SlideShare a Scribd company logo
1 of 24
Download to read offline
Course No: ME 5243- Advanced Thermodynamics
Estimating Different Thermodynamic Relations using
Redlich- Kwong-Soave Equation of State.
Final Project report
Abu Saleh Ahsan,Md. Saimon Islam, Syed Hasib Akhter Faruqui
5-5-2016
1 | P a g e
Table of Contents
Nomenclature:..............................................................................................................................................2
Abstract:........................................................................................................................................................4
Introduction:.................................................................................................................................................5
Derivation......................................................................................................................................................6
(a) Evaluation of the Constants.................................................................................................................6
(b) Equation of State in Reduced Form.....................................................................................................9
c) Critical Compressibility Factor ............................................................................................................10
d) Express Z in terms TR, vR’:..................................................................................................................12
e) Accuracy of EOS from Equation (d).....................................................................................................13
f) Equation for Departure .......................................................................................................................15
𝒉 ∗ −𝒉𝑹𝑻𝒄 .........................................................................................................................................15
(u*-u)/RTc...........................................................................................................................................15
𝒔 ∗ −𝒔𝑹...............................................................................................................................................15
g) Accuracy of EOS for equation (C)........................................................................................................16
h) Derivation of Expressions: ..................................................................................................................17
𝒂 ∗ − 𝒂𝑹𝑻𝒄:.......................................................................................................................................17
𝒈 ∗ − 𝒈𝑹𝑻𝒄: ......................................................................................................................................17
i) Speed of sound ....................................................................................................................................18
(j) Derive the Properties..........................................................................................................................19
Cp ........................................................................................................................................................19
Cv ........................................................................................................................................................19
1/v vp ..................................................................................................................................19
k = v/p pv ....................................................................................................................................19
kT .........................................................................................................................................................20
J .........................................................................................................................................................20
Summary:....................................................................................................................................................21
Appendix .....................................................................................................................................................22
MATLAB Code .........................................................................................................................................22
Reference....................................................................................................................................................23
2 | P a g e
Nomenclature:
P = Pressure
Pr = Reduced pressure
Pc = Critical pressure
v = Specific volume
vr = Reduced specific volume
vc = Critical volume
𝑣𝑟
∗
= Specific volume of ideal gas
vrf = Reduced volume at liquid state
vrg = Reduced volume at gaseous state
T = Temperature
Tr = Reduced temperature
Tc= Critical temperature
R = Molar gas constant
Z = Compressibility factor
Zr = Reduced compressibility factor
Zc = Critical compressibility factor
𝑔 = Gibbs free energy
𝑔0 = Gibbs free energy for ideal gas
ℎ = Specific enthalpy for real gas
ℎ0 = Specific enthalpy for ideal gas
𝑢 = Specific internal energy for real gas
𝑢0 = Specific internal energy for ideal gas
3 | P a g e
𝑠 = Specific entropy for real gas
𝑠0 = Specific entropy for ideal gas
𝑘 𝑇 = Isothermal expansion exponent
𝑐 = Speed of sound
𝛽 =Volumetric co-efficient of thermal expansion
𝐶 𝑝 = Constant pressure specific heat
𝐶 𝑣 = Constant volume specific heat
4 | P a g e
Abstract:
For the project we will be using “Redlich- Kwong-Soave” Equation of State (EOS) to derive to Estimating
Different Thermodynamic Relations. Starting from “Redlich- Kwong-Soave” equation we have calculated
the constants “a(T)” & “b”. The EOS is again represented in its reduced form. Compressibility factor for
the selected EOS is calculated and expressed in terms of TR & VR. By using the EOS different thermodynamic
relations such as departure enthalpy, entropy, and change in internal energy has been evaluated. Again,
we have expressed different important parameters such as speed of sound, isothermal expansion
exponent, CP & CV in reduced form. As for the substance in question we are using “Nitrogen”.
5 | P a g e
Introduction:
Real gases are different from that of ideal gases. Thus the evaluated properties of ideal gas cannot be
used as the same for real gases. To understand the characteristics of real gases we have to consider the
following-
 compressibility effects;
 variable specific heat capacity;
 van der Waals forces;
 non-equilibrium thermodynamic effects;
 issues with molecular dissociation and elementary reactions with variable composition.
In our project, we have taken “Redlich- Kwong-Soave” equation of state (EOS) into consideration to
derive the various fundamental relations of thermodynamics. The compressibility, enthalpy departure
and entropy departure, can all be calculated if an equation of state for a fluid is known which is
“Nitrogen” in our case.
