1
Lecture 7 – 10
Z - Transform
June 07, 2005
By
Dr. Mukhtiar Ali Unar
2
The Direct Z-Transform
The z-transform of a discrete time signal is defined as the power
series
(1)
Where z is a complex variable. For convenience, the z-transform of a
signal x[n] is denoted by
X(z) = Z{x[n]}
Since the z-transform is an infinite series, it exists only for those
values of z for which this series converges. The Region of
Convergence (ROC) of X(z) is the set of all values of z for which
this series converges.
We illustrate the concepts by some simple examples.






n
n
z
]
n
[
x
)
z
(
X
3
Example 1: Determine the z-transform of
the following signals
(a) x[n] = [1, 2, 5, 7, 0, 1]
Solution: X(z) = 1 + 2z-1+ 5z-2 + 7z-3 + z-5,
ROC: entire z plane except z = 0
(b) y[n] = [1, 2, 5, 7, 0, 1]
Solution: Y(z) = z2 + 2z + 5 + 7z-1 + z-3
ROC: entire z-plane except z = 0 and z = .
(c) z[n] = [0, 0, 1, 2, 5, 7, 0, 1]
Solution: z-2 + 2z-3 + 5z-4 + 7z-5 + z-7, ROC: all z except z=0
4
(d) p[n] = [n]
Solution: P(z) = 1, ROC: entire z-plane.
(e) q[n] = [n – k], k > 0
Solution: Q(z) = z-k, entire z-plane except
z=0.
(f) r[n] = [n+k], k > 0
Solution: R(z) = zk,
ROC: entire z-plane except z = .
5
Example 2: Determine the z-transform of
x[n] = (1/2)nu[n]
Solution:
ROC: |1/2 z-1| < 1, or equivalently |z| > 1/2
1
2
1
n
0
n
1
n
n
0
n
n
n
z
2
1
1
1
.......
z
2
1
z
2
1
1
z
2
1
z
2
1
z
]
n
[
x
)
z
(
X











































6
Example 3: Determine the z-transform of the
signal x[n] = anu[n]
Solution:
 
 
|
a
|
|
z
:|
ROC
az
1
1
.......
az
az
1
az
z
a
)
z
(
X
1
2
1
1
n
0
n
1
n
0
n
n




















7
Properties of z-transform
 Linearity
If x1[n]  X1(z)
and x2[[n]  X2(z)
then
a1x1[n] + a2x2[n]  a1X1(z) + a2X2(z)
8
Example: Determine the z-transform of
the signal x[n] = [3(2n) – 4(3n)]u[n]
Solution:
  1
1
n
n
1
n
z
3
1
1
4
z
2
1
1
3
]
3
4
)
2
(
3
[
z
az
1
1
]]
n
[
u
a
[
z












Example 4: Determine the z-transform of
the signal (cosw0n)u[n]
 
 
 
2
0
1
0
1
1
jw
1
jw
0
n
jw
n
jw
0
z
w
cos
z
2
1
w
cos
z
1
z
e
1
1
2
1
z
e
1
1
2
1
]
n
[
u
n
w
cos
z
e
2
1
e
2
1
]
n
[
u
n
w
cos
0
0
0
0



















9
Time Shifting Property:
If x[n]  X(z) then x[n-k]  z-kX(z)
Proof:
since
then the change of variable m = n-k
produces








n
n
z
]
k
n
[
x
]]
k
n
[
x
[
z
)
z
(
X
z
z
]
m
[
x
z
z
]
m
[
x
]]
k
n
[
x
[
z
k
m
m
k
m
)
k
m
(

















10
Example: Find the z-transform of a unit step
function. Use time shifting property to find z-
transform of u[n] – u[n-N].
The z-transform of u[n] can be found as
Now the z-transform of u[n]-u[n-N] may be
found as follows:
1
2
1
0
n
n
n
n
z
1
1
.......
z
z
1
z
z
]
n
[
u
]]
n
[
u
[
z

















 

1
N
1
N
1
z
1
z
1
z
1
1
z
z
1
1
]]
N
n
[
u
]
n
[
u
[
z














11
Scaling in the z-domain
If x[n]  X(z)
Then anx[n]  X(a-1z)
For any constant a, real or complex.
Proof:
Example 5: Determine the z-transform of the signal
an(cosw0n)u[n].
Solution: since
     
z
a
X
z
a
]
n
[
x
z
]
n
[
x
a
]
n
[
x
a
z 1
n
n
1
n
n
n
n 











 

