Notes (Stu...
Basic Thermodynamics 2  Mechanical Engineering Handwritten classes Notes (Stu...Basic Thermodynamics 2  Mechanical Engineering Handwritten classes Notes (Stu...
Basic Thermodynamics 2 Mechanical Engineering Handwritten classes Notes (Stu...
 
Lecture28
Lecture28Lecture28
Lecture28
 
Thermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesThermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure Substances
 
P k-nag-solution 2
P k-nag-solution 2P k-nag-solution 2
P k-nag-solution 2
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
 
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th editionsolution manual to basic and engineering thermodynamics by P K NAG 4th edition
solution manual to basic and engineering thermodynamics by P K NAG 4th edition
 

Similar to Advance thermodynamics

Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Reactor BaTch não isotérmico.ppsx
Reactor BaTch não isotérmico.ppsxReactor BaTch não isotérmico.ppsx
Reactor BaTch não isotérmico.ppsx
PedroFigueira30
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
Rafi Flydarkzz
 
Radiation
RadiationRadiation
Radiation
Soumith V
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
soukat2
 
Hydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable modelsHydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable models
Giorgio Torrieri
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.ppt
ritu919015
 
ScilabTEC 2015 - J. Richalet
ScilabTEC 2015 - J. RichaletScilabTEC 2015 - J. Richalet
ScilabTEC 2015 - J. Richalet
Scilab
 
Cubic root using excel
Cubic root using excelCubic root using excel
Cubic root using excel
Akshaya Mishra
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Amir Rafati
 
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjkdyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
BDffrnt
 
Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansion
Lisa Erkens
 
Change of subject
Change of subjectChange of subject
Change of subject
Josephine Thong
 
Differential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions ManualDifferential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions Manual
qyfuc
 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sources
Soumith V
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
Edhole.com
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
Samandar Yuldoshev
 

Similar to Advance thermodynamics (20)

Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Reactor BaTch não isotérmico.ppsx
Reactor BaTch não isotérmico.ppsxReactor BaTch não isotérmico.ppsx
Reactor BaTch não isotérmico.ppsx
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Radiation
RadiationRadiation
Radiation
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
 
Hydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable modelsHydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable models
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.ppt
 
Solution 2 i ph o 35
Solution 2 i ph o 35Solution 2 i ph o 35
Solution 2 i ph o 35
 
ScilabTEC 2015 - J. Richalet
ScilabTEC 2015 - J. RichaletScilabTEC 2015 - J. Richalet
ScilabTEC 2015 - J. Richalet
 
Cubic root using excel
Cubic root using excelCubic root using excel
Cubic root using excel
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
 
fluid khmer-Chapter 2
fluid khmer-Chapter 2fluid khmer-Chapter 2
fluid khmer-Chapter 2
 
State equationlecture
State equationlectureState equationlecture
State equationlecture
 
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjkdyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
 
Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansion
 
Change of subject
Change of subjectChange of subject
Change of subject
 
Differential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions ManualDifferential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions Manual
 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sources
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 

More from iimt college meerut

Mech production engg
Mech production enggMech production engg
Mech production engg
iimt college meerut
 
Camless engines
Camless enginesCamless engines
Camless engines
iimt college meerut
 
detailed study on Nanobatterys
detailed study on Nanobatterys detailed study on Nanobatterys
detailed study on Nanobatterys
iimt college meerut
 
arvind kumar
arvind kumararvind kumar
arvind kumar
iimt college meerut
 
Boilers (2)
Boilers (2)Boilers (2)
Boilers (2)
iimt college meerut
 
2013edusat lecture on steam plant(2)
2013edusat lecture on steam  plant(2)2013edusat lecture on steam  plant(2)
2013edusat lecture on steam plant(2)
iimt college meerut
 
Lubrication presantation
Lubrication presantationLubrication presantation
Lubrication presantation
iimt college meerut
 

More from iimt college meerut (9)

Acc03 tai
Acc03 taiAcc03 tai
Acc03 tai
 
Mech production engg
Mech production enggMech production engg
Mech production engg
 
Camless engines
Camless enginesCamless engines
Camless engines
 
detailed study on Nanobatterys
detailed study on Nanobatterys detailed study on Nanobatterys
detailed study on Nanobatterys
 
arvind kumar
arvind kumararvind kumar
arvind kumar
 
ar
arar
ar
 
Boilers (2)
Boilers (2)Boilers (2)
Boilers (2)
 
