The document discusses sampled functions and their z-transforms. It begins by explaining how sampling a continuous function at intervals of T produces a sequence of values. The z-transform of this sampled sequence is then related to the Laplace transform of the original continuous function. Specifically, the z-transform of the sampled sequence is equivalent to the Laplace transform with s replaced by z=esT. Examples are provided to illustrate this relationship between the pole locations of the two transforms.