SlideShare a Scribd company logo
ENGINEERING
THERMODYNAMICS
Feel the heat…….
Unit – 1 Basic concept and first law
A.GURUSAMY. M.E.,
ASSISTANT PROFESSOR,
DEPARTMENT OF MECHANICAL ENGG,
MSAJCE
ENGINEERING THERMODYNAMICS?
ENGINEERING + THERMODYNAMICS
ENGINEERING-BRANCH OF SCIENCE- ENVIRONMENT
THERMODYNAMICS = THERMAL+ DYNAMICS
(HEAT) (POWER)
HEAT – Kind of energy transfer- Temp. difference
POWER- Capable to work
THERMODYNAMICS- Science of energy and energy transfer
2
Some application areas of
thermodynamics.
3
BASIC CONCEPT OF
THERMODYNAMICS
• Science which deals with energy transfer and
its effect on physical properties of substances.
4
• Macroscopic or Classical Approach:
• It is not concerned with the behavior of
individual molecules.
• These effects can be perceived by human senses
or measured by instruments
Eg: pressure, temperature
• Microscopic or Statistical Approach:
• Based on the average behavior of large groups
of individual particles.
• the effect of molecular motion is Considered.
5
SYSTEMS AND CONTROL VOLUMES
• A system is defined as a quantity of matter or a region in space chosen for
study.
• Surroundings: The mass or region outside the system boundary.
• Boundary: The real or imaginary surface that separates the system from its
surroundings.
• The boundary of a system can be fixed or movable.
• Systems may be considered to be closed or open.
6
Thermodynamic System and Types
• A specified region in which transfer of mass / energy
takes place is called system.
• To a thermodynamic system two ‘things’ may be
added/removed:
 energy (heat, work)  matter (mass)
CLASSIFICATION OF THERMODYNAMIC SYSTEM
• Closed or Non-flow
• Open or Flow
• Isolated
• Homogeneous
• Hetrogeneous 7
Closed System (Control Mass)
• No mass can cross system boundary
• Energy may cross system boundary
8
Open System/Control Volume
• Mass may cross system boundary (control
surface)
• Energy may cross system boundary
9
Isolated System
• No interaction between the system and the
surroundings.
• Neither mass nor energy can cross the
boundry.
• This is purely a theoretical system.
10
11
Homogeneous and Hetrogeneous
system
• Homogeneous system:
• System exists in single phase.
• Heterogeneous system:
• System exists in more than one phase.
12
THERMODYNAMIC PROPERTIES
• MASS – quantity of matter
• WEIGHT - force exerted on a body by gravity
• VOLUME – space occupied by matter
• SPECIFIC VOLUME – volume per unit mass
• SPECIFIC WEIGHT – weight per unit volume
• DENSITY – mass per volume of substance
• TEMPERATURE – degree of hotness or coldness
• PRESSURE - force exerted per unit area
• SPECIFIC HEAT – energy required to raise or lower temp.
of substance about 1 k or 1°C
• INTERNAL ENERGY – energy contain within system
• WORK – kind of energy transfer – acting force- flow
direction
• HEAT- kind of energy transfer – temp difference
• ENTHALPY – total energy of the system (I.E + F.W)
13
INTENSIVE or EXTENSIVE PROPERTY
• Intensive properties: The
property which is
independent of the mass of
a system, such as
temperature, pressure, and
density and specific
volume.
• Extensive properties: The
property which depends up
on the mass of a system,
such as volume, internal
energy and enthalpy.
14
DENSITY AND SPECIFIC GRAVITY
15
Specific gravity:
The ratio of the density of a substance to the density of some
standard substance at a specified temperature
Density
Density is mass per unit volume; specific volume is volume per unit mass.
Specific weight:
The weight of a unit volume of a substance.
Specific volume
PRESSURE
16
The normal stress (or “pressure”) on the feet of a chubby
person is much greater than on the feet of a slim person.
Pressure: A normal force exerted
by a fluid per unit area
68 kg 136 kg
Afeet=300cm2
0.23 kgf/cm2
0.46 kgf/cm2
P=68/300=0.23 kgf/cm2
• Absolute pressure: The actual pressure at a given position. It is
measured relative to absolute vacuum (i.e., absolute zero pressure).
• Gage pressure: The difference between the absolute pressure and
the local atmospheric pressure. Most pressure-measuring devices are
calibrated to read zero in the atmosphere, and so they indicate gage
pressure.
• Vacuum pressures: Pressures below atmospheric pressure.
17
Conti…
TEMPERATURE
Degree of hotness or coldness
Unit- kelvin (k) or degree celsius (°C )
y K = 273 + x °C
280 K = 273 + 7 °C
18
Specific Heat Capacity
• Quantity of heat required to raise the
temperature of unit mass of the material
through one degree celsius.
• Specific Heat at constant pressure( Cp)
• Specific Heat at constant volume (Cv)
• Cp=1.003 kJ/kg-K
• Cv= 0.71 kJ/kg-K for air.
UNIVERSAL RU = Cp - Cv
19
STATE, PROCESSES AND CYCLES
State:
It is the condition of a system as
defined by the values of all its
properties.
It gives a complete description of
the system
Process:
Any change that a system
undergoes from one
equilibrium state to another.
20
STATE1- T1,P1,V1
STATE 2- T2,P2,V2
PROCESS - 1 2
STATE AND EQUILIBRIUM
• State:
• It is the condition of
• the system namely
temperature, pressure,
density, composition,.
• Equilibrium:
• In an equilibrium state there are no unbalanced
potentials (or driving forces) within the system.
21
A system at two different states
STATE AND EQUILIBRIUM
• Thermal Equilibrium:
The temperature is the
same throughout the
entire system.
• Mechanical equilibrium:
There is no change in
pressure at any point
of the system with
time.
22
A closed system reaching thermal