2
0
1
0
1
0
z
w
cos
z
2
1
w
cos
z
1
]
n
[
u
)
n
w
[cos(
z 






  2
2
0
1
0
1
0
n
z
a
w
cos
az
2
1
w
cos
az
1
]]
n
[
u
n
w
cos
a
[
z 







12
Time reversal
If x[n]  X(z) then x[-n]  X(z-1)
Proof:
Example 6: Determine the z-transform of
u[-n].
Solution: since z[u[n]] = 1/(1 – z-1)
Therefore,
Z[u[-n]] = 1/(1-z)
 
 




















m m
1
m
1
m
n
n
)
z
(
X
z
]
m
[
x
z
]
m
[
x
z
]
n
[
x
]]
n
[
x
[
z
13
Differentiation in the z - Domain
x[n]  X(z) then nx[n] = -z(dX(z)/dz)
Tutorial 4: Q1: Prove the differentiation
property of z – transform.
Example 7: Determine the z-transform of the
signal x[n] = nanu[n].
Solution:
 2
1
1
1
n
1
n
az
1
az
az
1
1
dz
d
z
]]
n
[
u
na
[
z
az
1
1
]]
n
[
u
a
[
z













14
Convolution of two sequences
If x1[n]  X1(z) and x2[n]  X2(z) then
x1[n]*x2[n]  X1(z)X2(z)
Proof:
The convolution of x1[n] and x2[n] is defined as







k
2
1
2
1 ]
k
n
[
x
]
n
[
x
]
n
[
x
*
]
n
[
x
]
n
[
x
The z-transform of x[n] is
 
 





















n
n
n
2
1
n
n
z
k
n
x
]
k
[
x
z
]
n
[
x
)
z
(
X
Upon interchanging the order of the summation
and applying the time shifting property, we obtain
         
z
X
z
X
z
]
k
[
x
z
X
z
k
n
x
k
x
)
z
(
X 1
k
2
k
1
2
n
n
2
k
1 























15
Example 8: Compute the convolution
of the signals x1[n] = [1, -2, 1] and
Solution:
X1(z) = 1 – 2z-1 + z-2
X2(z) = 1 + z-1 + z-2 + z-3 + z-4 + z-5
Now X(z) = X1(z)X2(z) = 1 – z-1 – z-6 + z-7
Hence x[n] = [1, -1, 0, 0, 0, 0, -1, 1]
Note: You should verify this result from the
definition of the convolution sum.


 


elsewhere
,
0
5
n
0
,
1
]
n
[
x2
16
Correlation of two sequences
If x1[n]  X1(z) and x2[n]  X2(z)
then rx1x2[k] = X1(z)X2(z-1)
 Tutorial 4 Q2: Prove this property.
The Initial Value Theorem:
If x[n] is causal then )
z
(
X
lim
]
0
[
x
z 


Proof:
....
z
]
2
[
x
z
]
1
[
x
]
0
[
x
z
]
n
[
x
)
z
(
X 2
1
0
n
n




 





Obviously, as z  , z-n  0 since n >0, this
proves the theorem.
17
Final Value Theorem
If x[n]  X(z), then   )
z
(
X
z
1
lim
]
[
x 1
1
z





 Tutorial 4 Q3: Prove the Final Value
Theorem
Example 9: Find the final value of
2
1
1
z
8
.
0
z
8
.
1
1
z
2
)
z
(
X 





Solution:     2
1
1
1
1
z
8
.
0
z
8
.
1
1
z
2
z
1
)
z
(
X
z
1 









    1
1
1
1
1
1
z
5
.
0
1
z
2
z
5
.
0
1
z
1
z
2
z
1 











The final value theorem yields
10
2
.
0
2
z
8
.
0
1
z
2
lim
]
[
y 1
1
1
z




 


18
Inverse z-transform
In general, the inverse z-transform may be
found by using any of the following
methods:
 Power series method
 Partial fraction method
19
Power Series Method
Example 2: Determine the z-transform of
2
1
z
5
.
0
z
5
.
1
1
1
)
z
(
X 




By dividing the numerator of X(z) by its
denominator, we obtain the power series
...
z
z
z
z
1
z
z
1
1 4
16
31
3
8
15
2
4
7
1
2
3
2
2
1
1
2
3














 x[n] = [1, 3/2, 7/2, 15/8, 31/16,…. ]
20
Power Series Method
Example 2:Determine the z-transform of
2
1
1
z
z
2
2
z
4
)
z
(
X 






By dividing the numerator of X(z) by its
denominator, we obtain the power series
 x[n] = [2, 1.5, 0.5, 0.25, …..]
21
Partial Fraction Method:
Example 1: Find the signal corresponding to
the z-transform
2
1
3
z
z
3
2
z
)
z
(
X 