2013edusat lecture on steam plant(2)
2013edusat lecture on steam  plant(2)2013edusat lecture on steam  plant(2)
2013edusat lecture on steam plant(2)
 
Lubrication presantation
Lubrication presantationLubrication presantation
Lubrication presantation
 

Recently uploaded

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 

Recently uploaded (20)

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 

Advance thermodynamics

  • 1. Advanced Thermodynamics Note 5 Thermodynamic Properties of Fluids Lecturer: 郭修伯
  • 2. Property relations for homogeneous phases First law for a closed system d(nU) = dQ + dW a special reversible process rev rev d(nU) = dQ + dW dW Pd(nV) rev = - dQ Td(nS) rev = d(nU) = Td(nS) - Pd(nV ) Only properties of system are involved: It can be applied to any process in a closed system (not necessarily reversible processes). The change occurs between equilibrium states.
  • 3. The primary thermodynamic properties: P,V, T,U, and S The enthalpy: H ºU + PV The Helmholtz energy: A ºU -TS The Gibbs energy: G º H -TS For one mol of homogeneous fluid of constant composition: dU = TdS - PdV d(nU) = Td(nS) - Pd(nV ) dH = TdS +VdP dA = -PdV - SdT P = - ¶ ÷ø ö çè ÷ø æ ¶ S V S T ¶ æ ö ¶ V çèV = ¶ ÷ø ö çè ÷ø æ ¶ S P S T ¶ æ ö ¶ P çè S = ¶ ÷ø ö çè ÷ø æ ¶ ¶ ö çè V T V P æ ¶ T S V = - ¶ ÷ø ö çè ¶ dG =VdP - SdT Maxwell’s equations P T P T ÷ø æ ¶ æ ö ¶ çè
  • 4. Enthalpy, entropy and internal energy change calculations f (P,T) = ¶ dP dP dT H + ¶ ÷ø æ ö ¶ P çè dH H T ÷ø P T æ ö ¶ çè dT S + ¶ ÷ø æ ö ¶ P çè dS = ¶ S T ÷ø P T æ ö ¶ çè dH = TdS +VdP P H = ÷ø P C æ ö ¶ T çè ¶ V T S = ¶ ÷ø æ ö ¶ P çè H P + ÷ø T T ¶ æ ö ¶ çè ¶ æ H = ¶ ÷ø = + ¶ T S ö çè P ÷ ÷ø V dP dH C dT T S P T ö ç çè + ÷ø æ ¶ S = - ¶ ÷ø ö çè P T P V T ÷ø æ ¶ ¶ æ ö ¶ çè dP æ dH = C dT + V - T ¶ V ö çè P ÷ ÷ø T P ö ç çè ÷ø æ ¶ S C P T ¶ T = ÷ø P æ ö ¶ çè = - ¶ ÷ø ö çè dP V V ¶ = - ¶ æ ö ¶ T çè dS C dT T P P ÷ø P P T T ÷øö çè æ ¶ æ ö ¶ çè S P T P T ÷ø æ ¶ æ ö ¶ çè H ºU + PV V P V + ¶ ÷ø æ ö ¶ P çè U = ¶ ÷ø æ ö ¶ P çè H P + ÷ø T T T ¶ æ ö ¶ çè P V T V - ¶ ÷ø ö çè = - ¶ ÷ø P P T T T U P ÷ø æ ¶ æ ö ¶ çè ¶ æ ö ¶ çè
  • 5. Determine the enthalpy and entropy changes of liquid water for a change of state from 1 bar and 25°C to 1000 bar and 50°C. The data for water are given. H1 and S1 at 1 bar, 25°C H2 and S2 at 1 bar, 50°C H3 and S3 at 1000 bar, 50°C dP æ dH = C dT + V - T ¶ V ö çè P ÷ ÷ø T P ö ç çè ÷ø æ ¶ ( H 75.310(323.15 298.15) 1 (513 10 - )(323.15) ) (18.204)(1000 1) 3400J /mol dP V = - ¶ æ ö ¶ T çè dS C dT T P P ÷ø dH C dT ( T )VdP P = + 1-b ( ) (1 ) ( ) 2 1 2 2 1 H C T T T V P P P D = - + - b - V V T b = ÷ø P ¶ æ ö ¶ çè volume expansivity S C T P D = - b - 2 V P P T ln ( ) 2 1 1 10 6 D = - + - ´ - = ( 513 10 - ) S (18.204)(1000 1) 5.13J /mol 10 75.310ln 323.15 298.15 6 D = - ´ - =