Now, the “Redlich- Kwong-Soave” equation of state (EOS) is almost similar to Van Der Walls equation of
state. The equation is-
𝑝 =
𝑅𝑇
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
… …. … … … … … … … … (i)
In thermodynamics, a departure function is defined for any thermodynamic property as the difference
between the property as computed for an ideal gas and the property of the species as it exists in the real
world, for a specified temperature T and pressure P. Common departure functions include those for
enthalpy, entropy, and internal energy.
Departure functions are used to calculate real fluid extensive properties (i.e properties which are
computed as a difference between two states). A departure function gives the difference between the
real state, at a finite volume or non-zero pressure and temperature, and the ideal state, usually at zero
pressure or infinite volume and temperature.
6 | P a g e
Derivation
(a) Evaluation of the Constants
Taking the first and second derivative of pressure WRT to volume be –
(i) =>
𝛿𝑝
𝛿𝑣
)
𝑇
= −
𝑅𝑇
(𝑣−𝑏)2 +
𝑎(𝑇)
𝑣2(𝑣+𝑏)
+
𝑎(𝑇)
𝑣(𝑣+𝑏)2 … … … … … … … … (ii)
And,
𝛿2 𝑝
𝛿𝑣2)
𝑇
=
2𝑅𝑇
(𝑣−𝑏)3 + 𝑎(𝑇) [−
1
𝑣2(𝑣+𝑏)2 −
2
𝑣3(𝑣+𝑏)
−
1
𝑣2(𝑣+𝑏)2 −
2
𝑣(𝑣+𝑏)3]
𝛿2 𝑝
𝛿𝑣2)
𝑇
=
2𝑅𝑇
(𝑣−𝑏)3 + 𝑎(𝑇) [−
2
𝑣2(𝑣+𝑏)2 −
2
𝑣3(𝑣+𝑏)
−
2
𝑣(𝑣+𝑏)3]
𝛿2 𝑝
𝛿𝑣2)
𝑇
=
2𝑅𝑇
(𝑣−𝑏)3 − 𝑎(𝑇) [
2
𝑣2(𝑣+𝑏)2 +
2
(𝑣+𝑏)
+
2
𝑣(𝑣+𝑏)3]
𝛿2 𝑝
𝛿𝑣2)
𝑇
=
2𝑅𝑇
(𝑣−𝑏)3 − 𝑎(𝑇) [
3𝑣2+3𝑣𝑏+𝑏2
𝑣3(𝑣+𝑏)3 ] … … …. …. …. …. …. …. (iii)
Now at critical point first and second derivative of pressure WRT to volume be zero. So from equation
(ii) and (iii) we can write,
𝛿𝑝
𝛿𝑣
)
𝑇
= −
𝑅𝑇𝑐
(𝑣 𝑐−𝑏)2 +
𝑎(𝑇)
𝑣 𝑐
2(𝑣 𝑐+𝑏)
+
𝑎(𝑇)
𝑣 𝑐(𝑣 𝑐+𝑏)2 = 0
𝑜𝑟, 0 = −
𝑅𝑇𝑐
(𝑣 𝑐−𝑏)2 +
𝑎(𝑇)
𝑣 𝑐
2(𝑣 𝑐+𝑏)
+
𝑎(𝑇)
𝑣 𝑐(𝑣 𝑐+𝑏)2
𝑜𝑟,
𝑅𝑇𝑐
(𝑣 𝑐−𝑏)2 =
𝑎(𝑇)
𝑣 𝑐
2(𝑣 𝑐+𝑏)
+
𝑎(𝑇)
𝑣 𝑐(𝑣 𝑐+𝑏)2
𝑜𝑟,
𝑅𝑇𝑐
(𝑣 𝑐−𝑏)2 =
𝑎(𝑇) (2𝑣 𝑐+𝑏)
𝑣 𝑐
2(𝑣 𝑐+𝑏)2 …. …. .… …. ….. ….. …. … (iv)
And,
𝛿2 𝑝
𝛿𝑣2)
𝑇
=
2𝑅𝑇𝑐
(𝑣 𝑐−𝑏)3 − 𝑎(𝑇) [
3𝑣 𝑐
2+3𝑣 𝑐 𝑏+𝑏2
𝑣 𝑐
3(𝑣 𝑐+𝑏)3 ] = 0
𝑜𝑟,
2𝑅𝑇𝑐
(𝑣 𝑐−𝑏)3 = 𝑎(𝑇) [
3𝑣 𝑐
2+3𝑣 𝑐 𝑏+𝑏2
𝑣 𝑐
3(𝑣 𝑐+𝑏)3 ] …. …. …. …. …. …. …. (v)
Now, Dividing Equation (iv) with equation (v) we get,
(𝑣𝑐 − 𝑏) =
(𝑣 𝑐+𝑏).𝑣 𝑐.(𝑣 𝑐+𝑏)
3𝑣 𝑐
2+3𝑣 𝑐 𝑏+𝑏2
𝑜𝑟, (𝑣𝑐 − 𝑏)(3𝑣𝑐
2
+ 3𝑣𝑐 𝑏 + 𝑏2
) = (𝑣𝑐 + 𝑏). 𝑣𝑐. (𝑣𝑐 + 𝑏)
7 | P a g e
𝑜𝑟, 3𝑣𝑐
3
+ 3𝑣𝑐
2
+ 𝑏2
𝑣𝑐 − 3𝑏𝑣𝑐
2
− 3𝑣𝑐 𝑏2
− 𝑏3
= 2𝑣𝑐
3
+ 2𝑣𝑐
2
+ 𝑣𝑐
2
𝑏 + 𝑣𝑐 𝑏2
𝑜𝑟, 𝑏3
+ 3𝑏2
𝑣𝑐 + 3𝑏𝑣𝑐
2
− 𝑣𝑐
3
= 0
𝑜𝑟, (𝑏 + 𝑣𝑐)3
= 2𝑣𝑐
3
= (√2
3
𝑣𝑐)
3
𝑜𝑟, 𝑏 = (√2
3
− 1)𝑣𝑐 = (√2
3
− 1)𝑧 𝑐
𝑅𝑇𝑐
𝑝 𝑐
𝑜𝑟, 𝑏 = (√2
3
− 1).
1
3
.
𝑅𝑇𝑐
𝑝 𝑐
= 0.08664
𝑅𝑇𝑐
𝑝 𝑐
𝑜𝑟, 𝑏 = 0.08664
𝑅𝑇𝑐
𝑝 𝑐
…. …. …. …. …. …. …. (vi)
Note: Here, 𝑧 𝑐 =
1
3
. As the original equation is from Redlich-Kwong equation, we will use the value of 𝑧 𝑐
from the Redlich-Kwong equation.
Now putting the value of ‘b’ and 𝑣𝑐 = 𝑧 𝑐
𝑅𝑇𝑐
𝑝 𝑐
=
1
3
.
𝑅𝑇𝑐
𝑝 𝑐
in equation (iv) we get,
𝑅𝑇𝑐
(𝑣 𝑐−𝑏)2 =
𝑎(𝑇) (2𝑣 𝑐+𝑏)
𝑣 𝑐
2(𝑣 𝑐+𝑏)2
𝑜𝑟, 𝑎(𝑇) =
𝑅𝑇𝑐 𝑣 𝑐
2(𝑣 𝑐+𝑏)2
(2𝑣 𝑐+𝑏) (𝑣 𝑐−𝑏)2
𝑜𝑟, 𝑎(𝑇) =
𝑅𝑇𝑐 [𝑧 𝑐
𝑅𝑇 𝑐
𝑝 𝑐
]
2
(𝑧 𝑐
𝑅𝑇 𝑐
𝑝 𝑐
+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
2
(2𝑧 𝑐
𝑅𝑇 𝑐
𝑝 𝑐
+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
) (𝑧 𝑐
𝑅𝑇 𝑐
𝑝 𝑐
−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
2
𝑜𝑟, 𝑎(𝑇) =
𝑅𝑇𝑐 [𝑧 𝑐
𝑅𝑇 𝑐
𝑝 𝑐
]
2
(
𝑅𝑇 𝑐
𝑝 𝑐
)
2
(
1
3
+0.08664 )
2
(
𝑅𝑇 𝑐
𝑝 𝑐
) (
2
3
+0.08664) (
𝑅𝑇 𝑐
𝑝 𝑐
)
2
(
1
3
−0.08664 )
2
𝑜𝑟, 𝑎(𝑇) =
[
1
3
.
𝑅𝑇 𝑐
𝑝 𝑐
]
2
∗ (0.176377600711111)
(
1
𝑝 𝑐
) (
2
3
+0.08664) (
1
3
−0.08664 )
2
𝑜𝑟, 𝑎(𝑇) = 0.42747
𝑅2 𝑇𝑐
2
𝑝 𝑐
… …. …. …. …. …. …. …. …. (vii)
Now, this is for the critical point only. As for other points for the assigned substance Nitrogen we get
a(T)= 0.42747
𝑅2 𝑇𝑐
2
𝑝 𝑐
(1 + [{0.0007T4
- 0.3012T3
+ 45.74036T2
- 3068.87T + 76836.9287}]*T)
at critical point T=TR=1 thus we get again,
a(T)= 0.42747
𝑅2 𝑇𝑐
2
𝑝 𝑐
8 | P a g e
Figure-1: a(T) function determination
-50
0
50
100
150
200
250
300
0 20 40 60 80 100 120 140
a(T)
T
9 | P a g e
(b) Equation of State in Reduced Form
𝑝 =
𝑅𝑇
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
𝑜𝑟, 𝑝𝑟 𝑝𝑐 =
𝑅𝑇𝑟 𝑇𝑐
𝑣 𝑟 𝑣 𝑐−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
−
0.42747
𝑅2 𝑇 𝑐
2
𝑝 𝑐
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇)
𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
𝑜𝑟, 𝑝𝑟 =
𝑅𝑇𝑟 𝑇𝑐
(𝑣 𝑟 𝑣 𝑐−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)𝑝 𝑐
−
0.42747
𝑅2 𝑇 𝑐
2
𝑝 𝑐
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇)
𝑝 𝑐 𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
𝑜𝑟, 𝑝𝑟 =
𝑅𝑇 𝑟 𝑇 𝑐
𝑝 𝑐
(𝑣 𝑟 𝑣 𝑐−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
−
0.42747
𝑅2 𝑇 𝑐
2
𝑝 𝑐
2 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇)
𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664
𝑣 𝑐
𝑧 𝑐
)
𝑜𝑟, 𝑝𝑟 =
𝑇𝑟 (
𝑣 𝑐
𝑧 𝑐
)
[𝑣 𝑟 𝑣 𝑐−0.08664 (
𝑣 𝑐
𝑧 𝑐
)]
−
0.42747 (
𝑣 𝑐
𝑧 𝑐
)
2
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇)
𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664
𝑣 𝑐
𝑧 𝑐
)
𝑜𝑟, 𝑝𝑟 =
𝑇𝑟 (
1
𝑧 𝑐
)
[𝑣 𝑟−0.08664 (
1
𝑧 𝑐
)]
−
0.42747 (
1
𝑧 𝑐
)
2
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇)
𝑣 𝑟(𝑣 𝑟+0.08664
1
𝑧 𝑐
)
𝑜𝑟, 𝑝𝑟 =
3 𝑇𝑟
[𝑣 𝑟−0.25992]
−
0.0474967(1+[{0.0007(𝑇𝑟 𝑇𝑐)4 − 0.3012(𝑇𝑟 𝑇𝑐)3 + 45.74036(𝑇𝑟 𝑇𝑐)2 − 3068.87(𝑇𝑟 𝑇𝑐) + 76836.9287}]∗(𝑇𝑟 𝑇𝑐)
𝑣 𝑟(𝑣 𝑟+0.25992)
At critical point it becomes,
𝑜𝑟, 𝑝𝑟 =
𝑇𝑟
0.3333 𝑣 𝑟−0.08664
−
1
21.0541 𝑣 𝑟
2+5.472384 𝑣 𝑟
10 | P a g e
c) Critical Compressibility Factor
𝑝𝑐 =
𝑅𝑇𝑐
𝑣𝑐 − 0.08664
𝑅𝑇𝑐
𝑝𝑐
−
0.42747
𝑅2
𝑇𝑐
2
𝑝𝑐
𝑣𝑐 (𝑣𝑐 + 0.08664
𝑅𝑇𝑐
𝑝𝑐
)
𝑜𝑟, 𝑝𝑐 =
𝑅𝑇𝑐
{𝑣𝑐 − 0.08664 (
𝑣𝑐
𝑧 𝑐
)}
−
0.42747
𝑅2
𝑇𝑐
2
𝑝𝑐
𝑣𝑐 (𝑣𝑐 + 0.08664 (
𝑣𝑐
𝑧 𝑐
))
𝑜𝑟, 1 =
𝑅𝑇𝑐
𝑝𝑐
𝑣𝑐 {1 − 0.08664 (
1
𝑧 𝑐
)}
−
0.42747
𝑅2
𝑇𝑐
2
𝑝𝑐
2
𝑣𝑐
2
(1 + 0.08664 (
1
𝑧 𝑐
))
𝑜𝑟, 1 =
(
𝑣𝑐
𝑧 𝑐
)
𝑣𝑐 {1 − 0.08664 (
1
𝑧 𝑐
)}
−
0.42747 (
𝑣𝑐
𝑧 𝑐
)
2
𝑣𝑐
2
(1 + 0.08664 (
1
𝑧 𝑐
))
𝑜𝑟, 1 =
(
1
𝑧 𝑐
)
{1−0.08664 (
1
𝑧 𝑐
)}
−
0.42747(
1
𝑧 𝑐
)
2
(1+0.08664 (
1
𝑧 𝑐
))
𝑜𝑟, 1 =
(
1
𝑧 𝑐
)(1+0.08664 (
1
𝑧 𝑐
))− {1−0.08664 (
1
𝑧 𝑐
)} {0.42747(
1
𝑧 𝑐
)
2
}
{{1}2−{0.08664 (
1
𝑧 𝑐
)}
2
}
𝑜𝑟, 1 − {0.08664 (
1
𝑧 𝑐
)}
2
= (
1
𝑧 𝑐
) + 0.08664 (
1
𝑧 𝑐
)
2
− 0.42747 (
1
𝑧 𝑐
)
2
+ (0.42747 ∗ .08664) (
1
𝑧 𝑐
)
3
𝑜𝑟, 0 = (
1
𝑧 𝑐
) + 0.08664 (
1
𝑧 𝑐
)
2
− 0.42747 (
1
𝑧 𝑐
)
2
+ (0.42747 ∗ .08664) (
1
𝑧 𝑐
)
3
− 1 + {0.08664 (
1
𝑧 𝑐
)}
2
𝑜𝑟,
𝑧 𝑐
2
+ 0.08664 𝑧 𝑐 − 0.42747 𝑧 𝑐 + (0.42747 ∗ .08664) − 𝑧 𝑐
3
+ (0.08664)2
𝑧 𝑐
𝑧 𝑐
3 = 0
𝑜𝑟, 𝑧 𝑐
2
+ 0.08664 𝑧 𝑐 − 0.42747 𝑧 𝑐 + (0.42747 ∗ .08664) − 𝑧 𝑐
3
+ (0.08664)2
𝑧 𝑐 = 0
𝑜𝑟, 𝑧 𝑐
3
− 𝑧 𝑐
2
+ (0.42747 − 0.08664 − 0.086642)𝑧 𝑐 − (0.42747 ∗ .08664) = 0
Solving this equation numerically, we get,
𝑧 𝑐 = 0.3471 (MATLAB Code at Appendix)
11 | P a g e
Figure-2: Solution for Critical Compressibility Factor
12 | P a g e
d) Express Z in terms TR, vR’:
𝑍 =
𝑝𝑣
𝑅𝑇
From equation (i) substituting the value of p we get,
𝑍 =
𝑣
𝑅𝑇
[
𝑅𝑇
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
]
𝑜𝑟, 𝑍 =
𝑣
𝑅𝑇
[
𝑅𝑇
𝑣−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
−
0.42747
𝑅2 𝑇 𝑐
2
𝑝 𝑐
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇
𝑣(𝑣+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
]
𝑜𝑟, 𝑍 = [
𝑣
𝑣−0.08664
𝑅𝑇 𝑐
𝑝 𝑐
−
0.42747
𝑅𝑇 𝑐
2
𝑇 𝑝 𝑐
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇
𝑣(𝑣+0.08664
𝑅𝑇 𝑐
𝑝 𝑐
)
]
𝑜𝑟, 𝑍 =
[
𝑣
𝑣(1−0.08664
𝑅𝑇 𝑐
𝑣 𝑝 𝑐
)
−
0.42747
𝑇 𝑐
𝑇
(1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇
(
𝑣
𝑅𝑇 𝑐
𝑝 𝑐
+0.08664 )
]
𝑜𝑟, 𝑍 = [
1
(1−0.08664
1
𝑣 𝑅
′ )
−
0.42747
1
𝑇 𝑅
(1+[{0.0007(𝑇𝑟 𝑇𝑐)4 − 0.3012(𝑇𝑟 𝑇𝑐)3 + 45.74036(𝑇𝑟 𝑇𝑐)2 − 3068.87(𝑇𝑟 𝑇𝑐) + 76836.9287}]∗(𝑇𝑟 𝑇𝑐)
(𝑣 𝑅