Solution:
  
5
.
0
z
1
z
z
5
.
0
z
5
.
0
z
5
.
1
z
5
.
0
z
z
3
2
z
)
z
(
X 2
3
2
1
3








 


   5
.
0
z
4
1
z
1
z
1
z
3
5
.
0
z
1
z
z
5
.
0
z
)
z
(
X
2
2










5
.
0
z
z
)
4
(
1
z
z
z
1
3
)
z
(
X







or 1
1
1
z
5
.
0
1
1
4
z
1
1
z
3
)
z
(
X 








  ]
n
[
u
5
.
0
4
]
n
[
u
]
1
n
[
]
n
[
3
]
n
[
x
n








22
Partial Fraction Method:
Example 2: Find the signal corresponding to the z-
transform
  2
1
1
z
2
.
0
1
z
2
.
0
1
1
)
z
(
Y





Solution:
  2
3
2
.
0
z
2
.
0
z
z
)
z
(
Y



    2
2
2
2
.
0
z
1
.
0
2
.
0
z
75
.
0
2
.
0
z
25
.
0
2
.
0
z
2
.
0
z
z
z
)
z
(
Y









 2
2
.
0
z
z
1
.
0
2
.
0
z
z
75
.
0
1
z
z
25
.
0
)
z
(
Y






 2
1
1
2
.
0
1
.
0
1
1
z
2
.
0
1
z
2
.
0
z
2
.
0
1
1
75
.
0
z
2
.
0
1
1
25
.
0










      ]
n
[
u
2
.
0
n
5
.
0
]
n
[
u
2
.
0
75
.
0
]
n
[
u
2
.
0
25
.
0
]
n
[
y
n
n
n





23
The One-Sided z-Transform
The one-sided or unilateral z-transform of a signal
x[n] is defined by





0
n
n
z
]
n
[
x
)
z
(
X
Characteristics:
•It does not contain information about the
signal x[n] for negative values of time.
• It is unique only for causal signals.
24
Pulse Transfer Function
It is defined as the ratio of the z-transform of the
output to the z-transform of the input when all
initial conditions are assumed to be zero.
Mathematically,





















 N
0
k
k
k
M
0
k
k
k
N
N
2
2
1
1
0
M
M
2
2
1
1
0
z
a
z
b
z
a
.....
z
a
z
a
a
z
b
.....
z
b
z
b
b
)
z
(
H
The roots of the denominator of a pulse transfer function
are called Poles and those of the denominator are called
Zeros.
The above pulse transfer function has M zeros and N poles.
We can represent X(z) graphically by a pole-zero plot in the
Complex plane, which shows the location of poles by crosses
() and the location of zeros by circles (o).
25
Stability:
A discrete time system is said to be stable if,
and only if, all of its poles lie inside a unit
circle.
If any pole(s) lie(s) on the unit circle, the
system is said to be marginally stable.
Im(z)
Re(z)




Unit circle
Stable System


Unstable System

Marginally stable
26
Example: A system is characterized by
by the difference equation
y[n] – 0.1y[n-1] – 0.02 y[n-2] = 2x[n] – x[n-1].
Find the system transfer function and unit
impulse response.
Solution: Taking the z-transform of both sides of the
difference equation (ignoring the initial
conditions) we have
Y(z) – 0.1 z-1Y(z) – 0.02z-2Y(z) = 2X(z) – z-1X(z)
Y(z) [ 1 –0.1z-1 – 0.02z-2 ]= X(z [2 – z-1]
2
1
1
z
02
.
0
z
1
.
0
1
z
2
)
z
(
X
)
z
(
Y







This transfer function has two poles (i.e. z = -0.1, 0.2) and
Two zeros at z =0, 0.5. This shows that the system is
BIBO stable. The Pole-zero plot is given on the next slide.
27
-1.5 -1 -0.5 0 0.5 1 1.5
-1
0
1
Real Part
Imaginary
Part
Pole-zero plot
28
To find the unit impulse response, we
compute the inverse z-transform of H(z) by
using partial fraction expansion:
  
1
.
0
z
2
.
0
z
2
z
2
02
.
0
z
1
.
0
z
z
z
2
z
02
.
0
z
1
.
0
1
z
2
)
z
(
H
2
2
2
2
1
1











 