  • 6. Internal energy and entropy change calculations f (V,T) = ¶ dV dV dT U + ¶ ÷ø æ ö ¶ V çè dU U ö T çè ÷ø V T æ ¶ dT S + ¶ ÷ø æ ö ¶ V çè dS = ¶ S ö T çè ÷ø V T æ ¶ V U = ÷ø ö çè V C æ ¶ T ¶ T S U = ¶ ÷ø æ ö ¶ çè ¶ V ÷ ÷ø ö - ÷ø P dV æ dU = C dT + T ¶ S ö V çè T ç çè - ÷ø æ ¶ P = - ¶ ÷ø ö çè T V T S ¶ V ÷ø æ ¶ æ ö ¶ çè æ = + ¶ ö çè V ÷ ÷ø P dV dU C dT T P T V ö ç çè - ÷ø æ ¶ T S = ¶ ÷ø ö çè S C V T ¶ ö T çè = ÷ø V æ ¶ = - ¶ ÷ø ö çè dV S P ¶ = + ¶ ö çè V ÷ø T dS C dT T V æ ¶ P V V T T æ ö ¶ çè V V T U T ÷ø æ ¶ ¶ æ ö ¶ çè P T V T V ÷ø æ ¶ æ ö ¶ çè
  • 7. Gibbs energy G = G (P,T) dG =VdP - SdT dT d G dG G 2 RT º 1 - ÷ø ö çè RT RT æ Thermodynamic property of great potential utility dG =VdP - SdT dT ÷ø çè d æ G ö º V dP - H RT RT RT 2 G º H -TS dT dP G RT + ¶ ÷ø æ ( / ) ( / ) ö T çè G RT P d G RT ÷ø æ ¶ T P æ ö ¶ çè = ¶ ÷ø ö çè G RT = ¶( / ) ö çè T P V RT ÷ø æ ¶ T G RT = - ¶( / ) ö çè P T H RT ÷ø æ ¶ G/RT = g (P,T) The Gibbs energy serves as a generating function for the other thermodynamic properties.
  • 8. Residual properties • The definition for the generic residual property: M R º M -Mig – M and Mig are the actual and ideal-gas properties, respectively. – M is the molar value of any extensive thermodynamic properties, e.g., V, U, H, S, or G. • The residual Gibbs energy serves as a generating function for the other residual properties: dT ö R R R dP H RT V RT æ d G RT 2 - = ÷ ÷ø ç çè
  • 9. R R = ÷ ÷ø æ æ const T dP dT ö R R R dP H RT V RT d G RT 2 - = ÷ ÷ø ç çè V RT d G RT ö ç çè = òR P R dP V RT G RT 0 RT P V R =V -V ig = ZRT - P = - ¶( / ) ö çè ( 1) P T = ò - R P Z dP P G RT 0 T G RT H RT ÷ø æ ¶ T Z = - ¶ P æ ö ¶ çè ò ÷ø P R dP P T H RT 0 dP T Z = - ¶ P P æ ö ¶ çè Z dP ò ò - - ÷ø P R P P T S R 0 0 ( 1) S R R G R RT H RT R = - const T const T Z = PV/RT: experimental measurement .Given PVT data or an appropriate equation of state, we can evaluate HR and SR and hence all other residual properties.
  • 10. { } þ ý ü î í ì H = H + H = H + C dT + - RT ¶ Z ö çè ÷ø dP 0 H R ICPH T T A B C D RT Z = + ´ + - ¶ { } { ( )} { ( )} þ ý ü î í ì ( , ; , , , ) H C T T RT Z = + - + - ¶ ö çè dP dP 0 2 0 0 H R MCPH T T A B C D T T RT Z = + ´ - + - ¶ ö çè ÷ø æ ¶ þ ý ü î í ì ÷ø æ ¶ þ ý ü î í ì ÷øö çè æ ¶ æ ¶ ò ò ò ò ò P P ig P P H ig P ig P P ig P P T T ig P ig R ig dP P T P T P T P T 0 2 0 0 0 0 2 0 0 0 2 0 ( , ; , , , ) þ ý ü R T Z + - ¶ ö çè dP R P S S S S C dT ò ò ò ln ( 1) R T Z + - ¶ ö çè dP Z dP ò ò 0 ( , ; , , , ) ln ( 1) ln ln ( 1) î í ì Z dP R T Z dP + - ¶ ö çè Z dP Z dP dP - - ÷ø æ ¶ þ ý ü S R ICPS T T A B C D R P R T Z + - ¶ ö çè R P S C T î í ì î í ì = + ´ - þ ý ü - - ÷ø æ ¶ þ ý ü î í ì = + - þ ý ü î í ì - - ÷ø æ ¶ þ ý ü î í ì = + ´ - þ ý ü î í ì - - ÷ø æ ¶ þ ý ü î í ì = + = + - ò ò ò ò P P P S ig R MCPS T T A B C D T P P P S ig P ig P P P ig P P P T T ig P ig R ig P P T R P P T P P T P T P P T P P P T P T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( , ; , , , ) ln ln ( 1)