′ +0.08664 )
]
𝑜𝑟, 𝑍 = [
1
(1−0.08664
1
𝑣 𝑅
′ )
−
0.42747
1
𝑇 𝑅
(1+[{176433.1632(𝑇𝑟)4 − 604113.552(𝑇𝑟)3 + 726168.24(𝑇𝑟)2 − 386568(𝑇𝑟) + 76836.9287}]∗(𝑇𝑟∗126)
(𝑣 𝑅
′ +0.08664 )
]
At critical point,
𝑜𝑟, 𝑍 = [
1
(1−0.08664
1
𝑣 𝑅
′ )
−
0.42747
1
𝑇 𝑅
(𝑣 𝑅
′ +0.08664 )
]
13 | P a g e
e) Accuracy of EOS from Equation (d)
TR = 1
TR VR
'
From
Table
From
Equation % Error
1 0.7 0.58 1.086951409 87.40542
1 0.8 0.635 0.919693232 44.83358
1 0.9 0.675 0.796209555 17.95697
1 1 0.701 0.70147159 0.067274
1 1.2 0.75 0.565944624 24.54072
1 1.4 0.775 0.473864828 38.85615
1 1.6 0.81 0.407336589 49.71153
1 1.8 0.83 0.357071096 56.97939
1 2 0.845 0.317780354 62.39286
TR = 1.05
TR VR
'
From
Table
From
Equation % Error
1.05 0.7 0.64 1.112828194 73.87941
1.05 0.8 0.68 0.942651495 38.62522
1.05 0.9 0.71 0.816840904 15.04801
1.05 1 0.74 0.720204302 2.675094
1.05 1.2 0.77 0.581765455 24.44604
1.05 1.4 0.8 0.487557258 39.05534
1.05 1.6 0.419405385
1.05 1.8 0.367860496
1.05 2 0.327535613
TR = 1.10
TR VR
'
From
Table
From
Equation
1.4 0.7 1.24221212
1.4 0.8 1.05744281
1.4 0.9 0.91999765
1.1 1 0.73723404
1.1 1.2 0.596148029
1.1 1.4 0.500004921
1.1 1.6 0.430377018
1.1 1.8 0.377669042
1.1 2 0.336404031
14 | P a g e
TR = 1.20
TR VR
'
From
Table
From
Equation % Error
1.4 0.7 1.24221212
1.4 0.8 1.05744281
1.4 0.9 0.91999765
1.2 1 0.767036082
1.2 1.2 0.621317533
1.2 1.4 0.521788333
1.2 1.6 0.449577376
1.2 1.8 0.394833997
1.2 2 0.351923762
TR = 1.40
TR VR'
From
Table
From
Equation % Error
1.4 0.7 1.24221212
1.4 0.8 1.05744281
1.4 0.9 0.91999765
1.4 1 0.813867863
1.4 1.2 0.660869611
1.4 1.4 0.556019408
1.4 1.6 0.479749366
1.4 1.8 0.421807498
1.4 2 0.37631191
15 | P a g e
f) Equation for Departure
For simplicity of calculation we will consider the reduced equation at critical point,
𝒉∗
− 𝒉
𝑹𝑻𝒄
ℎ∗
− ℎ
𝑅𝑇𝑐
= ∫ 𝑍𝑐 [(
𝜕𝑃𝑟
𝜕𝑇𝑟
) − 𝑃𝑟] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍)
𝑉𝑟
∞
= ∫ 𝑍𝑐 [(
𝜕
𝜕𝑇𝑟
) (
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
−
1
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
) −
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
−
𝑉𝑟
∞
1
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍)
= ∫ 𝑍𝑐 [(
1
0.3333 𝑣 𝑟−0.08664
−
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
+
1
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍)
𝑉𝑟
∞
= 𝑍𝑐 [(
ln(0.3333 𝑣 𝑟−0.08664)
0.3333
−
𝑇𝑟 ln(0.3333 𝑣 𝑟−0.08664)
0.3333
+
ln(
5.472384
𝑣 𝑟
)+21.0541
5.472384
] − 𝑇𝑟(1 − 𝑍)
= 0.873 ln(0.333𝑣𝑟 − 0.08664) [1 − 𝑇𝑟] + 0.053 ln (
5.472384
𝑣 𝑟
) + 1.12 − 𝑇𝑟(1 − 𝑍)
(u*-u)/RTc
Now to derive departure from internal energy
𝑢∗
− 𝑢
𝑅𝑇𝑐
= − ∫ 𝑍𝑐 [𝑇𝑟 (
𝜕𝑃𝑟
𝜕𝑇𝑟
) − 𝑃𝑟] 𝑑𝑣𝑟
𝑉𝑟
∞
= ∫ 𝑍𝑐 [ 𝑇𝑟 (
𝜕
𝜕𝑇𝑟
) (
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
−
1
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
) −
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
−
𝑉𝑟
∞
1
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
] 𝑑𝑣𝑟
= ∫ 𝑍𝑐 [(
𝑇 𝑟
0.3333 𝑣 𝑟−0.08664
−
𝑇 𝑟
2
0.3333 𝑣 𝑟−0.08664
+
𝑇 𝑟
21.0541 𝑣 𝑟
2
+5.472384 𝑣 𝑟
] 𝑑𝑣𝑟
𝑉𝑟
∞
= 𝑍𝑐 𝑇𝑟 [(
ln(0.3333 𝑣 𝑟−0.08664)
0.3333
−
𝑇𝑟 ln(0.3333 𝑣 𝑟−0.08664)
0.3333
+
ln(
5.472384
𝑣 𝑟
)+21.0541
5.472384
]
= 0.873 𝑇𝑟 ln(0.333𝑣𝑟 − 0.08664) [1 − 𝑇𝑟] + 0.053 Tr ln (
5.472384
𝑣 𝑟
) + 1.12
𝒔∗
− 𝒔
𝑹
𝑠∗
− 𝑠
𝑅
= ∫ 𝑍𝑐 [(
𝜕𝑃𝑟
𝜕𝑇𝑟
) − (
1
𝑉𝑟
)] 𝑑𝑣𝑟 − ln(𝑧)
𝑉𝑟
∞
=∫ 𝑍𝑐 [(
1
0.3333 𝑣 𝑟−0.08664
−
1
𝑉𝑟
] 𝑑𝑣𝑟 − ln(𝑧)
𝑉𝑟
∞
= 𝑍𝑐 [(
ln(0.3333 𝑣 𝑟−0.08664)
0.3333
− (
1
ln 𝑣𝑟
) ]– ln (z)
16 | P a g e
g) Accuracy of EOS for equation (C)
From table A1 for Nitrogen we get,
Zc=0.291
And at part (c) we calculated,
Zc=0.3471
Thus, Accuracy=
(0.3471−0.291)
0.291
=0.192783=19.2783%
17 | P a g e
h) Derivation of Expressions:
For simplicity of calculation we will consider the reduced equation at critical point,
𝒂∗ − 𝒂
𝑹𝑻𝒄
:
We know,
𝑎∗
− 𝑎
𝑅𝑇𝑐
= − ∫ 𝑍𝑐 [(
𝜕𝑃𝑟
𝜕𝑇𝑟
) −
𝑇𝑟
𝑉𝑟
] 𝑑𝑣𝑟 + 𝑇𝑟𝑙𝑛(𝑍)
𝑉𝑟
∞
𝑜𝑟,
𝑎∗
− 𝑎
𝑅𝑇𝑐
= − ∫ 𝑍𝑐 [(
𝜕
𝜕𝑇𝑟
(
𝑇𝑟
0.3333 𝑣𝑟 − 0.08664
−
1
21.0541 𝑣𝑟
2 + 5.472384 𝑣𝑟
)) −
𝑇𝑟
𝑉𝑟
] 𝑑𝑣𝑟
𝑉𝑟
∞
+ 𝑇𝑟𝑙𝑛(𝑍)
Or,
𝑎∗−𝑎
𝑅𝑇𝑐
= − ∫ 𝑍𝑐 [
1
0.33∗𝑉𝑟−0.086
−
𝑇𝑟
𝑉𝑟
] 𝑑𝑉𝑟 + 𝑇𝑟𝑙𝑛(𝑍)
𝑉𝑟
∞
or,
𝑎∗−𝑎
𝑅𝑇𝑐
= −𝑍𝑐[(
ln(|165𝑉𝑟−43|)
0.33
− 𝑇𝑟𝑙𝑛|𝑉𝑟|] + 𝑇𝑟𝑙𝑛(𝑍)
After putting the value of Zc we get,
𝑎∗
− 𝑎
𝑅𝑇𝑐
= −0.291[(
ln(|165𝑉𝑟 − 43|)
0.33
− 𝑇𝑟𝑙𝑛|𝑉𝑟|] + 𝑇𝑟𝑙𝑛(𝑍)
𝒈∗ − 𝒈
𝑹𝑻𝒄
:
We know,
𝑔∗
− 𝑔
𝑅𝑇𝑐
= ∫ [𝑍𝑐𝑃𝑟 −
𝑇𝑟
𝑉𝑟
]𝑑𝑣𝑟 + 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧)
𝑉𝑟
∞
𝑔∗
− 𝑔
𝑅𝑇𝑐
= ∫ [𝑍𝑐 (
𝑇𝑟
0.3333 𝑣𝑟 − 0.08664
−
1
21.0541 𝑣𝑟
2 + 5.472384 𝑣𝑟
) −
𝑇𝑟
𝑉𝑟
] 𝑑𝑉𝑟 + 𝑇𝑟(𝑙𝑛𝑧 + 1
𝑉𝑟
∞
− 𝑧)
𝑔∗
− 𝑔
𝑅𝑇𝑐
= −
𝑇𝑟𝑙𝑛(|1375𝑉𝑟 − 361|)𝑍𝑐
0.33
+
ln (|
1368096
𝑉𝑟 + 5263525|) 𝑍𝑐
5.47
+ 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧)
After putting the value of Zc we get,
𝑔∗
− 𝑔
𝑅𝑇𝑐
= −
𝑇𝑟𝑙𝑛(|1375𝑉𝑟 − 361|) ∗ .291
0.33
+
ln (|
1368096
𝑉𝑟
+ 5263525|) ∗ .291
5.47
+ 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧)
18 | P a g e
i) Speed of sound
𝑐 = √−𝑣2 √ (
𝜕𝑝
𝜕𝑣
)
𝑠
(
𝜕𝑝
𝜕𝑣
)
𝑠
=
𝜕
𝜕𝑣
{
𝑅𝑇
𝑣 − 𝑏
−
𝑎(𝑇)
𝑣(𝑣 + 𝑏)
}
=
𝑅𝑇(−1)
(𝑣 − 𝑏)2
+
𝑎(𝑇) (2𝑏 + 𝑏)
(𝑣 + 𝑏)2 𝑣2
= −
𝑅𝑇
(𝑣 − 𝑏)2
+
𝑎(𝑇) (2𝑏 + 𝑏)
(𝑣 + 𝑏)2 𝑣2
𝒄 = √−𝒗 𝟐{−
𝑹𝑻
(𝒗−𝒃) 𝟐 +
𝒂(𝑻) (𝟐𝒃+𝒃)
(𝒗+𝒃) 𝟐 𝒗 𝟐 }
19 | P a g e
(j) Derive the Properties
Cp
We can directly derive Cp and Cv from Uj. Now we know Cp and Cv,
𝐶𝑝 = −
1
𝑈𝑗
[𝑇 [
𝑅𝑇
𝑣 − 𝑏
−
𝑎(𝑇)
𝑣(𝑣 + 𝑏)
−
𝑅𝑇
(𝑣 − 𝑏)2 +
𝑎(𝑇)
𝑣2(𝑣 + 𝑏)
+
𝑎(𝑇)
𝑣(𝑣 + 𝑏)2
] + 𝑣]
Cv
Also the relation between Cp and Cv is,
𝑐 𝑉 =
𝐶 𝑝
𝑘
So,
𝐶𝑣 = −
1
𝑈𝑗 𝐾
[𝑇 [
𝑅𝑇
𝑣 − 𝑏
−
𝑎(𝑇)
𝑣(𝑣 + 𝑏)
−
𝑅𝑇
(𝑣 − 𝑏)2 +
𝑎(𝑇)
𝑣2(𝑣 + 𝑏)
+
𝑎(𝑇)
𝑣(𝑣 + 𝑏)2
] + 𝑣]
1/v vp
β = (1/𝑣)(
𝜕𝑣
𝜕𝑇
)𝑝
(
𝜕𝑣
𝜕𝑡
) 𝑝 = −
(
𝜕𝑃
𝜕𝑇
)𝑣
(
𝜕𝑃
𝜕𝑣
)𝑇
=
𝑅
𝑣−𝑏
−
𝑎( 𝑇)
𝑣( 𝑣+𝑏)
−
𝑅𝑇
( 𝑣−𝑏)2+
𝑎( 𝑇)
𝑣2( 𝑣+𝑏)
+
𝑎( 𝑇)
𝑣( 𝑣+𝑏)2
β = −
1
𝑣
[
𝑅
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
−
𝑅𝑇
(𝑣−𝑏)2+
𝑎(𝑇)
𝑣2(𝑣+𝑏)
+
𝑎(𝑇)
𝑣(𝑣+𝑏)2
]
k = v/p pv
Isentropic expansion coefficient:
𝑘 = −
𝑣
𝑃
(
𝜕𝑝
𝜕𝑣
) 𝑠
= -
𝑣
𝑃
[−
𝑅𝑇
(𝑣−𝑏)2 +
𝑎(𝑇)
𝑣2(𝑣+𝑏)
+
𝑎(𝑇)
𝑣(𝑣+𝑏)2]
𝑘 =
−𝑣
(
𝑅𝑇
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
)
[
−𝑅𝑇
(𝑣−𝑏)2+
2𝑎
𝑇 (𝑣+𝑐)3]
20 | P a g e
kT
We know,
𝐾 𝑇 = −
1
𝑣
𝛿𝑝
𝛿𝑣
)
𝑇
= -
1
𝑣
[−
𝑅𝑇
(𝑣−𝑏)2 +
𝑎(𝑇)
𝑣2(𝑣+𝑏)
+
𝑎(𝑇)
𝑣(𝑣+𝑏)2]
J
We know,𝑈𝑗 = (
𝜕𝑃
𝜕𝑇
) 𝑣
Also,
𝑑ℎ = 𝐶 𝑝 𝑑𝑇 + [𝑣 − 𝑇(
𝜕𝑣
𝜕𝑇
) 𝑝]
From isentropic process,
h= constant
so, 𝑑ℎ = 0
(
𝜕𝑇
𝜕𝑃
) ℎ =
𝑇 (
𝜕𝑣
𝜕𝑇
)𝑝−𝑣
𝑐𝑝
Now, (
𝜕𝑣
𝜕𝑇
) 𝑝 = -
(
𝜕𝑃
𝜕𝑇
)𝑣
(
𝜕𝑃
𝜕𝑣
)𝑇
𝑈𝑗 = (
𝜕𝑇
𝜕𝑃
) ℎ
=
𝑇[−
(
𝜕𝑃
𝜕𝑇
)𝑣
(
𝜕𝑃
𝜕𝑣
)𝑇
]−𝑣
𝑐𝑝
𝑈𝑗 =
−𝑇
𝑅
𝑣−𝑏
−
𝑎(𝑇)
𝑣(𝑣+𝑏)
−
𝑅𝑇
(𝑣−𝑏)2+
𝑎(𝑇)
𝑣2(𝑣+𝑏)
+
𝑎(𝑇)
𝑣(𝑣+𝑏)2
−𝑣
𝑐𝑝
21 | P a g e
Summary:
In our project we firstly evaluated the Two parameters of the Redlich- Kwong-Soave equation. Then
converted the equation into reduced form. With the help of MATLAB and Excel we estimated tabulated
data and calculations.
22 | P a g e
Appendix
MATLAB Code
clc;
clear;
x = 1;
zc = 1;
while x
v2 = zc^3 - zc^2 + (.42747-.08664-.08664^2)*zc + (-.42747*.08664);
if abs(v2) <= 0.00000025
x = 0;
clc;
fprintf('%d',zc);
else
zc = zc - 0.000025;
end
end
23 | P a g e
Reference
1) http://en.wikipedia.org/
2) http://webbook.nist.gov/chemistry/fluid/
3) http://www.boulder.nist.gov/div838/theory/refprop/MINIREF/MINIREF.HTM
4) https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/Section6.pdf
5) http://www.swinburne.edu.au/ict/success/cms/documents/disertations/yswChap3.pdf
6) https://www.e-education.psu.edu/png520/m10_p5.html
7) Advanced Engineering Thermodynamics-Adrian Bejan.
8) Thermodynamics, An Engineering Approach- Yunus A Cengel and M.B Boles
9) Provided class lectures and notes.

