Submarine Gas Hydrate Reservoir Simulations – A Gas/Liquid
Fluid Flow Model for Gas Hydrate Containing Sediments
Stefan Schlüter, Georg Janicki, Torsten Hennig, Görge Deerberg
Fraunhofer UMSICHT, Oberhausen (Germany)
COMSOL Conference 2014, Cambridge (UK)
What are gas hydrates?
Gas molecules
Water molecules
Water
Temperature
Gas
©
Jens
Greinert
IFM GEOMAR
Petrobras
Fraunhofer UMSICHT
Idea of the SUGAR project
©
IFM
GEOMAR
• CO2 hydrate stable at
lower pressure / higher temperature
• replacing CH4 by CO2
• simultaneous production of CH4
and storage of CO2
• sustainable energy supply system
Reservoir model principles
Phases
• 3 solid phases: sediment, methane hydrate, CO2 hydrate
• 2 fluid phases: gas phase, water (liquid) phase
• (1 supercritical phase: supercritical CO2 – not implemented yet)
Components
• 2 gas phase components: methane, carbon dioxide
• 3 components solved in water: sea salt, methane, carbon dioxide
Pressure equation: advanced 2-phase Darcy model
Energy equation: flow through porous solid, hydrate extensions, latent heats, pressure work
Reservoir Model – Pressure/Saturation Equation
Continuity equations:
Saturation:
Convection splitted form:
( ) ( )
( ) ( )
( )
( )
G G G G G
L L L L L
MH MH MH
CH CH CH
S s
t
S s
t
S s
t
S s
t
φ ρ ρ
φ ρ ρ
φ ρ
φ ρ
∂
+∇⋅ =
∂
∂
+∇⋅ =
∂
∂
=
∂
∂
=
∂
u
u
1
S s
S
t t
ρ ρ
φ φ
ρ ρ ρ
∂ ∂ ∇
+ + ∇⋅ + ⋅ =
∂ ∂
u u
1
j j
j
S
j
S
ε ε
ε φ
= = =
−
volume fraction of phase
sediment free volume fraction
Euler/Euler
Reservoir Model – Pressure/Saturation Equation
Density derivatives:
General form:
Darcy equation:
Phase summation:
, , ,
1 1 1
, ,
k k
k
k
T y P y P T
P T y
ρ ρ ρ
χ β ϕ
ρ ρ ρ
 
   
∂ ∂ ∂ 

 
  
 
= = − = 
  
  
  
 
  

∂ ∂ ∂
     
1
,
k
k k k
k k
y
P T
P T y
t t t t
ρ ρ
χ β ϕ χ β ϕ
ρ ρ
∂
∂ ∂ ∂ ∇
= − + = ∇ − ∇ + ∇
∂ ∂ ∂ ∂
∑ ∑
( ) ( )
with , ,
rel
f rel H L
k
P k f S S
Λ ρ Λ
η
= − ∇ + = =
u K g
k
k k k
k k
y
S P T s
S P T y
t t t t
φ φ χ β ϕ χ β ϕ
ρ
   
∂
∂ ∂ ∂ 
 



+ − + + ∇⋅ + ⋅ ∇ − ∇ + ∇ =


 
  



∂ ∂ ∂ ∂  
 
∑ ∑
u u
1 , 0
j
j
j j
S
S
t
φ
∂
= =
∂
∑ ∑
Reservoir Model – Pressure/Saturation Equation
Insertion in general form and summation over phases leads to general pressure equation:
Capillary pressure:
Calculation pressure:
( )
( )
( ) , ,
,
, , ,
j
j j f j j j
j j
f j j j j j k j k j j
j
k
j k j
j j k j f j j j k j k j
j j j
k
j
P
S P
t
P T y P
q y
T
S T y
t t
φ χ Λ ρ
Λ χ ρ β ϕ
φ β ϕ Λ ρ β ϕ
ρ
∂
+ ∇⋅ − ∇ +
∂
 


− ∇ + − ∇ + ∇ ∇ =

 
 
 
 
∂  
∂ 
 



+ − − ∇ − ∇ 
 
 
  