  • 11. Calculate the enthalpy and entropy of saturated isobutane vapor at 360 K from the following information: (1) compressibility-factor for isobutane vapor; (2) the vapor pressure of isobutane at 360 K is 15.41 bar; (3) at 300K and 1 bar, Hig = 18115 J /mol Sig = 295.976 J /mol ×K 0 0 (4) the ideal-gas heat capacity of isobutane vapor: Cig / R =1.7765 + 33.037´10-3 T P T Z = - ¶ P æ ö ¶ çè ò ÷ø P R dP P T H RT dP T Z = - ¶ P P æ ö ¶ çè Z dP S 0 ò ò - - ÷ø P R P P T R 0 0 ( 1) Z ¶ Graphical integration requires plots of P and (Z-1)/P vs. P. T / ÷ø P æ ö ¶ çè dP T Z = - ¶ - òP (360)(26.37 10 4 ) 0.9493 0 ö çè - = ´ - = ÷ø æ ¶ P R P T H RT dP T Z = - ò ¶ òP P ö çè Z dP - = - - - = - - ÷ø ( 1) 0.9493 ( 0.02596) 0.6897 æ ¶ 0 0 P R P P T S R H R = -2841.3J /mol S R = -5.734J /mol ×K H = { Hig + R ´ ICPH(300,360;1.7765,33.037E - 3,0.0,0.0) } + H R = 21598.5 J 0 mol { } mol K S Sig R ICPS E R S R J × (300,360;1.7765,33.037 3,0.0,0.0) ln 15.41 0 = + ´ - - + = 286.676 1
  • 12. Residual properties by equation of state • If Z = f (P,T): T Z = - ¶ P æ ö ¶ çè ò ÷ø dP T Z = - ¶ P P æ ö ¶ çè R Z dP S ÷ø ò - ò - 0 P R dP P T H RT 0 0 P P P T R ( 1) • The calculation of residual properties for gases and vapors through use of the virial equations and cubic equation of state.
  • 13. Use of the virial equation of state Z -1 = BP RT = ò - R P Z dP P G RT 0 ( 1) two-term virial equation BP RT GR RT = T Z = - ¶ P æ ö ¶ çè ò ÷ø P R dP P T H RT = - ¶ P BP æ + ö ¶ çè H Z -1 = BP 0 ò ÷ø P R dP P RT T T RT 0 (1 ) ö T æ P ö çè B dB 1 ö çè ò ÷ ÷ø ç çè ÷ø æ - ÷ø = - æ P P R dP P T dT R T H RT 0 2 RT dB B ö çè ÷ø P = æ - dT T R H R RT S R R G R RT H RT R = - P dB R dT S R RT = -
  • 14. Z -1 = Br +Cr 2 Three-term virial equation = ò - R P Z dP P G RT 0 ( 1) = 2 r + 3 r 2 - B C Z GR RT ln 2 T Z = - ¶ P æ ö ¶ çè ò ÷ø P R dP P T H RT ù T é B dC C r 1 r dB = æ - 2 ö çè ö çè H R 0 úû êë ÷ø æ - + ÷ø 2 dT T dT T RT S R R G R RT H RT R = - P = ZrRT Application up to moderate pressure
  • 15. Use of the cubic equation of state • The generic cubic equation of state: a T ( ) V b V b ( )( ) P RT V b +e +s - - = 1 q r b b b b r + + 1 (1 )(1 ) Z er sr - - = q º a(T) bRT ò r (Z -1) d r = -ln(1- r b) - qI 0 r I Z = - ÷ø d dq dT ¶ òr æ ö ¶ T çè r r r 0 const T I ò d ( r b) + + b b º r er sr 0 (1 )(1 ) qI é Z d T 1 lna ( ) = - + -1 d T H RT r r R ù úû êë ln é Z d T ù ln b lna ( ) ( ) qI = - + -1 d T S R r r R úû êë ln b º bP RT
  • 16. Find values for the residual enthalpy HR and the residual entropy SR for n-butane gas at 500 K and 50 bar as given by Redlich/Kwong equation. T = 500 = 1.317 r 1.176 425.1 = 50 = r P = W = 0.09703 37.96 b P ( ) = 3.8689 r T r q = Y a T r T W r Z q Z = + - - b b b Z Z + + ( )( ) 1 eb sb e = 0 s =1 Z = 0.685 qI I ò d ( r b) + + é Z d T 1 lna ( ) = - + -1 d T H RT r r R ù úû êë ln é Z d T ù ln b lna ( ) ( ) qI = - + -1 d T S R r r R úû êë ln const T b b º r er sr 0 (1 )(1 ) ö æ + sb I Z 13247 . 0 ln 1 = ÷ ÷ø ç çè + - = eb s e Z H R = -4505 J mol S R J mol × K = -6.546