More Related Content

What's hot

Application of Laplace Transforme
Application of Laplace TransformeApplication of Laplace Transforme
Application of Laplace TransformeMaharshi Dave
 
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...jani parth
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equationnaveensapare
 
Laurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad UmerLaurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad Umersialkot123
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for ThermodynamicsNaveed Rehman
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VRai University
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - MathematicsDrishti Bhalla
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1Mishal Chauhan
 
Application of fourier series to differential equations
Application of fourier series to differential equationsApplication of fourier series to differential equations
Application of fourier series to differential equationsTarun Gehlot
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline InterpolationVARUN KUMAR
 
1 introduction to structure
1 introduction to structure1 introduction to structure
1 introduction to structureMohamed Yaser
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptxChintanModi26
 

What's hot (20)

Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Application of Laplace Transforme
Application of Laplace TransformeApplication of Laplace Transforme
Application of Laplace Transforme
 
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...
Ordinary Differential Equations And Their Application: Modeling: Free Oscilla...
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equation
 
Laurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad UmerLaurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad Umer
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for Thermodynamics
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Finite difference equation
Finite difference equationFinite difference equation
Finite difference equation
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Second application of dimensional analysis
Second application of dimensional analysisSecond application of dimensional analysis
Second application of dimensional analysis
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
 
Application of fourier series to differential equations
Application of fourier series to differential equationsApplication of fourier series to differential equations
Application of fourier series to differential equations
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
1 introduction to structure
1 introduction to structure1 introduction to structure
1 introduction to structure
 
Introduction to Torsion
Introduction to TorsionIntroduction to Torsion
Introduction to Torsion
 
Fourier series
Fourier series Fourier series
Fourier series
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
Advance thermodynamics
Advance thermodynamicsAdvance thermodynamics
Advance thermodynamics
 

Viewers also liked

Redlich kwong, 1949
Redlich kwong, 1949Redlich kwong, 1949
Redlich kwong, 1949Vero Miranda
 
Math cad compressibility factor, z, of real gas using the redlich-kwong equ...
Math cad   compressibility factor, z, of real gas using the redlich-kwong equ...Math cad   compressibility factor, z, of real gas using the redlich-kwong equ...
Math cad compressibility factor, z, of real gas using the redlich-kwong equ...Julio Banks
 
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...IAEME Publication
 
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSimEasy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSimIsabelle Girard
 
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richardsYervis Acevedo Diaz
 
Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.Jag Är Omxr
 
Power Plants and Basic Thermodynamic Cycles
Power Plants and Basic Thermodynamic CyclesPower Plants and Basic Thermodynamic Cycles
Power Plants and Basic Thermodynamic CyclesSalman Haider
 
Refrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture NotesRefrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture NotesFellowBuddy.com
 
The Story of Sarah's Job
The Story of Sarah's JobThe Story of Sarah's Job
The Story of Sarah's JobMint Group
 
5 Noteworthy Instagram Photo Idea For You To Post Today
5 Noteworthy Instagram Photo Idea For You To Post Today5 Noteworthy Instagram Photo Idea For You To Post Today
5 Noteworthy Instagram Photo Idea For You To Post TodayKaitlyn Study
 
Marriage - Is It All I Should Look Forward To?
Marriage - Is It All I Should Look Forward To?Marriage - Is It All I Should Look Forward To?
Marriage - Is It All I Should Look Forward To?Raya Stuiver
 
Shankar Agarwal - Resume
Shankar Agarwal - ResumeShankar Agarwal - Resume
Shankar Agarwal - ResumeShankar Agarwal
 
Mutual & Federal leverages off of SharePoint
Mutual & Federal leverages off of SharePoint Mutual & Federal leverages off of SharePoint
Mutual & Federal leverages off of SharePoint Mint Group
 
Configuración y administración de impresoras y faxes
Configuración y administración de impresoras y faxesConfiguración y administración de impresoras y faxes
Configuración y administración de impresoras y faxesLesly Patiño
 
Freedom Of Religion
Freedom Of ReligionFreedom Of Religion
Freedom Of ReligionRaya Stuiver
 
Ultimate Flat Lay Must Haves
Ultimate Flat Lay Must HavesUltimate Flat Lay Must Haves
Ultimate Flat Lay Must HavesKaitlyn Study
 

Viewers also liked (20)

Redlich kwong, 1949
Redlich kwong, 1949Redlich kwong, 1949
Redlich kwong, 1949
 
Math cad compressibility factor, z, of real gas using the redlich-kwong equ...
Math cad   compressibility factor, z, of real gas using the redlich-kwong equ...Math cad   compressibility factor, z, of real gas using the redlich-kwong equ...
Math cad compressibility factor, z, of real gas using the redlich-kwong equ...
 
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...
THERMODYNAMIC SIMULATION OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE R...
 