equilibrium.
.
STATE AND EQUILIBRIUM(Con…)
• Phase equilibrium:
• A system which is having two phases and
when the mass of each phase reaches an
equilibrium level.
• Chemical equilibrium:
• The chemical composition of a system does
not change with time, that is, no chemical
reactions occur.
23
Thermodynamic Cycle
• Path: The series of states
through which a system
passes during a process. To
describe a process
completely, one should
specify the initial and final
states,
• Cycle: A number of
processes in sequence
bring back the system to
the original condition.
24
Quasistatic or quasi-equilibrium
process
• Reversible process is a succession of
equilibrium states and infinite slowness is its
characteristic feature.
• Work done w = ∫ pdv
25
Zeroth Law
• If two bodies A and B are in thermal
equilibrium with a third body C
independently, then these two bodies (A and
B) must be in thermal equilibrium with each
other.
Application: Thermometer
26
Thermodynamic Work
• positive work is done by a
system when the sole effect
external to the system could
be reduced to the rise of a
weight.
• Unit of work is N-m or Joule.
• Work flow into the system is
negative
• Work flow out of the system
is positive
27
Thermodynamic Heat
• Energy transferred without
mass transfer between the
system and the surroundings
due to difference in
temperature between the
system and the surroundings.
• The unit of heat is Joule or kilo
Joule
• Heat flow into the system is
positive
• Heat flow out of the system is
negative
28
Energy and Forms of Energy
• Energy:
• Capacity to do work
• Forms of Energy:
• Stored Energy
• Energy in transition form
29
Stored Energy(Con…)
• Internal Energy(U):It is sum of kinetic energies
of individual atoms or molecules, that kinetic
energy occurred by external heat supplied to
the system it will converted to work.
• Sum energy always stored in the system (U)
not fully converted to work.
• Change in internal energy =mcv (T2-T1) kJ
30
Stored Energy(Con…)
• Kinetic Energy: Energy possessed by a body by
virtue of its motion.
• Change in K.E.=1/2 m(c2
2
-c1
2
) N-m.
• Flow Energy: Energy required to make the
flow of the system in and out of the device.
• Change in F.E.=( p2v2-p1v1) N-m
31
Enthalpy(H)
• Internal energy and pressure volume product.
• H=u+pv
• Change in enthalpy= mcp(T2-T1) kJ
• Where m=mass in kg
• cp=sp.heat at const.pressure in kJ/kg
• (T2-T1)= temp. difference in K
32
PATH and POINT FUNCTION
• If cyclic integral of a variable is not equal to
zero, then the variable is said to be a path
function.
• If cyclic integral of a variable is equal to zero,
then the variable is said to be a point
function.
33
The first law of thermodynamics
• Expression of the conservation of energy
principle.
• Statement: If a closed system executes a cyclic
process then net heat transfer is equal to net
work transfer.
• dQ=dW
• Q=W+dU for a process.
34
Laws Of Perfect Gas
• 1) Boyle’s law- “The absolute pressure of a given mass of
perfect gas varies inversely as its volume, when the
temperature remain constant”.
Mathematically pv = constant (T= const.)
• 2) Charles law- “The volume of a given mass of a perfect gas
varies directly as its absolute temperature, when the pressure
remains constant”.
Mathematically, V/T = constant (p= const.)
• 3) Gay-lussac law- “The absolute pressure of a given mass of
a perfect gas varies directly as its absolute temperature when
volume is constant.”
Mathematically, P/T = constant (v= const.)
35
THERMODYNAMIC PROCESS
 Here is a brief listing of a few kinds of processes, which we will encounter in TD:
 Isothermal process → the process takes place at constant temperature
(e.g. freezing of water to ice at –10°C)
 Isobaric → constant pressure
(e.g. heating of water in open air→ under atmospheric pressure)
 Isochoric → constant volume
(e.g. heating of gas in a sealed metal container)
 Reversible process → the system is close to equilibrium at all times (and infinitesimal
alteration of the conditions can restore the universe (system + surrounding) to the original
state.
 Irreversible Process: The reversal of the process leaves some trace on the system and its
surroundings.
 Cyclic process → the final and initial state are the same. However, q and w need not be zero.
 Adiabatic process → dq is zero during the process (no heat is added/removed to/from the
system)
36
Thermodynamics processes
of Perfect Gas
1) Const. Volume/ isochoric process:
-Temperature and Pressure will increase
-No change in volume and No work done by gas
-Governed by Gay-Lussac law
2) Const. Pressure/ isobaric process:
- Temperature and volume will increase
- Increase in internal energy
- Governed by Charles law
3) Constant temperature/ isothermal process:
- No change in internal energy
- No change in Temperature
- Governed by Boyles law (p.v = constant)
37
Conti….
4) Adiabatic/ isentropic process:
- No heat leaves or enters the gas Q = 0,
- Temperature of the gas changes
- Change in internal energy is equal to the work done
5) isentropic process:
- Entropy remains constant dS = 0,
- Temperature of the gas changes
- Change in internal energy is equal to the work done
5) Polytropic process:
- It is general law of expansion and compression of the gases.
p.v^n = Constant
6) Free expansion:
- When a fluid Is allowed to expand suddenly into a vacuum chamber
through on orifice of large dimensions.
Q = 0, W = 0, and dU = 0.
38
Thank you
39