 ∂ ∂  


 
∑ ∑
∑ ∑
∑ ∑ ∑ ∑
K g
K g
K g
with ( , )
C G L C H L
P P P P f S S
= − =
( )
1 1 1
,
2 2 2
L G L C G C
P P P P P P P P P
= + → = − = +
Reservoir Model – Pressure/Saturation Equation
COMSOL coefficient form PDE:
( )
( )
( ) ( ) ( )
0
,
0 2
,
2
L L G G MH CH H
L L L
C
f G L L L G G
f L G
f L C
f L L
L
f
P S S S S
u d
S S
P
c
P
φ χ χ χ
φ χ φ
Λ Λ ρ Λ ρ Λ
Λ Λ
γ
Λ ε
Λ ρ
Λ χ
β
 
  + + + 


 
 
 
= =
 
 
 
 


  
   
 
 
∇ 
 
 

− − + +
 


   


+ 

 
  

 
  
= = 
  

  
 
 ∇

 


   

− − +

 


 


 
  
 
+
−
=
K g
K
K
K g
K
( )
( )
( )
( )
( )
( )
,
,
0
,
0
L C L L S L S
G G C G G C G C
f L L C L L
P P T c
P P T y f
P P T
ρ β ϕ
Λ χ ρ β ϕ
Λ χ ρ β
 
  
∇ − ∇ + − ∇ + ∇
 
 

  

  

  

 
 
+ ∇ + ∇ + − ∇ + ∇ =
 

   
 
 
 
 
 − ∇ − ∇ + − ∇ 


 
g
g
K g
…
…
( )
2
2
u u
e d c u u u au f
t
t
α γ β
∂ ∂
+ + ∇⋅ − ∇ − + + ∇ + =
∂
∂
artificial diffusion for SL
Reservoir Model – Energy Equations
Summation over single phase energy equations with
Pressure work:
Latent heats: (heats of formation)
( ) ( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
, ,
, ,
, ,
,
1 1 0
G
G G P G G G G f G G G G P G G P
L
L L P L L L L f L L L L L P L L L
H
MH MH P MH CH CH P CH MH MH CH CH H H
S
S P S S S
T
S c S T P c T q
t
T
S c S T P S c T q
t
T
S c S c S S T q
t
T
c T
t
φ ρ φ Λ ρ ρ
φ ρ φ Λ ρ ε ρ
φ ρ ρ φ
φ ρ φ
∂
+ ∇⋅ − ∇ − ∇ + ∇ =
∂
∂
+ ∇⋅ − ∇ − ∇ + + ∇ ∇ =
∂
∂
+ − ∇⋅ + ∇ =
∂
∂
− + ∇⋅ − − ∇ =
∂
K g
K g
ɺ
ɺ
ɺ
λ
λ
λ
λ
λ
λ
λ
λ
λ λ
λ λ
λ λ
λ λ
λ
λ
λ
λ
( )( )
1
G
P G G G f G G G G G G
P
q S T P T P
t
φ β Λ ρ β
∂
= + ∇ + − ∇
∂
K g
ɺ
( )
H MH MH CH CH
q R h R h
= − ∆ + ∆
ɶ ɶ
ɺ
G L H S
T T T T
= = =
real gas
behaviour
Reservoir Model – Single Component Equations
Gas phase component, molar fraction conservative form
Liquid phase component, molar concentration conservative form
( )
, ,
1
1
( )
1
( )
eff
i
G G i G G G i G G i G i G i G
n
G G k n k
G G G G k
k
G G
y
S y S S y y q
t t
S P M M y
T
S S
t S t t t M t
φ ρ φ ρ φ ρ ρ
φ ρ φ ρ χ β ϕ
−
=
∂ ∂
+ + ∇ ⋅ − ∇ + =
∂ ∂
 
 
∂ ∂ − ∂
∂ ∂ 
 
 

 
= + − + − 

  


 
∂ ∂ ∂ ∂ ∂ 
  
 
∑
u
ɶ ɶ ɶ ɶ ɶ
ɶ ɶ
ɶ ɶ
ɶ
δ
δ
δ
δ
( )
( )
( )
,
, , , , ,
i L eff
L
L i L L i L i L f L L L L i L i L
c S
S c S c P S c q
t t
φ φ φ Λ ρ ε
∂ ∂
+ + ∇⋅ − ∇ − ∇ + + ∇ =
∂ ∂
K g
δ
δ
δ
δ ɶ
Reservoir Model – Gas Hydrate Equations
Methane and Carbon Dioxide hydrate saturation
Hydrate kinetics (linearized partial pressure kinetic)
MH G C MH
MH MH MH
MH
CH G C CH
CH CH CH
CH
S P P s
T
S
t t t t
S P P q
T
S
t t t t
φ φ χ β
ρ
φ φ χ β
ρ
 
 
∂ ∂ ∂ ∂ 
 
 