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSimEasy thermodynamics calculations with Simulis Thermodynamics from ProSim
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
 
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
 
Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.
 
Power Plants and Basic Thermodynamic Cycles
Power Plants and Basic Thermodynamic CyclesPower Plants and Basic Thermodynamic Cycles
Power Plants and Basic Thermodynamic Cycles
 
Refrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture NotesRefrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture Notes
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Cox.CutSheets2015
Cox.CutSheets2015Cox.CutSheets2015
Cox.CutSheets2015
 
The Story of Sarah's Job
The Story of Sarah's JobThe Story of Sarah's Job
The Story of Sarah's Job
 
chekanski
chekanskichekanski
chekanski
 
5 Noteworthy Instagram Photo Idea For You To Post Today
5 Noteworthy Instagram Photo Idea For You To Post Today5 Noteworthy Instagram Photo Idea For You To Post Today
5 Noteworthy Instagram Photo Idea For You To Post Today
 
Marriage - Is It All I Should Look Forward To?
Marriage - Is It All I Should Look Forward To?Marriage - Is It All I Should Look Forward To?
Marriage - Is It All I Should Look Forward To?
 
Shankar Agarwal - Resume
Shankar Agarwal - ResumeShankar Agarwal - Resume
Shankar Agarwal - Resume
 
Mutual & Federal leverages off of SharePoint
Mutual & Federal leverages off of SharePoint Mutual & Federal leverages off of SharePoint
Mutual & Federal leverages off of SharePoint
 
Configuración y administración de impresoras y faxes
Configuración y administración de impresoras y faxesConfiguración y administración de impresoras y faxes
Configuración y administración de impresoras y faxes
 
Freedom Of Religion
Freedom Of ReligionFreedom Of Religion
Freedom Of Religion
 
Ultimate Flat Lay Must Haves
Ultimate Flat Lay Must HavesUltimate Flat Lay Must Haves
Ultimate Flat Lay Must Haves
 
Details Presentation
Details PresentationDetails Presentation
Details Presentation
 

Similar to Estimating Different Thermodynamic Relations using RKS equation

GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...Wasswaderrick3
 
HMT Week 8.pdf convection convection radiation
HMT Week 8.pdf convection convection radiationHMT Week 8.pdf convection convection radiation
HMT Week 8.pdf convection convection radiation2020me70
 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfWasswaderrick3
 
Entransy Loss and its Application to Atkinson Cycle Performance Evaluation
Entransy Loss and its Application to Atkinson Cycle Performance EvaluationEntransy Loss and its Application to Atkinson Cycle Performance Evaluation
Entransy Loss and its Application to Atkinson Cycle Performance EvaluationIOSR Journals
 
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...IJSRED
 
chem2503_oct05.ppt
chem2503_oct05.pptchem2503_oct05.ppt
chem2503_oct05.pptHaibinSu2
 
KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxParaDise11
 
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfWasswaderrick3
 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfWasswaderrick3
 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfWasswaderrick3
 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfWasswaderrick3
 

Similar to Estimating Different Thermodynamic Relations using RKS equation (14)

GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
 
ProjectAndersSchreiber
ProjectAndersSchreiberProjectAndersSchreiber
ProjectAndersSchreiber
 
Gaskell
GaskellGaskell
Gaskell
 
HMT Week 8.pdf convection convection radiation
HMT Week 8.pdf convection convection radiationHMT Week 8.pdf convection convection radiation
HMT Week 8.pdf convection convection radiation
 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
 
Entransy Loss and its Application to Atkinson Cycle Performance Evaluation
Entransy Loss and its Application to Atkinson Cycle Performance EvaluationEntransy Loss and its Application to Atkinson Cycle Performance Evaluation
Entransy Loss and its Application to Atkinson Cycle Performance Evaluation
 
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
 
chem2503_oct05.ppt
chem2503_oct05.pptchem2503_oct05.ppt
chem2503_oct05.ppt
 
I023083088
I023083088I023083088
I023083088
 
KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptx
 
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdf
 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdf
 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdf
 