More Related Content

What's hot

Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
Dr. Rohit Singh Lather, Ph.D.
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
Dr. Rohit Singh Lather, Ph.D.
 
Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
darshanil
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
VeeramanikandanM1
 
Thermodynamic systems and properties
Thermodynamic systems and propertiesThermodynamic systems and properties
Thermodynamic systems and properties
www.engineeringmasters.in
 
Unit no 1 fundamentals of thermodyanamics
Unit no 1 fundamentals of thermodyanamicsUnit no 1 fundamentals of thermodyanamics
Unit no 1 fundamentals of thermodyanamics
ATUL PRADHAN
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
BIBIN CHIDAMBARANATHAN
 
Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamics
SACHINNikam39
 
2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy
poshiyabhavin
 
Thermodynamics part2
Thermodynamics part2Thermodynamics part2
Thermodynamics part2
SumatiHajela
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
thirunavukk arasu
 
Engineering thermodynamics introduction
Engineering thermodynamics introductionEngineering thermodynamics introduction
Engineering thermodynamics introduction
Ajaypalsinh Barad
 
PROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESPROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCES
naphis ahamad
 
Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
jagannath reddy
 
Introduction to thermodynamics
Introduction to thermodynamics Introduction to thermodynamics
Introduction to thermodynamics
Dr. Rohit Singh Lather, Ph.D.
 