 
+ − − =


  


 
∂ ∂ ∂ ∂ 
  
 
 
 
∂ ∂ ∂ ∂ 
 
 

 
+ − − =


  


 
∂ ∂ ∂ ∂ 
  
 
( )
( )
*
*
1
1
MH
MH MH MH M G MH
CH
CH CH CH C G CH
N
R k a y P P
V t
N
R k a y P P
V t
∂
= = −
∂
∂
= = −
∂
COMSOL Implementation
COMSOL Multiphysics implementation essentials
3D and 2D axisymmetric models
Coefficient Form PDE + Heat Transfer in Porous Media
Discretization/Stabilization as default
Fully Coupled solution, Direct linear solver (PARDISO)
Pressure Dirichlet boundary condition given as Weak Constraint
Initial time step 10 s, maximum time step 5 · 106 s
maximum mesh size = 15 m, fine meshing at the well
Methods for gas hydrate decomposition
Depressurization
Thermal stimulation
Additives
Field production plan
1000 m 1000 m 1000 m 1000 m
1000
m
1000
m
1000
m
1000
m
500 m
500m
1/8 well
1/8 well
Injection well
Production well
45°
45°
t = 15 years
Case Study I – Methane production by Depressurization
P0 = 92 bar T0 = 10,0°C Sh0 = 0,40 Hres = 20 m
Case Study I – Methane production by Depressurization
Case Study II – Depressurization of Multi-Layer Reservoir
smoothing
5 Layers a‘ 4 m in height
Case Study II – Depressurization of Multi-Layer Reservoir
„Fingering“ Effect
Case Study II – Depressurization of Multi-Layer Reservoir
„Fingering“ Effect
SUGAR project – case studies
More case studies developed with COMSOL:
Injection of Carbon Dioxide with parallel Methane production (2 wells)
Reservoir simulations for the Ulleung Basin, South Korea (UGBH 2.6)
Simulation cases for process safety and reservoir integrity issures
Production upriser pipe simulations (1D / 2Ph Euler Equations)
Summary
State
• Development of a gas hydrate reservoir model in COMSOL Multiphysics
• Usage of the Coefficient Form PDE tool of the Mathematics branch
• Highly nonlinear model, needs the fully coupled approach with direct solution
• Simulation of important reservoir production cases were successful
Outlook
• New 3. project phase starts in October 2014
• Field development simulations in preparation of a real field test
• Production safety simulations
FRAUNHOFER UMSICHT
Process Technology / Modeling & Simulation
Thank you for your attention!
Contact:
Fraunhofer UMSICHT
Osterfelder Strasse 3
D-46047 Oberhausen (Germany)
E-Mail: info@umsicht.fraunhofer.de
Internet: http://www.umsicht.fraunhofer.de
Dr.-Ing. S. Schlüter
Telefon: +49 208 8598 1126
E-Mail: stefan.schlueter@umsicht.fraunhofer.de