   1
.
0
z
4
2
.
0
z
2
1
.
0
z
2
.
0
z
1
z
2
z
)
z
(
H






























 
 1
1
z
1
.
0
1
1
4
z
2
.
0
1
1
2
1
.
0
z
z
4
2
.
0
z
z
2
)
z
(
H
and, the unit impulse response is
H[n] = -2(0.2)nu[n] + 4(-0.1)nu[n]
29
Response of systems with non-zero initial
conditions
 We can use z-transform to solve the difference
equation that characterizes a causal, linear, time
invariant system. The following expressions are
especially useful to solve the difference
equations:
 z[y[(n-1)T] = z-1Y(z) +y[-T]
 Z[y(n-2)T] = z-2Y(z) + z-1y[-T] + y[-2T]
 Z[y(n-3)T] = z-3Y(z) + z-2y[-T] + z-1y[-2T] +
y[-3T]
30
Tutorial 5 Q1: Determine the step response of
the system
y[n]=ay[n-1] + x[n], -1 < a < 1
when the initial condition is y[-1] = 1.
31
Example: Consider the following difference
equation:
y[nT] –0.1y[(n-1)T] – 0.02y[(n-2)T] = 2x[nT] –
x[(n-1)T]
where the initial conditions are y[-T] = -10 and y[-
2T] = 20. Find the output y[nT] when x[nT] is the
unit step input.
Solution:
Computing the z-transform of the difference
equation gives
Y(z) – 0.1[z-1Y(z) + y[-T]] – 0.02[z-2Y(z) + z-1y[-T]
+ y[-2T]] = 2X(z) – z-1X(z)
Substituting the initial conditions we get
Y(z) – 0.1z-1Y(z) +1 – 0.02z-2Y(z) + 0.2z-1 –0.4 =
(2 – z-1)X(z)
32
    6
.
0
z
2
.
0
z
1
1
z
2
)
z
(
Y
z
02
.
0
z
1
.
0
1 1
1
1
2
1






 




  6
.
0
z
2
.
0
z
1
z
2
z
02
.
0
z
2
.
0
1
)
z
(
Y 1
1
1
2
1






 




      
1
1
1
2
1
2
1
1
2
1
z
1
.
0
1
z
2
.
0
1
z
1
z
2
.
0
z
6
.
0
4
.
1
z
02
.
0
z
1
.
0
1
z
1
z
2
.
0
z
6
.
0
4
.
1
)
z
(
Y 





















   
1
.
0
z
2
.
0
z
1
z
z
2
.
0
z
6
.
0
z
4
.
1 2
3






1
.
0
z
830
.
0
2
.
0
z
567
.
0
1
z
136
.
1
z
)
z
(
Y







1
1
1
z
1
.
0
1
1
830
.
0
z
2
.
0
1
1
567
.
0
z
1
1
136
.
1
)
z
(
Y 








and the output signal y[nT] is
]
nT
[
u
)
1
.
0
(
830
.
0
]
nT
[
u
)
2
.
0
(
567
.
0
]
nT
[
u
136
.
1
]
nT
[
y n
n




33
Pole-Zero Cancellation
 When a z-transform has a pole that is at the
same location as a zero, the pole is cancelled by
the zero and, consequently, the term containing
that pole in the inverse z-transform vanishes.
 Pole-zero cancellation may occur either in the
system function itself or in the product of the
system function with the z-transform of the
input signal.
 When the zero is located very near the pole but
not exactly at the same location, the term in the
response has a very small amplitude.
 Pole-zero cancellation may cause instability
and should be avoided in most cases.
34
Example: Determine the unit impulse response of
the system characterized by the difference
equation
y[n] = 2.5y[n-1] – y[n-2] + x[n] – 5x[n-1] + 6x[n-2]
Solution: Taking the z-transform of both sides of
the above difference equation and ignoring all
initial conditions, we obtain the following pulse
transfer function:
  
   1
2
1
1
1
2
1
1
1
1
2
1
1
1
2
1
2
1
z
1
z
5
.
2
1
z
1
z
3
1
z
2
1
z
1
z
3
1
z
2
1
z
z
5
.
2
1
z
6
z
5
1
)
z
(
H 



























and therefore
  ]
1
n
[
u
5
.
2
]
n
[
]
n
[
h
1
n
2
1





35
System Frequency response
The frequency response of a BIBO stable
system is defined as
H(w) = H(z)|z = e
jw
The frequency response function is usually
expressed in terms of its magnitude |H(w)|
and phase (w), where
H(w) = |H(w)|ej(w)
Usually, the magnitude is plotted on a
logarithmic scale as
|H(w)|dB = 20log10|H(w)|
36
Example: Determine the frequency response
function H(w) and the magnitude |H(w)|dB for the
LTI system characterized by the difference
equation
y[n] = 1.8y[n-1] – 0.81y[n-2] + x[n] + 0.95x[n-1]
Solution: The pulse transfer function is
 2
1
1
2
1
1
z
9
.
0
1
z
95
.
0
1
z
81
.
0
z
8
.
1
1
z
95
.
0
1
)
z
(
H