Estimating Different Thermodynamic Relations using RKS equation

  • 1. Course No: ME 5243- Advanced Thermodynamics Estimating Different Thermodynamic Relations using Redlich- Kwong-Soave Equation of State. Final Project report Abu Saleh Ahsan,Md. Saimon Islam, Syed Hasib Akhter Faruqui 5-5-2016
  • 2. 1 | P a g e Table of Contents Nomenclature:..............................................................................................................................................2 Abstract:........................................................................................................................................................4 Introduction:.................................................................................................................................................5 Derivation......................................................................................................................................................6 (a) Evaluation of the Constants.................................................................................................................6 (b) Equation of State in Reduced Form.....................................................................................................9 c) Critical Compressibility Factor ............................................................................................................10 d) Express Z in terms TR, vR’:..................................................................................................................12 e) Accuracy of EOS from Equation (d).....................................................................................................13 f) Equation for Departure .......................................................................................................................15 𝒉 ∗ −𝒉𝑹𝑻𝒄 .........................................................................................................................................15 (u*-u)/RTc...........................................................................................................................................15 𝒔 ∗ −𝒔𝑹...............................................................................................................................................15 g) Accuracy of EOS for equation (C)........................................................................................................16 h) Derivation of Expressions: ..................................................................................................................17 𝒂 ∗ − 𝒂𝑹𝑻𝒄:.......................................................................................................................................17 𝒈 ∗ − 𝒈𝑹𝑻𝒄: ......................................................................................................................................17 i) Speed of sound ....................................................................................................................................18 (j) Derive the Properties..........................................................................................................................19 Cp ........................................................................................................................................................19 Cv ........................................................................................................................................................19 1/v vp ..................................................................................................................................19 k = v/p pv ....................................................................................................................................19 kT .........................................................................................................................................................20 J .........................................................................................................................................................20 Summary:....................................................................................................................................................21 Appendix .....................................................................................................................................................22 MATLAB Code .........................................................................................................................................22 Reference....................................................................................................................................................23
  • 3. 2 | P a g e Nomenclature: P = Pressure Pr = Reduced pressure Pc = Critical pressure v = Specific volume vr = Reduced specific volume vc = Critical volume 𝑣𝑟 ∗ = Specific volume of ideal gas vrf = Reduced volume at liquid state vrg = Reduced volume at gaseous state T = Temperature Tr = Reduced temperature Tc= Critical temperature R = Molar gas constant Z = Compressibility factor Zr = Reduced compressibility factor Zc = Critical compressibility factor 𝑔 = Gibbs free energy 𝑔0 = Gibbs free energy for ideal gas ℎ = Specific enthalpy for real gas ℎ0 = Specific enthalpy for ideal gas 𝑢 = Specific internal energy for real gas 𝑢0 = Specific internal energy for ideal gas
  • 4. 3 | P a g e 𝑠 = Specific entropy for real gas 𝑠0 = Specific entropy for ideal gas 𝑘 𝑇 = Isothermal expansion exponent 𝑐 = Speed of sound 𝛽 =Volumetric co-efficient of thermal expansion 𝐶 𝑝 = Constant pressure specific heat 𝐶 𝑣 = Constant volume specific heat
  • 5. 4 | P a g e Abstract: For the project we will be using “Redlich- Kwong-Soave” Equation of State (EOS) to derive to Estimating Different Thermodynamic Relations. Starting from “Redlich- Kwong-Soave” equation we have calculated the constants “a(T)” & “b”. The EOS is again represented in its reduced form. Compressibility factor for the selected EOS is calculated and expressed in terms of TR & VR. By using the EOS different thermodynamic relations such as departure enthalpy, entropy, and change in internal energy has been evaluated. Again, we have expressed different important parameters such as speed of sound, isothermal expansion exponent, CP & CV in reduced form. As for the substance in question we are using “Nitrogen”.