schluter_presentation (1).pdf

  • 1.
    Submarine Gas HydrateReservoir Simulations – A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments Stefan Schlüter, Georg Janicki, Torsten Hennig, Görge Deerberg Fraunhofer UMSICHT, Oberhausen (Germany) COMSOL Conference 2014, Cambridge (UK)
  • 2.
    What are gashydrates? Gas molecules Water molecules Water Temperature Gas © Jens Greinert IFM GEOMAR Petrobras Fraunhofer UMSICHT
  • 3.
    Idea of theSUGAR project © IFM GEOMAR • CO2 hydrate stable at lower pressure / higher temperature • replacing CH4 by CO2 • simultaneous production of CH4 and storage of CO2 • sustainable energy supply system
  • 4.
    Reservoir model principles Phases •3 solid phases: sediment, methane hydrate, CO2 hydrate • 2 fluid phases: gas phase, water (liquid) phase • (1 supercritical phase: supercritical CO2 – not implemented yet) Components • 2 gas phase components: methane, carbon dioxide • 3 components solved in water: sea salt, methane, carbon dioxide Pressure equation: advanced 2-phase Darcy model Energy equation: flow through porous solid, hydrate extensions, latent heats, pressure work
  • 5.
    Reservoir Model –Pressure/Saturation Equation Continuity equations: Saturation: Convection splitted form: ( ) ( ) ( ) ( ) ( ) ( ) G G G G G L L L L L MH MH MH CH CH CH S s t S s t S s t S s t φ ρ ρ φ ρ ρ φ ρ φ ρ ∂ +∇⋅ = ∂ ∂ +∇⋅ = ∂ ∂ = ∂ ∂ = ∂ u u 1 S s S t t ρ ρ φ φ ρ ρ ρ ∂ ∂ ∇ + + ∇⋅ + ⋅ = ∂ ∂ u u 1 j j j S j S ε ε ε φ = = = − volume fraction of phase sediment free volume fraction Euler/Euler
  • 6.
    Reservoir Model –Pressure/Saturation Equation Density derivatives: General form: Darcy equation: Phase summation: , , , 1 1 1 , , k k k k T y P y P T P T y ρ ρ ρ χ β ϕ ρ ρ ρ       ∂ ∂ ∂          = = − =                 ∂ ∂ ∂       1 , k k k k k k y P T P T y t t t t ρ ρ χ β ϕ χ β ϕ ρ ρ ∂ ∂ ∂ ∂ ∇ = − + = ∇ − ∇ + ∇ ∂ ∂ ∂ ∂ ∑ ∑ ( ) ( ) with , , rel f rel H L k P k f S S Λ ρ Λ η = − ∇ + = = u K g k k k k k k y S P T s S P T y t t t t φ φ χ β ϕ χ β ϕ ρ     ∂ ∂ ∂ ∂       + − + + ∇⋅ + ⋅ ∇ − ∇ + ∇ =           ∂ ∂ ∂ ∂     ∑ ∑ u u 1 , 0 j j j j S S t φ ∂ = = ∂ ∑ ∑
  • 7.
    Reservoir Model –Pressure/Saturation Equation Insertion in general form and summation over phases leads to general pressure equation: Capillary pressure: Calculation pressure: ( ) ( ) ( ) , , , , , , j j j f j j j j j f j j j j j k j k j j j k j k j j j k j f j j j k j k j j j j k j P S P t P T y P q y T S T y t t φ χ Λ ρ Λ χ ρ β ϕ φ β ϕ Λ ρ β ϕ ρ ∂ + ∇⋅ − ∇ + ∂     − ∇ + − ∇ + ∇ ∇ =          ∂   ∂       + − − ∇ − ∇          ∂ ∂       ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ K g K g K g with ( , ) C G L C H L P P P P f S S = − = ( ) 1 1 1 , 2 2 2 L G L C G C P P P P P P P P P = + → = − = +
  • 8.
    Reservoir Model –Pressure/Saturation Equation COMSOL coefficient form PDE: ( ) ( ) ( ) ( ) ( ) 0 , 0 2 , 2 L L G G MH CH H L L L C f G L L L G G f L G f L C f L L L f P S S S S u d S S P c P φ χ χ χ φ χ φ Λ Λ ρ Λ ρ Λ Λ Λ γ Λ ε Λ ρ Λ χ β     + + +          = =                      ∇       − − + +           +              = =            ∇           − − +                 + − = K g K K K g K ( ) ( ) ( ) ( ) ( ) ( ) , , 0 , 0 L C L L S L S G G C G G C G C f L L C L L P P T c P P T y f P P T ρ β ϕ Λ χ ρ β ϕ Λ χ ρ β      ∇ − ∇ + − ∇ + ∇                      + ∇ + ∇ + − ∇ + ∇ =                 − ∇ − ∇ + − ∇      g g K g … … ( ) 2 2 u u e d c u u u au f t t α γ β ∂ ∂ + + ∇⋅ − ∇ − + + ∇ + = ∂ ∂ artificial diffusion for SL
  • 9.
