Quadratic Equations
By the end of the lessson you will be able to  :
• Solve quadratic equations by different methods.
• Anticipate the number of solutions of a 
quadratic equation by studying its discriminant.
Quadratic equations
by factorisation
using GDC
by formula
by completing the square
Solve the equation:
Solve the equation:
Use the quadratic formula to solve the equation:
Simplify and then use your GDC to solve the 
equation:
Use your GDC to solve the equations:
The quantity is called the
discriminant of the quadratic equation.
Δ > 0 ⇒ 
Δ = 0 ⇒ 
Δ < 0 ⇒ 
the equation has two real roots.
the equation has two equal roots.
the equation has no real roots.
qformula.wma
Δ > 0    Δ = 0 
Δ < 0 
Two different  real roots
One repeated root
 (or two equal roots)
No   root.
Calculate the discriminant of the quadratic 
expression
Hence show that  is always positive
Find the possible values of the constant k such 
that the equation
has one solution.
Consider the equation 2x2
 + kx +2 = 0 where k is a 
constant. State for which values of k the equation 
has 
(a) two equal roots.
(b) no root.
(c) two distinct roots.
Solve Ex 1 D page 19
Attachments
qformula.wma