The first law of thermodynamics
The first law of thermodynamicsThe first law of thermodynamics
The first law of thermodynamics
paneliya sagar
 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
nysa tutorial
 
Basic Concepts and First Law of Thermodynamics
Basic Concepts and First Law of ThermodynamicsBasic Concepts and First Law of Thermodynamics
Basic Concepts and First Law of Thermodynamics
Dr.S.Thirumalvalavan
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
Pradeep Gupta
 

What's hot (20)

Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
 
Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
 
Thermodynamic systems and properties
Thermodynamic systems and propertiesThermodynamic systems and properties
Thermodynamic systems and properties
 
Unit no 1 fundamentals of thermodyanamics
Unit no 1 fundamentals of thermodyanamicsUnit no 1 fundamentals of thermodyanamics
Unit no 1 fundamentals of thermodyanamics
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
 
Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamics
 
2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy2nd law of thermodynamics, entropy
2nd law of thermodynamics, entropy
 
Thermodynamics part2
Thermodynamics part2Thermodynamics part2
Thermodynamics part2
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Engineering thermodynamics introduction
Engineering thermodynamics introductionEngineering thermodynamics introduction
Engineering thermodynamics introduction
 
PROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESPROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCES
 
Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
 
Introduction to thermodynamics
Introduction to thermodynamics Introduction to thermodynamics
Introduction to thermodynamics
 
The first law of thermodynamics
The first law of thermodynamicsThe first law of thermodynamics
The first law of thermodynamics
 
Thermodynamic lecture
Thermodynamic lectureThermodynamic lecture
Thermodynamic lecture
 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
 
Basic Concepts and First Law of Thermodynamics
Basic Concepts and First Law of ThermodynamicsBasic Concepts and First Law of Thermodynamics
Basic Concepts and First Law of Thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 

Similar to Basic concept and first law of thermodynamics

Concepts of Thermodynamics
Concepts of ThermodynamicsConcepts of Thermodynamics
Concepts of Thermodynamics
GOBINATHS18
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
prakash0712
 
Jatin bhatia art integration project 22
Jatin bhatia art integration project 22Jatin bhatia art integration project 22
Jatin bhatia art integration project 22
Dav public school Rohtak
 
thermodynamics introduction & first law
thermodynamics introduction & first lawthermodynamics introduction & first law
thermodynamics introduction & first law
Ashish Mishra
 
Basics of Thermodynamics
Basics of Thermodynamics Basics of Thermodynamics
Basics of Thermodynamics
M.G. College, Armori
 
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptxETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
selvakumar948
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
DebasDessie1
 
Heat and mass transfer
Heat and mass transferHeat and mass transfer
Heat and mass transfer
ALOKANSU
 
2 energy, energy transfer, and general energy analysis
2 energy, energy transfer, and general energy analysis2 energy, energy transfer, and general energy analysis
2 energy, energy transfer, and general energy analysishvmandalia
 
Heat transfer
Heat transferHeat transfer
Heat transfer
ALOKANSU
 
Thermodynamics and kinetics
Thermodynamics and kineticsThermodynamics and kinetics
Thermodynamics and kinetics
ShelbyRocks
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptx
punith59
 
Heat and Thermodynamics cheat sheet
Heat and Thermodynamics cheat sheetHeat and Thermodynamics cheat sheet
Heat and Thermodynamics cheat sheet
Timothy Welsh
 
thermodynamics ppt.pptx
thermodynamics ppt.pptxthermodynamics ppt.pptx
thermodynamics ppt.pptx
HarshitShah679949
 
Lecture 4 introduction to thermodynamics
Lecture 4   introduction to thermodynamicsLecture 4   introduction to thermodynamics
Lecture 4 introduction to thermodynamics
Kanak Raj
 
Energy,heat,work and thermodynamic processes
Energy,heat,work and thermodynamic processes Energy,heat,work and thermodynamic processes
Energy,heat,work and thermodynamic processes
PEC University Chandigarh
 
Chapter_1 Introduction and General Concepts.ppt
Chapter_1 Introduction and General Concepts.pptChapter_1 Introduction and General Concepts.ppt
Chapter_1 Introduction and General Concepts.ppt
Laith Al-Hyari
 
Perpindahan panas
Perpindahan panasPerpindahan panas
Perpindahan panas
alfarisidaniel
 
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAF
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAFHeat & Mass Transfer Chap 1 (FE-509) Food Engineering UAF
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAFAown Rizvi
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
sureshkcet
 

Similar to Basic concept and first law of thermodynamics (20)