  • 6. 5 | P a g e Introduction: Real gases are different from that of ideal gases. Thus the evaluated properties of ideal gas cannot be used as the same for real gases. To understand the characteristics of real gases we have to consider the following-  compressibility effects;  variable specific heat capacity;  van der Waals forces;  non-equilibrium thermodynamic effects;  issues with molecular dissociation and elementary reactions with variable composition. In our project, we have taken “Redlich- Kwong-Soave” equation of state (EOS) into consideration to derive the various fundamental relations of thermodynamics. The compressibility, enthalpy departure and entropy departure, can all be calculated if an equation of state for a fluid is known which is “Nitrogen” in our case. Now, the “Redlich- Kwong-Soave” equation of state (EOS) is almost similar to Van Der Walls equation of state. The equation is- 𝑝 = 𝑅𝑇 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) … …. … … … … … … … … (i) In thermodynamics, a departure function is defined for any thermodynamic property as the difference between the property as computed for an ideal gas and the property of the species as it exists in the real world, for a specified temperature T and pressure P. Common departure functions include those for enthalpy, entropy, and internal energy. Departure functions are used to calculate real fluid extensive properties (i.e properties which are computed as a difference between two states). A departure function gives the difference between the real state, at a finite volume or non-zero pressure and temperature, and the ideal state, usually at zero pressure or infinite volume and temperature.
  • 7. 6 | P a g e Derivation (a) Evaluation of the Constants Taking the first and second derivative of pressure WRT to volume be – (i) => 𝛿𝑝 𝛿𝑣 ) 𝑇 = − 𝑅𝑇 (𝑣−𝑏)2 + 𝑎(𝑇) 𝑣2(𝑣+𝑏) + 𝑎(𝑇) 𝑣(𝑣+𝑏)2 … … … … … … … … (ii) And, 𝛿2 𝑝 𝛿𝑣2) 𝑇 = 2𝑅𝑇 (𝑣−𝑏)3 + 𝑎(𝑇) [− 1 𝑣2(𝑣+𝑏)2 − 2 𝑣3(𝑣+𝑏) − 1 𝑣2(𝑣+𝑏)2 − 2 𝑣(𝑣+𝑏)3] 𝛿2 𝑝 𝛿𝑣2) 𝑇 = 2𝑅𝑇 (𝑣−𝑏)3 + 𝑎(𝑇) [− 2 𝑣2(𝑣+𝑏)2 − 2 𝑣3(𝑣+𝑏) − 2 𝑣(𝑣+𝑏)3] 𝛿2 𝑝 𝛿𝑣2) 𝑇 = 2𝑅𝑇 (𝑣−𝑏)3 − 𝑎(𝑇) [ 2 𝑣2(𝑣+𝑏)2 + 2 (𝑣+𝑏) + 2 𝑣(𝑣+𝑏)3] 𝛿2 𝑝 𝛿𝑣2) 𝑇 = 2𝑅𝑇 (𝑣−𝑏)3 − 𝑎(𝑇) [ 3𝑣2+3𝑣𝑏+𝑏2 𝑣3(𝑣+𝑏)3 ] … … …. …. …. …. …. …. (iii) Now at critical point first and second derivative of pressure WRT to volume be zero. So from equation (ii) and (iii) we can write, 𝛿𝑝 𝛿𝑣 ) 𝑇 = − 𝑅𝑇𝑐 (𝑣 𝑐−𝑏)2 + 𝑎(𝑇) 𝑣 𝑐 2(𝑣 𝑐+𝑏) + 𝑎(𝑇) 𝑣 𝑐(𝑣 𝑐+𝑏)2 = 0 𝑜𝑟, 0 = − 𝑅𝑇𝑐 (𝑣 𝑐−𝑏)2 + 𝑎(𝑇) 𝑣 𝑐 2(𝑣 𝑐+𝑏) + 𝑎(𝑇) 𝑣 𝑐(𝑣 𝑐+𝑏)2 𝑜𝑟, 𝑅𝑇𝑐 (𝑣 𝑐−𝑏)2 = 𝑎(𝑇) 𝑣 𝑐 2(𝑣 𝑐+𝑏) + 𝑎(𝑇) 𝑣 𝑐(𝑣 𝑐+𝑏)2 𝑜𝑟, 𝑅𝑇𝑐 (𝑣 𝑐−𝑏)2 = 𝑎(𝑇) (2𝑣 𝑐+𝑏) 𝑣 𝑐 2(𝑣 𝑐+𝑏)2 …. …. .… …. ….. ….. …. … (iv) And, 𝛿2 𝑝 𝛿𝑣2) 𝑇 = 2𝑅𝑇𝑐 (𝑣 𝑐−𝑏)3 − 𝑎(𝑇) [ 3𝑣 𝑐 2+3𝑣 𝑐 𝑏+𝑏2 𝑣 𝑐 3(𝑣 𝑐+𝑏)3 ] = 0 𝑜𝑟, 2𝑅𝑇𝑐 (𝑣 𝑐−𝑏)3 = 𝑎(𝑇) [ 3𝑣 𝑐 2+3𝑣 𝑐 𝑏+𝑏2 𝑣 𝑐 3(𝑣 𝑐+𝑏)3 ] …. …. …. …. …. …. …. (v) Now, Dividing Equation (iv) with equation (v) we get, (𝑣𝑐 − 𝑏) = (𝑣 𝑐+𝑏).𝑣 𝑐.(𝑣 𝑐+𝑏) 3𝑣 𝑐 2+3𝑣 𝑐 𝑏+𝑏2 𝑜𝑟, (𝑣𝑐 − 𝑏)(3𝑣𝑐 2 + 3𝑣𝑐 𝑏 + 𝑏2 ) = (𝑣𝑐 + 𝑏). 𝑣𝑐. (𝑣𝑐 + 𝑏)
  • 8. 7 | P a g e 𝑜𝑟, 3𝑣𝑐 3 + 3𝑣𝑐 2 + 𝑏2 𝑣𝑐 − 3𝑏𝑣𝑐 2 − 3𝑣𝑐 𝑏2 − 𝑏3 = 2𝑣𝑐 3 + 2𝑣𝑐 2 + 𝑣𝑐 2 𝑏 + 𝑣𝑐 𝑏2 𝑜𝑟, 𝑏3 + 3𝑏2 𝑣𝑐 + 3𝑏𝑣𝑐 2 − 𝑣𝑐 3 = 0 𝑜𝑟, (𝑏 + 𝑣𝑐)3 = 2𝑣𝑐 3 = (√2 3 𝑣𝑐) 3 𝑜𝑟, 𝑏 = (√2 3 − 1)𝑣𝑐 = (√2 3 − 1)𝑧 𝑐 𝑅𝑇𝑐 𝑝 𝑐 𝑜𝑟, 𝑏 = (√2 3 − 1). 1 3 . 𝑅𝑇𝑐 𝑝 𝑐 = 0.08664 𝑅𝑇𝑐 𝑝 𝑐 𝑜𝑟, 𝑏 = 0.08664 𝑅𝑇𝑐 𝑝 𝑐 …. …. …. …. …. …. …. (vi) Note: Here, 𝑧 𝑐 = 1 3 . As the original equation is from Redlich-Kwong equation, we will use the value of 𝑧 𝑐 from the Redlich-Kwong equation. Now putting the value of ‘b’ and 𝑣𝑐 = 𝑧 𝑐 𝑅𝑇𝑐 𝑝 𝑐 = 1 3 . 𝑅𝑇𝑐 𝑝 𝑐 in equation (iv) we get, 𝑅𝑇𝑐 (𝑣 𝑐−𝑏)2 = 𝑎(𝑇) (2𝑣 𝑐+𝑏) 𝑣 𝑐 2(𝑣 𝑐+𝑏)2 𝑜𝑟, 𝑎(𝑇) = 𝑅𝑇𝑐 𝑣 𝑐 2(𝑣 𝑐+𝑏)2 (2𝑣 𝑐+𝑏) (𝑣 𝑐−𝑏)2 𝑜𝑟, 𝑎(𝑇) = 𝑅𝑇𝑐 [𝑧 𝑐 𝑅𝑇 𝑐 𝑝 𝑐 ] 2 (𝑧 𝑐 𝑅𝑇 𝑐 𝑝 𝑐 +0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) 2 (2𝑧 𝑐 𝑅𝑇 𝑐 𝑝 𝑐 +0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) (𝑧 𝑐 𝑅𝑇 𝑐 𝑝 𝑐 −0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) 2 𝑜𝑟, 𝑎(𝑇) = 𝑅𝑇𝑐 [𝑧 𝑐 𝑅𝑇 𝑐 𝑝 𝑐 ] 2 ( 𝑅𝑇 𝑐 𝑝 𝑐 ) 2 ( 1 3 +0.08664 ) 2 ( 𝑅𝑇 𝑐 𝑝 𝑐 ) ( 2 3 +0.08664) ( 𝑅𝑇 𝑐 𝑝 𝑐 ) 2 ( 1 3 −0.08664 ) 2 𝑜𝑟, 𝑎(𝑇) = [ 1 3 . 𝑅𝑇 𝑐 𝑝 𝑐 ] 2 ∗ (0.176377600711111) ( 1 𝑝 𝑐 ) ( 2 3 +0.08664) ( 1 3 −0.08664 ) 2 𝑜𝑟, 𝑎(𝑇) = 0.42747 𝑅2 𝑇𝑐 2 𝑝 𝑐 … …. …. …. …. …. …. …. …. (vii) Now, this is for the critical point only. As for other points for the assigned substance Nitrogen we get a(T)= 0.42747 𝑅2 𝑇𝑐 2 𝑝 𝑐 (1 + [{0.0007T4 - 0.3012T3 + 45.74036T2 - 3068.87T + 76836.9287}]*T) at critical point T=TR=1 thus we get again, a(T)= 0.42747 𝑅2 𝑇𝑐 2 𝑝 𝑐
  • 9. 8 | P a g e Figure-1: a(T) function determination -50 0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 a(T) T
  • 10. 9 | P a g e (b) Equation of State in Reduced Form 𝑝 = 𝑅𝑇 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) 𝑜𝑟, 𝑝𝑟 𝑝𝑐 = 𝑅𝑇𝑟 𝑇𝑐 𝑣 𝑟 𝑣 𝑐−0.08664 𝑅𝑇 𝑐 𝑝 𝑐 − 0.42747 𝑅2 𝑇 𝑐 2 𝑝 𝑐 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇) 𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) 𝑜𝑟, 𝑝𝑟 = 𝑅𝑇𝑟 𝑇𝑐 (𝑣 𝑟 𝑣 𝑐−0.08664 𝑅𝑇 𝑐 𝑝 𝑐 )𝑝 𝑐 − 0.42747 𝑅2 𝑇 𝑐 2 𝑝 𝑐 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇) 𝑝 𝑐 𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) 𝑜𝑟, 𝑝𝑟 = 𝑅𝑇 𝑟 𝑇 𝑐 𝑝 𝑐 (𝑣 𝑟 𝑣 𝑐−0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) − 0.42747 𝑅2 𝑇 𝑐 2 𝑝 𝑐 2 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇) 𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664 𝑣 𝑐 𝑧 𝑐 ) 𝑜𝑟, 𝑝𝑟 = 𝑇𝑟 ( 𝑣 𝑐 𝑧 𝑐 ) [𝑣 𝑟 𝑣 𝑐−0.08664 ( 𝑣 𝑐 𝑧 𝑐 )] − 0.42747 ( 𝑣 𝑐 𝑧 𝑐 ) 2 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇) 𝑣 𝑟 𝑣 𝑐(𝑣 𝑟 𝑣 𝑐+0.08664 𝑣 𝑐 𝑧 𝑐 ) 𝑜𝑟, 𝑝𝑟 = 𝑇𝑟 ( 1 𝑧 𝑐 ) [𝑣 𝑟−0.08664 ( 1 𝑧 𝑐 )] − 0.42747 ( 1 𝑧 𝑐 ) 2 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇) 𝑣 𝑟(𝑣 𝑟+0.08664 1 𝑧 𝑐 ) 𝑜𝑟, 𝑝𝑟 = 3 𝑇𝑟 [𝑣 𝑟−0.25992] − 0.0474967(1+[{0.0007(𝑇𝑟 𝑇𝑐)4 − 0.3012(𝑇𝑟 𝑇𝑐)3 + 45.74036(𝑇𝑟 𝑇𝑐)2 − 3068.87(𝑇𝑟 𝑇𝑐) + 76836.9287}]∗(𝑇𝑟 𝑇𝑐) 𝑣 𝑟(𝑣 𝑟+0.25992) At critical point it becomes, 𝑜𝑟, 𝑝𝑟 = 𝑇𝑟 0.3333 𝑣 𝑟−0.08664 − 1 21.0541 𝑣 𝑟 2+5.472384 𝑣 𝑟
  • 11. 10 | P a g e c) Critical Compressibility Factor 𝑝𝑐 = 𝑅𝑇𝑐 𝑣𝑐 − 0.08664 𝑅𝑇𝑐 𝑝𝑐 − 0.42747 𝑅2 𝑇𝑐 2 𝑝𝑐 𝑣𝑐 (𝑣𝑐 + 0.08664 𝑅𝑇𝑐 𝑝𝑐 ) 𝑜𝑟, 𝑝𝑐 = 𝑅𝑇𝑐 {𝑣𝑐 − 0.08664 ( 𝑣𝑐 𝑧 𝑐 )} − 0.42747 𝑅2 𝑇𝑐 2 𝑝𝑐 𝑣𝑐 (𝑣𝑐 + 0.08664 ( 𝑣𝑐 𝑧 𝑐 )) 𝑜𝑟, 1 = 𝑅𝑇𝑐 𝑝𝑐 𝑣𝑐 {1 − 0.08664 ( 1 𝑧 𝑐 )} − 0.42747 𝑅2 𝑇𝑐 2 𝑝𝑐 2 𝑣𝑐 2 (1 + 0.08664 ( 1 𝑧 𝑐 )) 𝑜𝑟, 1 = ( 𝑣𝑐 𝑧 𝑐 ) 𝑣𝑐 {1 − 0.08664 ( 1 𝑧 𝑐 )} − 0.42747 ( 𝑣𝑐 𝑧 𝑐 ) 2 𝑣𝑐 2 (1 + 0.08664 ( 1 𝑧 𝑐 )) 𝑜𝑟, 1 = ( 1 𝑧 𝑐 ) {1−0.08664 ( 1 𝑧 𝑐 )} − 0.42747( 1 𝑧 𝑐 ) 2 (1+0.08664 ( 1 𝑧 𝑐 )) 𝑜𝑟, 1 = ( 1 𝑧 𝑐 )(1+0.08664 ( 1 𝑧 𝑐 ))− {1−0.08664 ( 1 𝑧 𝑐 )} {0.42747( 1 𝑧 𝑐 ) 2 } {{1}2−{0.08664 ( 1 𝑧 𝑐 )} 2 } 𝑜𝑟, 1 − {0.08664 ( 1 𝑧 𝑐 )} 2 = ( 1 𝑧 𝑐 ) + 0.08664 ( 1 𝑧 𝑐 ) 2 − 0.42747 ( 1 𝑧 𝑐 ) 2 + (0.42747 ∗ .08664) ( 1 𝑧 𝑐 ) 3 𝑜𝑟, 0 = ( 1 𝑧 𝑐 ) + 0.08664 ( 1 𝑧 𝑐 ) 2 − 0.42747 ( 1 𝑧 𝑐 ) 2 + (0.42747 ∗ .08664) ( 1 𝑧 𝑐 ) 3 − 1 + {0.08664 ( 1 𝑧 𝑐 )} 2 𝑜𝑟, 𝑧 𝑐 2 + 0.08664 𝑧 𝑐 − 0.42747 𝑧 𝑐 + (0.42747 ∗ .08664) − 𝑧 𝑐 3 + (0.08664)2 𝑧 𝑐 𝑧 𝑐 3 = 0 𝑜𝑟, 𝑧 𝑐 2 + 0.08664 𝑧 𝑐 − 0.42747 𝑧 𝑐 + (0.42747 ∗ .08664) − 𝑧 𝑐 3 + (0.08664)2 𝑧 𝑐 = 0 𝑜𝑟, 𝑧 𝑐 3 − 𝑧 𝑐 2 + (0.42747 − 0.08664 − 0.086642)𝑧 𝑐 − (0.42747 ∗ .08664) = 0 Solving this equation numerically, we get, 𝑧 𝑐 = 0.3471 (MATLAB Code at Appendix)
  • 12. 11 | P a g e Figure-2: Solution for Critical Compressibility Factor
  • 13. 12 | P a g e d) Express Z in terms TR, vR’: 𝑍 = 𝑝𝑣 𝑅𝑇 From equation (i) substituting the value of p we get, 𝑍 = 𝑣 𝑅𝑇 [ 𝑅𝑇 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) ] 𝑜𝑟, 𝑍 = 𝑣 𝑅𝑇 [ 𝑅𝑇 𝑣−0.08664 𝑅𝑇 𝑐 𝑝 𝑐 − 0.42747 𝑅2 𝑇 𝑐 2 𝑝 𝑐 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇 𝑣(𝑣+0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) ] 𝑜𝑟, 𝑍 = [ 𝑣 𝑣−0.08664 𝑅𝑇 𝑐 𝑝 𝑐 − 0.42747 𝑅𝑇 𝑐 2 𝑇 𝑝 𝑐 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇 𝑣(𝑣+0.08664 𝑅𝑇 𝑐 𝑝 𝑐 ) ] 𝑜𝑟, 𝑍 = [ 𝑣 𝑣(1−0.08664 𝑅𝑇 𝑐 𝑣 𝑝 𝑐 ) − 0.42747 𝑇 𝑐 𝑇 (1+[{0.0007𝑇4 − 0.3012𝑇3 + 45.74036𝑇2 − 3068.87𝑇 + 76836.9287}]∗𝑇 ( 𝑣 𝑅𝑇 𝑐 𝑝 𝑐 +0.08664 ) ] 𝑜𝑟, 𝑍 = [ 1 (1−0.08664 1 𝑣 𝑅 ′ ) − 0.42747 1 𝑇 𝑅 (1+[{0.0007(𝑇𝑟 𝑇𝑐)4 − 0.3012(𝑇𝑟 𝑇𝑐)3 + 45.74036(𝑇𝑟 𝑇𝑐)2 − 3068.87(𝑇𝑟 𝑇𝑐) + 76836.9287}]∗(𝑇𝑟 𝑇𝑐) (𝑣 𝑅 ′ +0.08664 ) ] 𝑜𝑟, 𝑍 = [ 1 (1−0.08664 1 𝑣 𝑅 ′ ) − 0.42747 1 𝑇 𝑅 (1+[{176433.1632(𝑇𝑟)4 − 604113.552(𝑇𝑟)3 + 726168.24(𝑇𝑟)2 − 386568(𝑇𝑟) + 76836.9287}]∗(𝑇𝑟∗126) (𝑣 𝑅 ′ +0.08664 ) ] At critical point, 𝑜𝑟, 𝑍 = [ 1 (1−0.08664 1 𝑣 𝑅 ′ ) − 0.42747 1 𝑇 𝑅 (𝑣 𝑅 ′ +0.08664 ) ]