  • 17. Two-phase systems • Whenever a phase transition at constant temperature and pressure occurs, – The molar or specific volume, internal energy, enthalpy, and entropy changes abruptly. The exception is the molar or specific Gibbs energy, which for a pure species does not change during a phase transition. – For two phases α and β of a pure species coexisting at equilibrium: Ga = Gb where Gα and Gβ are the molar or specific Gibbs energies of the individual phases
  • 18. Ga = Gb dGa = dGb dG =VdP - SdT ab a b S S S dPsat = D = - Va dPsat - Sa dT =V b dPsat - Sb dT a b ab V V V dT D - dH = TdS +VdP DHab = TDSab The latent heat of phase transition ab ab H = D T V dPsat dT D The Clapeyron equation DVab =V = RT sat v P Ideal gas, and Vl << Vg H R d P sat ln d T (1/ ) D lv = - The Clausius/Clapeyron equation
  • 19. ab ab H = D T V dPsat dT D The Clapeyron equation: a vital connection between the properties of different phases. P = f (T) ln Psat = A- B For the entire temperature range from the triple point T to the critical point Psat A B ln = - The Antoine equation, for a specific temperature range T + C = + + + t t t t - t 1 ln A B 1.5 C 3 D 6 Psat r The Wagner equation, over a wide temperature range. r t =1-T
  • 20. Two-phase liquid/vapor systems • When a system consists of saturated-liquid and saturated-vapor phases coexisting in equilibrium, the total value of any extensive property of the two-phase system is the sum of the total properties of the phases: M = (1- xv )Ml + xvMv – M represents V, U, H, S, etc. – e.g., V = (1- xv )V v + xvV v
  • 21. Thermodynamic diagrams and tables • A thermodynamic diagram represents the temperature, pressure, volume, enthalpy, and entropy of a substance on a single plot. Common diagrams are: – TS diagram – PH diagram (ln P vs. H) – HS diagram (Mollier diagram) • In many instances, thermodynamic properties are reported in tables. The steam tables are the most thorough compilation of properties for a single material.
  • 25. Superheated steam originally at P1 and T1 expands through a nozzle to an exhaust pressure P2. Assuming the process is reversible and adiabatic, determine the downstream state of the steam and ΔH for the following conditions: (a) P1 = 1000 kPa, T1 = 250°C, and P2 = 200 kPa. (b) P1 = 150 psia, T1 = 500°F, and P2 = 50 psia. Since the process is both reversible and adiabatic, the entropy change of the steam is zero. (a) From the steam stable and the use of interpolation, At P1 = 1000 kPa, T1 = 250°C: H1 = 2942.9 kJ/kg, S1 = 6.9252 kJ/kg.K At P2 = 200 kPa, S2 = S1= 6.9252 kJ/kg.K < Ssaturated vapor, the final state is in the two-phase liquid-vapor region: S xv Sl xvSv 2 2 2 2 2 = (1- ) + xv xv2 2 6.9252 =1.5301(1- ) + 7.1268 0.9640 2 xv = H H H 315.9 kJ 2 1 D = - = - (1 0.964)(504.7) (0.964)(2706.3) 2627.0 2 kg H = - + =