Concepts of Thermodynamics
Concepts of ThermodynamicsConcepts of Thermodynamics
Concepts of Thermodynamics
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Jatin bhatia art integration project 22
Jatin bhatia art integration project 22Jatin bhatia art integration project 22
Jatin bhatia art integration project 22
 
thermodynamics introduction & first law
thermodynamics introduction & first lawthermodynamics introduction & first law
thermodynamics introduction & first law
 
Basics of Thermodynamics
Basics of Thermodynamics Basics of Thermodynamics
Basics of Thermodynamics
 
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptxETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
ETD-UNIT-I-BASIC CONCEPTS& FIRST LAW.pptx
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
 
Heat and mass transfer
Heat and mass transferHeat and mass transfer
Heat and mass transfer
 
2 energy, energy transfer, and general energy analysis
2 energy, energy transfer, and general energy analysis2 energy, energy transfer, and general energy analysis
2 energy, energy transfer, and general energy analysis
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Thermodynamics and kinetics
Thermodynamics and kineticsThermodynamics and kinetics
Thermodynamics and kinetics
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptx
 
Heat and Thermodynamics cheat sheet
Heat and Thermodynamics cheat sheetHeat and Thermodynamics cheat sheet
Heat and Thermodynamics cheat sheet
 
thermodynamics ppt.pptx
thermodynamics ppt.pptxthermodynamics ppt.pptx
thermodynamics ppt.pptx
 
Lecture 4 introduction to thermodynamics
Lecture 4   introduction to thermodynamicsLecture 4   introduction to thermodynamics
Lecture 4 introduction to thermodynamics
 
Energy,heat,work and thermodynamic processes
Energy,heat,work and thermodynamic processes Energy,heat,work and thermodynamic processes
Energy,heat,work and thermodynamic processes
 
Chapter_1 Introduction and General Concepts.ppt
Chapter_1 Introduction and General Concepts.pptChapter_1 Introduction and General Concepts.ppt
Chapter_1 Introduction and General Concepts.ppt
 
Perpindahan panas
Perpindahan panasPerpindahan panas
Perpindahan panas
 
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAF
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAFHeat & Mass Transfer Chap 1 (FE-509) Food Engineering UAF
Heat & Mass Transfer Chap 1 (FE-509) Food Engineering UAF
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
 

Recently uploaded

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 

Recently uploaded (20)