  • 14. 13 | P a g e e) Accuracy of EOS from Equation (d) TR = 1 TR VR ' From Table From Equation % Error 1 0.7 0.58 1.086951409 87.40542 1 0.8 0.635 0.919693232 44.83358 1 0.9 0.675 0.796209555 17.95697 1 1 0.701 0.70147159 0.067274 1 1.2 0.75 0.565944624 24.54072 1 1.4 0.775 0.473864828 38.85615 1 1.6 0.81 0.407336589 49.71153 1 1.8 0.83 0.357071096 56.97939 1 2 0.845 0.317780354 62.39286 TR = 1.05 TR VR ' From Table From Equation % Error 1.05 0.7 0.64 1.112828194 73.87941 1.05 0.8 0.68 0.942651495 38.62522 1.05 0.9 0.71 0.816840904 15.04801 1.05 1 0.74 0.720204302 2.675094 1.05 1.2 0.77 0.581765455 24.44604 1.05 1.4 0.8 0.487557258 39.05534 1.05 1.6 0.419405385 1.05 1.8 0.367860496 1.05 2 0.327535613 TR = 1.10 TR VR ' From Table From Equation 1.4 0.7 1.24221212 1.4 0.8 1.05744281 1.4 0.9 0.91999765 1.1 1 0.73723404 1.1 1.2 0.596148029 1.1 1.4 0.500004921 1.1 1.6 0.430377018 1.1 1.8 0.377669042 1.1 2 0.336404031
  • 15. 14 | P a g e TR = 1.20 TR VR ' From Table From Equation % Error 1.4 0.7 1.24221212 1.4 0.8 1.05744281 1.4 0.9 0.91999765 1.2 1 0.767036082 1.2 1.2 0.621317533 1.2 1.4 0.521788333 1.2 1.6 0.449577376 1.2 1.8 0.394833997 1.2 2 0.351923762 TR = 1.40 TR VR' From Table From Equation % Error 1.4 0.7 1.24221212 1.4 0.8 1.05744281 1.4 0.9 0.91999765 1.4 1 0.813867863 1.4 1.2 0.660869611 1.4 1.4 0.556019408 1.4 1.6 0.479749366 1.4 1.8 0.421807498 1.4 2 0.37631191
  • 16. 15 | P a g e f) Equation for Departure For simplicity of calculation we will consider the reduced equation at critical point, 𝒉∗ − 𝒉 𝑹𝑻𝒄 ℎ∗ − ℎ 𝑅𝑇𝑐 = ∫ 𝑍𝑐 [( 𝜕𝑃𝑟 𝜕𝑇𝑟 ) − 𝑃𝑟] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍) 𝑉𝑟 ∞ = ∫ 𝑍𝑐 [( 𝜕 𝜕𝑇𝑟 ) ( 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 − 1 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ) − 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 − 𝑉𝑟 ∞ 1 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍) = ∫ 𝑍𝑐 [( 1 0.3333 𝑣 𝑟−0.08664 − 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 + 1 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ] 𝑑𝑣𝑟 − 𝑇𝑟(1 − 𝑍) 𝑉𝑟 ∞ = 𝑍𝑐 [( ln(0.3333 𝑣 𝑟−0.08664) 0.3333 − 𝑇𝑟 ln(0.3333 𝑣 𝑟−0.08664) 0.3333 + ln( 5.472384 𝑣 𝑟 )+21.0541 5.472384 ] − 𝑇𝑟(1 − 𝑍) = 0.873 ln(0.333𝑣𝑟 − 0.08664) [1 − 𝑇𝑟] + 0.053 ln ( 5.472384 𝑣 𝑟 ) + 1.12 − 𝑇𝑟(1 − 𝑍) (u*-u)/RTc Now to derive departure from internal energy 𝑢∗ − 𝑢 𝑅𝑇𝑐 = − ∫ 𝑍𝑐 [𝑇𝑟 ( 𝜕𝑃𝑟 𝜕𝑇𝑟 ) − 𝑃𝑟] 𝑑𝑣𝑟 𝑉𝑟 ∞ = ∫ 𝑍𝑐 [ 𝑇𝑟 ( 𝜕 𝜕𝑇𝑟 ) ( 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 − 1 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ) − 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 − 𝑉𝑟 ∞ 1 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ] 𝑑𝑣𝑟 = ∫ 𝑍𝑐 [( 𝑇 𝑟 0.3333 𝑣 𝑟−0.08664 − 𝑇 𝑟 2 0.3333 𝑣 𝑟−0.08664 + 𝑇 𝑟 21.0541 𝑣 𝑟 2 +5.472384 𝑣 𝑟 ] 𝑑𝑣𝑟 𝑉𝑟 ∞ = 𝑍𝑐 𝑇𝑟 [( ln(0.3333 𝑣 𝑟−0.08664) 0.3333 − 𝑇𝑟 ln(0.3333 𝑣 𝑟−0.08664) 0.3333 + ln( 5.472384 𝑣 𝑟 )+21.0541 5.472384 ] = 0.873 𝑇𝑟 ln(0.333𝑣𝑟 − 0.08664) [1 − 𝑇𝑟] + 0.053 Tr ln ( 5.472384 𝑣 𝑟 ) + 1.12 𝒔∗ − 𝒔 𝑹 𝑠∗ − 𝑠 𝑅 = ∫ 𝑍𝑐 [( 𝜕𝑃𝑟 𝜕𝑇𝑟 ) − ( 1 𝑉𝑟 )] 𝑑𝑣𝑟 − ln(𝑧) 𝑉𝑟 ∞ =∫ 𝑍𝑐 [( 1 0.3333 𝑣 𝑟−0.08664 − 1 𝑉𝑟 ] 𝑑𝑣𝑟 − ln(𝑧) 𝑉𝑟 ∞ = 𝑍𝑐 [( ln(0.3333 𝑣 𝑟−0.08664) 0.3333 − ( 1 ln 𝑣𝑟 ) ]– ln (z)
  • 17. 16 | P a g e g) Accuracy of EOS for equation (C) From table A1 for Nitrogen we get, Zc=0.291 And at part (c) we calculated, Zc=0.3471 Thus, Accuracy= (0.3471−0.291) 0.291 =0.192783=19.2783%
  • 18. 17 | P a g e h) Derivation of Expressions: For simplicity of calculation we will consider the reduced equation at critical point, 𝒂∗ − 𝒂 𝑹𝑻𝒄 : We know, 𝑎∗ − 𝑎 𝑅𝑇𝑐 = − ∫ 𝑍𝑐 [( 𝜕𝑃𝑟 𝜕𝑇𝑟 ) − 𝑇𝑟 𝑉𝑟 ] 𝑑𝑣𝑟 + 𝑇𝑟𝑙𝑛(𝑍) 𝑉𝑟 ∞ 𝑜𝑟, 𝑎∗ − 𝑎 𝑅𝑇𝑐 = − ∫ 𝑍𝑐 [( 𝜕 𝜕𝑇𝑟 ( 𝑇𝑟 0.3333 𝑣𝑟 − 0.08664 − 1 21.0541 𝑣𝑟 2 + 5.472384 𝑣𝑟 )) − 𝑇𝑟 𝑉𝑟 ] 𝑑𝑣𝑟 𝑉𝑟 ∞ + 𝑇𝑟𝑙𝑛(𝑍) Or, 𝑎∗−𝑎 𝑅𝑇𝑐 = − ∫ 𝑍𝑐 [ 1 0.33∗𝑉𝑟−0.086 − 𝑇𝑟 𝑉𝑟 ] 𝑑𝑉𝑟 + 𝑇𝑟𝑙𝑛(𝑍) 𝑉𝑟 ∞ or, 𝑎∗−𝑎 𝑅𝑇𝑐 = −𝑍𝑐[( ln(|165𝑉𝑟−43|) 0.33 − 𝑇𝑟𝑙𝑛|𝑉𝑟|] + 𝑇𝑟𝑙𝑛(𝑍) After putting the value of Zc we get, 𝑎∗ − 𝑎 𝑅𝑇𝑐 = −0.291[( ln(|165𝑉𝑟 − 43|) 0.33 − 𝑇𝑟𝑙𝑛|𝑉𝑟|] + 𝑇𝑟𝑙𝑛(𝑍) 𝒈∗ − 𝒈 𝑹𝑻𝒄 : We know, 𝑔∗ − 𝑔 𝑅𝑇𝑐 = ∫ [𝑍𝑐𝑃𝑟 − 𝑇𝑟 𝑉𝑟 ]𝑑𝑣𝑟 + 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧) 𝑉𝑟 ∞ 𝑔∗ − 𝑔 𝑅𝑇𝑐 = ∫ [𝑍𝑐 ( 𝑇𝑟 0.3333 𝑣𝑟 − 0.08664 − 1 21.0541 𝑣𝑟 2 + 5.472384 𝑣𝑟 ) − 𝑇𝑟 𝑉𝑟 ] 𝑑𝑉𝑟 + 𝑇𝑟(𝑙𝑛𝑧 + 1 𝑉𝑟 ∞ − 𝑧) 𝑔∗ − 𝑔 𝑅𝑇𝑐 = − 𝑇𝑟𝑙𝑛(|1375𝑉𝑟 − 361|)𝑍𝑐 0.33 + ln (| 1368096 𝑉𝑟 + 5263525|) 𝑍𝑐 5.47 + 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧) After putting the value of Zc we get, 𝑔∗ − 𝑔 𝑅𝑇𝑐 = − 𝑇𝑟𝑙𝑛(|1375𝑉𝑟 − 361|) ∗ .291 0.33 + ln (| 1368096 𝑉𝑟 + 5263525|) ∗ .291 5.47 + 𝑇𝑟(𝑙𝑛𝑧 + 1 − 𝑧)
  • 19. 18 | P a g e i) Speed of sound 𝑐 = √−𝑣2 √ ( 𝜕𝑝 𝜕𝑣 ) 𝑠 ( 𝜕𝑝 𝜕𝑣 ) 𝑠 = 𝜕 𝜕𝑣 { 𝑅𝑇 𝑣 − 𝑏 − 𝑎(𝑇) 𝑣(𝑣 + 𝑏) } = 𝑅𝑇(−1) (𝑣 − 𝑏)2 + 𝑎(𝑇) (2𝑏 + 𝑏) (𝑣 + 𝑏)2 𝑣2 = − 𝑅𝑇 (𝑣 − 𝑏)2 + 𝑎(𝑇) (2𝑏 + 𝑏) (𝑣 + 𝑏)2 𝑣2 𝒄 = √−𝒗 𝟐{− 𝑹𝑻 (𝒗−𝒃) 𝟐 + 𝒂(𝑻) (𝟐𝒃+𝒃) (𝒗+𝒃) 𝟐 𝒗 𝟐 }
  • 20. 19 | P a g e (j) Derive the Properties Cp We can directly derive Cp and Cv from Uj. Now we know Cp and Cv, 𝐶𝑝 = − 1 𝑈𝑗 [𝑇 [ 𝑅𝑇 𝑣 − 𝑏 − 𝑎(𝑇) 𝑣(𝑣 + 𝑏) − 𝑅𝑇 (𝑣 − 𝑏)2 + 𝑎(𝑇) 𝑣2(𝑣 + 𝑏) + 𝑎(𝑇) 𝑣(𝑣 + 𝑏)2 ] + 𝑣] Cv Also the relation between Cp and Cv is, 𝑐 𝑉 = 𝐶 𝑝 𝑘 So, 𝐶𝑣 = − 1 𝑈𝑗 𝐾 [𝑇 [ 𝑅𝑇 𝑣 − 𝑏 − 𝑎(𝑇) 𝑣(𝑣 + 𝑏) − 𝑅𝑇 (𝑣 − 𝑏)2 + 𝑎(𝑇) 𝑣2(𝑣 + 𝑏) + 𝑎(𝑇) 𝑣(𝑣 + 𝑏)2 ] + 𝑣] 1/v vp β = (1/𝑣)( 𝜕𝑣 𝜕𝑇 )𝑝 ( 𝜕𝑣 𝜕𝑡 ) 𝑝 = − ( 𝜕𝑃 𝜕𝑇 )𝑣 ( 𝜕𝑃 𝜕𝑣 )𝑇 = 𝑅 𝑣−𝑏 − 𝑎( 𝑇) 𝑣( 𝑣+𝑏) − 𝑅𝑇 ( 𝑣−𝑏)2+ 𝑎( 𝑇) 𝑣2( 𝑣+𝑏) + 𝑎( 𝑇) 𝑣( 𝑣+𝑏)2 β = − 1 𝑣 [ 𝑅 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) − 𝑅𝑇 (𝑣−𝑏)2+ 𝑎(𝑇) 𝑣2(𝑣+𝑏) + 𝑎(𝑇) 𝑣(𝑣+𝑏)2 ] k = v/p pv Isentropic expansion coefficient: 𝑘 = − 𝑣 𝑃 ( 𝜕𝑝 𝜕𝑣 ) 𝑠 = - 𝑣 𝑃 [− 𝑅𝑇 (𝑣−𝑏)2 + 𝑎(𝑇) 𝑣2(𝑣+𝑏) + 𝑎(𝑇) 𝑣(𝑣+𝑏)2] 𝑘 = −𝑣 ( 𝑅𝑇 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) ) [ −𝑅𝑇 (𝑣−𝑏)2+ 2𝑎 𝑇 (𝑣+𝑐)3]
  • 21. 20 | P a g e kT We know, 𝐾 𝑇 = − 1 𝑣 𝛿𝑝 𝛿𝑣 ) 𝑇 = - 1 𝑣 [− 𝑅𝑇 (𝑣−𝑏)2 + 𝑎(𝑇) 𝑣2(𝑣+𝑏) + 𝑎(𝑇) 𝑣(𝑣+𝑏)2] J We know,𝑈𝑗 = ( 𝜕𝑃 𝜕𝑇 ) 𝑣 Also, 𝑑ℎ = 𝐶 𝑝 𝑑𝑇 + [𝑣 − 𝑇( 𝜕𝑣 𝜕𝑇 ) 𝑝] From isentropic process, h= constant so, 𝑑ℎ = 0 ( 𝜕𝑇 𝜕𝑃 ) ℎ = 𝑇 ( 𝜕𝑣 𝜕𝑇 )𝑝−𝑣 𝑐𝑝 Now, ( 𝜕𝑣 𝜕𝑇 ) 𝑝 = - ( 𝜕𝑃 𝜕𝑇 )𝑣 ( 𝜕𝑃 𝜕𝑣 )𝑇 𝑈𝑗 = ( 𝜕𝑇 𝜕𝑃 ) ℎ = 𝑇[− ( 𝜕𝑃 𝜕𝑇 )𝑣 ( 𝜕𝑃 𝜕𝑣 )𝑇 ]−𝑣 𝑐𝑝 𝑈𝑗 = −𝑇 𝑅 𝑣−𝑏 − 𝑎(𝑇) 𝑣(𝑣+𝑏) − 𝑅𝑇 (𝑣−𝑏)2+ 𝑎(𝑇) 𝑣2(𝑣+𝑏) + 𝑎(𝑇) 𝑣(𝑣+𝑏)2 −𝑣 𝑐𝑝
  • 22. 21 | P a g e Summary: In our project we firstly evaluated the Two parameters of the Redlich- Kwong-Soave equation. Then converted the equation into reduced form. With the help of MATLAB and Excel we estimated tabulated data and calculations.
  • 23. 22 | P a g e Appendix MATLAB Code clc; clear; x = 1; zc = 1; while x v2 = zc^3 - zc^2 + (.42747-.08664-.08664^2)*zc + (-.42747*.08664); if abs(v2) <= 0.00000025 x = 0; clc; fprintf('%d',zc); else zc = zc - 0.000025; end end
  • 24. 23 | P a g e Reference 1) http://en.wikipedia.org/ 2) http://webbook.nist.gov/chemistry/fluid/ 3) http://www.boulder.nist.gov/div838/theory/refprop/MINIREF/MINIREF.HTM 4) https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/Section6.pdf 5) http://www.swinburne.edu.au/ict/success/cms/documents/disertations/yswChap3.pdf 6) https://www.e-education.psu.edu/png520/m10_p5.html 7) Advanced Engineering Thermodynamics-Adrian Bejan. 8) Thermodynamics, An Engineering Approach- Yunus A Cengel and M.B Boles 9) Provided class lectures and notes.