  • 26. (a) From the steam stable and the use of interpolation, At P1 = 150 psia, T1 = 500°F: H1 = 1274.3 Btu/lbm, S1 = 1.6602 Btu/lbm.R At P2 = 50 psia, S2 = S1= 1.6602 Btu/lbm.K > Ssaturated vapor, the final state is in the superheat region: T 283.28 F 2 = H H H 99.0 Btu 2 1 D = - = - lbm H 1175.3 Btu / lbm 2 =
  • 27. A 1.5 m3 tank contains 500 kg of liquid water in equilibrium with pure water vapor, which fills the remainder of the tank. The temperature and pressure are 100°C, and 101.33 kPa. From a water line at a constant temperature of 70°C and a constant pressure somewhat above 101.33 kPa, 750 kg of liquid is bled into the tank. If the temperature and pressure in the tank are not to change as a result of the process, how much energy as heat must be transferred to the tank? d mU Energy balance: ( )cv =  + ¢ ¢ Q H m dt d mU ( )cv =  + ¢ cv Q H dm dt dt cv cv Q = D(mU) - H¢Dm H =U + PV cv cv cv Q = D(mH) - D(PmV ) - H¢Dm cv cv cv Q = (m H ) - (m H ) - H¢Dm 2 2 1 1 At the end of the process, the tank still contains saturated liquid and saturated vapor in equilibrium at 100°C and 101.33 kPa.
  • 28. Q = (m H ) - m H - H¢Dm 2 2 cv () 1 1 cv cv H¢ = 293.0 kJ saturated liquid @70 C kg saturated liquid C kJ Hlcv = 419.1 @100 kg saturated vapor C Hv kJ kg cv = 2676.0 @100 From the steam table, the specific volumes of saturated liquid and saturated vapor at 100°C are 0.001044 and 1.673 m3/kg , respectively. ( ) 500(419.1) 1.5 (500)(0.001044) 1 1 1 1 1 1 = + = + - = m H mlHl mvHv kJ cv (2676.0) 211616 1.673 = 500 + 1.5 - (500)(0.001044) + = + mv ml2 2 1.5 =1.673 + 0.001044 m ml mv2 2 2 750 1.673 m H mlHl mvHv kJ ( )cv 524458 2 2 2 2 2 2 = + = Q m H m H H m kJ ( )cv ( )cv cv 524458 211616 (750)(293.0) 93092 2 2 1 1 = - - ¢D = - - =
  • 29. c r P = P P c r T = T T T Z = - ¶ P æ ö ¶ çè ò ÷ø P R dP P T H RT 0 dP T Z = - ¶ P P æ ö ¶ çè Z dP ò ò - - ÷ø P R P P T S R 0 0 ( 1) ö æ ¶ T Z = - ¶ r ò ÷ ÷ø ç çè r P dP r r r P r R c P T H RT 0 2 ö æ ¶ dP T Z = - ¶ r r Z dP P r ò ò - - ÷ ÷ø ç çè r P r r r r P r R P P T S R 0 0 ( 1) Z = Z 0 +wZ1 ù ú ú û é T Z dP T Z = - ò ¶ ò r - - ¶ ê ê ë ö ÷ ÷ø æ ¶ ç çè ù ú ú û é ê ê ë ö ÷ ÷ø æ ¶ ç çè r r r P dP r r r P r P r r r P r R c P T P T H RT 0 1 2 0 0 2 w ù ú ú û é dP T Z Z dP dP T Z = - ò ¶ ò - - ò r ¶ ò r ê ê ë ö Z dP P r - - ÷ ÷ø æ ¶ ç çè ù ú ú û é ê ê ë ö P r - - ÷ ÷ø æ ¶ ç çè r r r r P r r r r P r P r r r r P r R P P T P P T S R 0 1 0 1 0 0 0 0 ( 1) w ( 1) ( ) ( ) ( , , ) é H 0 H R 1 = +w HRB TR PR OMEGA RT RT ( ) ( ) ( , , ) H R RT c c R c = ù ú úû ê êë é 0 1 = +w SRB TR PR OMEGA Table E5 ~ E12 S R R S R R S R R = ù ú úû ê êë