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 

Basic concept and first law of thermodynamics

  • 1. ENGINEERING THERMODYNAMICS Feel the heat……. Unit – 1 Basic concept and first law A.GURUSAMY. M.E., ASSISTANT PROFESSOR, DEPARTMENT OF MECHANICAL ENGG, MSAJCE
  • 2. ENGINEERING THERMODYNAMICS? ENGINEERING + THERMODYNAMICS ENGINEERING-BRANCH OF SCIENCE- ENVIRONMENT THERMODYNAMICS = THERMAL+ DYNAMICS (HEAT) (POWER) HEAT – Kind of energy transfer- Temp. difference POWER- Capable to work THERMODYNAMICS- Science of energy and energy transfer 2
  • 3. Some application areas of thermodynamics. 3
  • 4. BASIC CONCEPT OF THERMODYNAMICS • Science which deals with energy transfer and its effect on physical properties of substances. 4
  • 5. • Macroscopic or Classical Approach: • It is not concerned with the behavior of individual molecules. • These effects can be perceived by human senses or measured by instruments Eg: pressure, temperature • Microscopic or Statistical Approach: • Based on the average behavior of large groups of individual particles. • the effect of molecular motion is Considered. 5
  • 6. SYSTEMS AND CONTROL VOLUMES • A system is defined as a quantity of matter or a region in space chosen for study. • Surroundings: The mass or region outside the system boundary. • Boundary: The real or imaginary surface that separates the system from its surroundings. • The boundary of a system can be fixed or movable. • Systems may be considered to be closed or open. 6
  • 7. Thermodynamic System and Types • A specified region in which transfer of mass / energy takes place is called system. • To a thermodynamic system two ‘things’ may be added/removed:  energy (heat, work)  matter (mass) CLASSIFICATION OF THERMODYNAMIC SYSTEM • Closed or Non-flow • Open or Flow • Isolated • Homogeneous • Hetrogeneous 7
  • 8. Closed System (Control Mass) • No mass can cross system boundary • Energy may cross system boundary 8
  • 9. Open System/Control Volume • Mass may cross system boundary (control surface) • Energy may cross system boundary 9
  • 10. Isolated System • No interaction between the system and the surroundings. • Neither mass nor energy can cross the boundry. • This is purely a theoretical system. 10
  • 11. 11
  • 12. Homogeneous and Hetrogeneous system • Homogeneous system: • System exists in single phase. • Heterogeneous system: • System exists in more than one phase. 12
  • 13. THERMODYNAMIC PROPERTIES • MASS – quantity of matter • WEIGHT - force exerted on a body by gravity • VOLUME – space occupied by matter • SPECIFIC VOLUME – volume per unit mass • SPECIFIC WEIGHT – weight per unit volume • DENSITY – mass per volume of substance • TEMPERATURE – degree of hotness or coldness • PRESSURE - force exerted per unit area • SPECIFIC HEAT – energy required to raise or lower temp. of substance about 1 k or 1°C • INTERNAL ENERGY – energy contain within system • WORK – kind of energy transfer – acting force- flow direction • HEAT- kind of energy transfer – temp difference • ENTHALPY – total energy of the system (I.E + F.W) 13
  • 14. INTENSIVE or EXTENSIVE PROPERTY • Intensive properties: The property which is independent of the mass of a system, such as temperature, pressure, and density and specific volume. • Extensive properties: The property which depends up on the mass of a system, such as volume, internal energy and enthalpy. 14
  • 15. DENSITY AND SPECIFIC GRAVITY 15 Specific gravity: The ratio of the density of a substance to the density of some standard substance at a specified temperature Density Density is mass per unit volume; specific volume is volume per unit mass. Specific weight: The weight of a unit volume of a substance. Specific volume
  • 16. PRESSURE 16 The normal stress (or “pressure”) on the feet of a chubby person is much greater than on the feet of a slim person. Pressure: A normal force exerted by a fluid per unit area 68 kg 136 kg Afeet=300cm2 0.23 kgf/cm2 0.46 kgf/cm2 P=68/300=0.23 kgf/cm2
  • 17. • Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure). • Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure. • Vacuum pressures: Pressures below atmospheric pressure. 17
  • 18. Conti… TEMPERATURE Degree of hotness or coldness Unit- kelvin (k) or degree celsius (°C ) y K = 273 + x °C 280 K = 273 + 7 °C 18
  • 19. Specific Heat Capacity • Quantity of heat required to raise the temperature of unit mass of the material through one degree celsius. • Specific Heat at constant pressure( Cp) • Specific Heat at constant volume (Cv) • Cp=1.003 kJ/kg-K • Cv= 0.71 kJ/kg-K for air. UNIVERSAL RU = Cp - Cv 19
  • 20. STATE, PROCESSES AND CYCLES State: It is the condition of a system as defined by the values of all its properties. It gives a complete description of the system Process: Any change that a system undergoes from one equilibrium state to another. 20 STATE1- T1,P1,V1 STATE 2- T2,P2,V2 PROCESS - 1 2
  • 21. STATE AND EQUILIBRIUM • State: • It is the condition of • the system namely temperature, pressure, density, composition,. • Equilibrium: • In an equilibrium state there are no unbalanced potentials (or driving forces) within the system. 21 A system at two different states
  • 22. STATE AND EQUILIBRIUM • Thermal Equilibrium: The temperature is the same throughout the entire system. • Mechanical equilibrium: There is no change in pressure at any point of the system with time. 22 A closed system reaching thermal equilibrium. .