    Reservoir Model –Energy Equations Summation over single phase energy equations with Pressure work: Latent heats: (heats of formation) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , 1 1 0 G G G P G G G G f G G G G P G G P L L L P L L L L f L L L L L P L L L H MH MH P MH CH CH P CH MH MH CH CH H H S S P S S S T S c S T P c T q t T S c S T P S c T q t T S c S c S S T q t T c T t φ ρ φ Λ ρ ρ φ ρ φ Λ ρ ε ρ φ ρ ρ φ φ ρ φ ∂ + ∇⋅ − ∇ − ∇ + ∇ = ∂ ∂ + ∇⋅ − ∇ − ∇ + + ∇ ∇ = ∂ ∂ + − ∇⋅ + ∇ = ∂ ∂ − + ∇⋅ − − ∇ = ∂ K g K g ɺ ɺ ɺ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ ( )( ) 1 G P G G G f G G G G G G P q S T P T P t φ β Λ ρ β ∂ = + ∇ + − ∇ ∂ K g ɺ ( ) H MH MH CH CH q R h R h = − ∆ + ∆ ɶ ɶ ɺ G L H S T T T T = = = real gas behaviour
  • 10.
    Reservoir Model –Single Component Equations Gas phase component, molar fraction conservative form Liquid phase component, molar concentration conservative form ( ) , , 1 1 ( ) 1 ( ) eff i G G i G G G i G G i G i G i G n G G k n k G G G G k k G G y S y S S y y q t t S P M M y T S S t S t t t M t φ ρ φ ρ φ ρ ρ φ ρ φ ρ χ β ϕ − = ∂ ∂ + + ∇ ⋅ − ∇ + = ∂ ∂     ∂ ∂ − ∂ ∂ ∂         = + − + −          ∂ ∂ ∂ ∂ ∂       ∑ u ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ δ δ δ δ ( ) ( ) ( ) , , , , , , i L eff L L i L L i L i L f L L L L i L i L c S S c S c P S c q t t φ φ φ Λ ρ ε ∂ ∂ + + ∇⋅ − ∇ − ∇ + + ∇ = ∂ ∂ K g δ δ δ δ ɶ
  • 11.
    Reservoir Model –Gas Hydrate Equations Methane and Carbon Dioxide hydrate saturation Hydrate kinetics (linearized partial pressure kinetic) MH G C MH MH MH MH MH CH G C CH CH CH CH CH S P P s T S t t t t S P P q T S t t t t φ φ χ β ρ φ φ χ β ρ     ∂ ∂ ∂ ∂         + − − =          ∂ ∂ ∂ ∂           ∂ ∂ ∂ ∂         + − − =          ∂ ∂ ∂ ∂       ( ) ( ) * * 1 1 MH MH MH MH M G MH CH CH CH CH C G CH N R k a y P P V t N R k a y P P V t ∂ = = − ∂ ∂ = = − ∂
  • 12.
    COMSOL Implementation COMSOL Multiphysicsimplementation essentials 3D and 2D axisymmetric models Coefficient Form PDE + Heat Transfer in Porous Media Discretization/Stabilization as default Fully Coupled solution, Direct linear solver (PARDISO) Pressure Dirichlet boundary condition given as Weak Constraint Initial time step 10 s, maximum time step 5 · 106 s maximum mesh size = 15 m, fine meshing at the well
  • 13.
    Methods for gashydrate decomposition Depressurization Thermal stimulation Additives
  • 14.
    Field production plan 1000m 1000 m 1000 m 1000 m 1000 m 1000 m 1000 m 1000 m 500 m 500m 1/8 well 1/8 well Injection well Production well 45° 45°
  • 15.
    t = 15years Case Study I – Methane production by Depressurization P0 = 92 bar T0 = 10,0°C Sh0 = 0,40 Hres = 20 m
  • 16.
    Case Study I– Methane production by Depressurization
  • 17.
    Case Study II– Depressurization of Multi-Layer Reservoir smoothing 5 Layers a‘ 4 m in height
  • 18.
    Case Study II– Depressurization of Multi-Layer Reservoir „Fingering“ Effect
  • 19.
    Case Study II– Depressurization of Multi-Layer Reservoir „Fingering“ Effect
  • 20.
    SUGAR project –case studies More case studies developed with COMSOL: Injection of Carbon Dioxide with parallel Methane production (2 wells) Reservoir simulations for the Ulleung Basin, South Korea (UGBH 2.6) Simulation cases for process safety and reservoir integrity issures Production upriser pipe simulations (1D / 2Ph Euler Equations)
  • 21.
    Summary State • Development ofa gas hydrate reservoir model in COMSOL Multiphysics • Usage of the Coefficient Form PDE tool of the Mathematics branch • Highly nonlinear model, needs the fully coupled approach with direct solution • Simulation of important reservoir production cases were successful Outlook • New 3. project phase starts in October 2014 • Field development simulations in preparation of a real field test • Production safety simulations
  • 22.
    FRAUNHOFER UMSICHT Process Technology/ Modeling & Simulation Thank you for your attention! Contact: Fraunhofer UMSICHT Osterfelder Strasse 3 D-46047 Oberhausen (Germany) E-Mail: info@umsicht.fraunhofer.de Internet: http://www.umsicht.fraunhofer.de Dr.-Ing. S. Schlüter Telefon: +49 208 8598 1126 E-Mail: stefan.schlueter@umsicht.fraunhofer.de