  • 30. T R T 0 = + ò + H Hig 2 C ig dT H2 0 P 2 T R T 0 = + ò + H Hig 1 C ig dT H1 0 P 1 T R R T D = ò + - H 2 C ig dT H HP 2 1 1 S S C dT R P 2 T R T = + ò - ln + ig S ig P 2 P T 0 2 0 2 0 S S C dT R P 1 T R T = + ò - ln + ig S ig P 1 P T 0 1 0 1 0 ig P H C T T H H2 1 2 1 D = ( - ) + - R R S C dT R P 2 1 T R R T D = ò - ln + - ig P S S 2 2 1 P T 1 H S C ig P S S P 2 1 R R D = ln 2 + - S P 1
  • 31. Estimate V, U, H, and S for 1-butene vapor at 200°C and 70 bar if H and S are set equal to zero for saturated liquid at 0°C. Assume that only data available are: T K c = 420 P bar c = 40.43 w = 0.191 T 266.9K (nomal boiling pt.) n = Cig / R 1.967 31.630 10 3T 9.837 10 6T 2 P = + ´ - - ´ - =1.127 r T =1.731 r P 0 1 Z = Z +wZ = + 0.485 (0.191)(0.142) 0.512 = cm mol V ZRT P 3 = = 287.8 Assuming four steps: (a) Vaporization at T1 and P1 = Psat (b) Transition to the ideal-gas state at (T1, P1) (c) Change to (T2, P2) in the ideal-gas state (d) Transition to the actual final state at (T2, P2) Fig 6.7
  • 33. Step (a) ln Psat = A- B T ln1.0133 = A- B 266.9 ln 40.43 = A- B 420 For = 273.15K, Psat = 1.2771 bar 9.979 lv n H D = - 1.092(ln 1.013) = 0.930 - rn c n T P RT The latent heat at normal boiling point: The latent heat at 273.15 K: 0.38 æ - = 1 - 1 ö ÷ ÷ ø ç ç è H D D T r rn lv lv n T H DHlv = 21810 J mol DHab = TDSab Slv J mol × K D = 79.84 Step (b) = 0.650 r T = 0.0316 r P ( ) ( ) ( , , ) 0.0985 é 0 1 = + HRB TR PR OMEGA = = - ù ú úû ê êë H R RT H RT H R RT c c R c w ( ) ( ) ( , , ) 0.1063 é 0 1 = + SRB TR PR OMEGA = = - ù ú úû S R R R ê êë S R S R R w H R 344 J 1 - = mol S R J mol × K - = 0.88 1
  • 34. Step (c) DHig = 8.314´ ICPH(273.15,473.15;1.967,31.630E -3,-9.837E - 6,0.0) = 20564 J mol 8.314 (273.15,473.15;1.967,31.630 3, 9.837 6,0.0) 8.314ln 70 Sig ICPS E E D = ´ - - - - J mol × K = 22.18 1.2771 Step (d) =1.127 r T =1.731 r P ( ) ( ) 2.430 é = + 0 1 = - ù ú úû H w ê êë R c c R R c H RT H RT RT ( ) ( ) 1.705 é = + 0 1 = - ù ú úû S R R R ê êë S R S R R w H R 8485 J 2 = - mol S R J mol × K = -14.18 2 H = DH = 21810 - (-344) + 20564 -8485 = 34233 J mol S S J mol × K = D = 79.84 - (-0.88) + 22.18 -14.18 = 88.72 Total U = H - PV= 34233- (70)(287.8) /10 = 32218 J mol
  • 35. Gas mixtures • Simple linear mixing rules w ºå yw i i ºå i Pc i ci T y T ºå i Pc i ci P y P i Estimate V, HR, and SR for an equimolar mixture of carbon dioxide and propane at 450K and 140 bar T y T K = (0.5)(304.2) + (0.5)(369.8) = 337 Pc ºå i ci i P y P bar Pc i ci ºå = (0.5)(73.83) + (0.5)(42.48) = 58.15 = 2.41 pr P i =1.335 pr T Z 0 = 0.697 Z1 = 0.205 188 . 0 ) 152 . 0 )( 5 . 0 ( ) 224 . 0 )( 5 . 0 ( = + = ºåi i i w yw Z = Z 0 +wZ1 = 0.736 ( ) ( ) = =196.7 cm 1.762 mol V ZRT P 3 H é 0 1 ù ( ) ( ) = + w = - 1.029 ú úû ê êë R pc R pc R pc H RT H RT RT é = + 0 1 = - ù ú úû S R R R ê êë S R S R R w H R = -4937 J /mol S R = -8.56 J /mol ×K