  • 23. STATE AND EQUILIBRIUM(Con…) • Phase equilibrium: • A system which is having two phases and when the mass of each phase reaches an equilibrium level. • Chemical equilibrium: • The chemical composition of a system does not change with time, that is, no chemical reactions occur. 23
  • 24. Thermodynamic Cycle • Path: The series of states through which a system passes during a process. To describe a process completely, one should specify the initial and final states, • Cycle: A number of processes in sequence bring back the system to the original condition. 24
  • 25. Quasistatic or quasi-equilibrium process • Reversible process is a succession of equilibrium states and infinite slowness is its characteristic feature. • Work done w = ∫ pdv 25
  • 26. Zeroth Law • If two bodies A and B are in thermal equilibrium with a third body C independently, then these two bodies (A and B) must be in thermal equilibrium with each other. Application: Thermometer 26
  • 27. Thermodynamic Work • positive work is done by a system when the sole effect external to the system could be reduced to the rise of a weight. • Unit of work is N-m or Joule. • Work flow into the system is negative • Work flow out of the system is positive 27
  • 28. Thermodynamic Heat • Energy transferred without mass transfer between the system and the surroundings due to difference in temperature between the system and the surroundings. • The unit of heat is Joule or kilo Joule • Heat flow into the system is positive • Heat flow out of the system is negative 28
  • 29. Energy and Forms of Energy • Energy: • Capacity to do work • Forms of Energy: • Stored Energy • Energy in transition form 29
  • 30. Stored Energy(Con…) • Internal Energy(U):It is sum of kinetic energies of individual atoms or molecules, that kinetic energy occurred by external heat supplied to the system it will converted to work. • Sum energy always stored in the system (U) not fully converted to work. • Change in internal energy =mcv (T2-T1) kJ 30
  • 31. Stored Energy(Con…) • Kinetic Energy: Energy possessed by a body by virtue of its motion. • Change in K.E.=1/2 m(c2 2 -c1 2 ) N-m. • Flow Energy: Energy required to make the flow of the system in and out of the device. • Change in F.E.=( p2v2-p1v1) N-m 31
  • 32. Enthalpy(H) • Internal energy and pressure volume product. • H=u+pv • Change in enthalpy= mcp(T2-T1) kJ • Where m=mass in kg • cp=sp.heat at const.pressure in kJ/kg • (T2-T1)= temp. difference in K 32
  • 33. PATH and POINT FUNCTION • If cyclic integral of a variable is not equal to zero, then the variable is said to be a path function. • If cyclic integral of a variable is equal to zero, then the variable is said to be a point function. 33
  • 34. The first law of thermodynamics • Expression of the conservation of energy principle. • Statement: If a closed system executes a cyclic process then net heat transfer is equal to net work transfer. • dQ=dW • Q=W+dU for a process. 34
  • 35. Laws Of Perfect Gas • 1) Boyle’s law- “The absolute pressure of a given mass of perfect gas varies inversely as its volume, when the temperature remain constant”. Mathematically pv = constant (T= const.) • 2) Charles law- “The volume of a given mass of a perfect gas varies directly as its absolute temperature, when the pressure remains constant”. Mathematically, V/T = constant (p= const.) • 3) Gay-lussac law- “The absolute pressure of a given mass of a perfect gas varies directly as its absolute temperature when volume is constant.” Mathematically, P/T = constant (v= const.) 35
  • 36. THERMODYNAMIC PROCESS  Here is a brief listing of a few kinds of processes, which we will encounter in TD:  Isothermal process → the process takes place at constant temperature (e.g. freezing of water to ice at –10°C)  Isobaric → constant pressure (e.g. heating of water in open air→ under atmospheric pressure)  Isochoric → constant volume (e.g. heating of gas in a sealed metal container)  Reversible process → the system is close to equilibrium at all times (and infinitesimal alteration of the conditions can restore the universe (system + surrounding) to the original state.  Irreversible Process: The reversal of the process leaves some trace on the system and its surroundings.  Cyclic process → the final and initial state are the same. However, q and w need not be zero.  Adiabatic process → dq is zero during the process (no heat is added/removed to/from the system) 36
  • 37. Thermodynamics processes of Perfect Gas 1) Const. Volume/ isochoric process: -Temperature and Pressure will increase -No change in volume and No work done by gas -Governed by Gay-Lussac law 2) Const. Pressure/ isobaric process: - Temperature and volume will increase - Increase in internal energy - Governed by Charles law 3) Constant temperature/ isothermal process: - No change in internal energy - No change in Temperature - Governed by Boyles law (p.v = constant) 37
  • 38. Conti…. 4) Adiabatic/ isentropic process: - No heat leaves or enters the gas Q = 0, - Temperature of the gas changes - Change in internal energy is equal to the work done 5) isentropic process: - Entropy remains constant dS = 0, - Temperature of the gas changes - Change in internal energy is equal to the work done 5) Polytropic process: - It is general law of expansion and compression of the gases. p.v^n = Constant 6) Free expansion: - When a fluid Is allowed to expand suddenly into a vacuum chamber through on orifice of large dimensions. Q = 0, W = 0, and dU = 0. 38