The document presents a novel fuzzy clustering algorithm called FRECCA that clusters sentences from multi-documents to discover new information. FRECCA uses fuzzy relational eigenvector centrality to calculate page rank scores for sentences within clusters, treating the scores as likelihoods. It uses expectation maximization to optimize cluster membership values and mixing coefficients without a parameterized likelihood function. An evaluation shows FRECCA achieves superior performance to other clustering algorithms on a quotations dataset, identifying overlapping clusters of semantically related sentences.