Now the frequency response function may be obtained as
 
 2
jw
jw
e
9
.
0
1
e
95
.
0
1
w
H





The magnitude response is
w
cos
8
.
1
81
.
1
w
cos
9
.
1
9025
.
1
|
)
w
(
H
|



37
We note that |H(w)| has its maximum at w = 0,
where |H(0)| = 195. It is customary to normalize
|H(w)| by its peak value and plot
20log|H(w)|/|H|max. A plot of the normalized
magnitude of the frequency response is shown
below:
0
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
- 
38
Example: Find the frequency response for the
system
y[n] = -0.1y[n-1] + 0.2y[n-2] + x[n] + x[n-1]
Solution: The system function is
2
1
1
z
2
.
0
z
1
.
0
1
z
1
)
z
(
H 






Now
)
z
z
(
2
.
0
)
z
z
(
08
.
0
05
.
1
z
z
2
z
2
.
0
z
1
.
0
1
z
1
z
2
.
0
z
1
.
0
1
z
1
)
z
(
H
)
z
(
H 2
2
1
1
2
2
1
1
1





















w
cos
8
.
0
w
cos
16
.
0
45
.
1
w
cos
2
2
|
)
z
(
H
)
z
(
H
|
|
)
w
(
H
| 2
e
z
1
2
jw




 

w
cos
8
.
0
w
cos
16
.
0
45
.
1
w
cos
2
2
|
)
w
(
H
| 2






Z transform and Properties of Z Transform

  • 1.
    1 Lecture 7 –10 Z - Transform June 07, 2005 By Dr. Mukhtiar Ali Unar
  • 2.
    2 The Direct Z-Transform Thez-transform of a discrete time signal is defined as the power series (1) Where z is a complex variable. For convenience, the z-transform of a signal x[n] is denoted by X(z) = Z{x[n]} Since the z-transform is an infinite series, it exists only for those values of z for which this series converges. The Region of Convergence (ROC) of X(z) is the set of all values of z for which this series converges. We illustrate the concepts by some simple examples.       n n z ] n [ x ) z ( X
  • 3.
    3 Example 1: Determinethe z-transform of the following signals (a) x[n] = [1, 2, 5, 7, 0, 1] Solution: X(z) = 1 + 2z-1+ 5z-2 + 7z-3 + z-5, ROC: entire z plane except z = 0 (b) y[n] = [1, 2, 5, 7, 0, 1] Solution: Y(z) = z2 + 2z + 5 + 7z-1 + z-3 ROC: entire z-plane except z = 0 and z = . (c) z[n] = [0, 0, 1, 2, 5, 7, 0, 1] Solution: z-2 + 2z-3 + 5z-4 + 7z-5 + z-7, ROC: all z except z=0
  • 4.
    4 (d) p[n] =[n] Solution: P(z) = 1, ROC: entire z-plane. (e) q[n] = [n – k], k > 0 Solution: Q(z) = z-k, entire z-plane except z=0. (f) r[n] = [n+k], k > 0 Solution: R(z) = zk, ROC: entire z-plane except z = .
  • 5.
    5 Example 2: Determinethe z-transform of x[n] = (1/2)nu[n] Solution: ROC: |1/2 z-1| < 1, or equivalently |z| > 1/2 1 2 1 n 0 n 1 n n 0 n n n z 2 1 1 1 ....... z 2 1 z 2 1 1 z 2 1 z 2 1 z ] n [ x ) z ( X                                           
  • 6.
    6 Example 3: Determinethe z-transform of the signal x[n] = anu[n] Solution:     | a | | z :| ROC az 1 1 ....... az az 1 az z a ) z ( X 1 2 1 1 n 0 n 1 n 0 n n                    
  • 7.
    7 Properties of z-transform Linearity If x1[n]  X1(z) and x2[[n]  X2(z) then a1x1[n] + a2x2[n]  a1X1(z) + a2X2(z)
  • 8.
    8 Example: Determine thez-transform of the signal x[n] = [3(2n) – 4(3n)]u[n] Solution:   1 1 n n 1 n z 3 1 1 4 z 2 1 1 3 ] 3 4 ) 2 ( 3 [ z az 1 1 ]] n [ u a [ z             Example 4: Determine the z-transform of the signal (cosw0n)u[n]       2 0 1 0 1 1 jw 1 jw 0 n jw n jw 0 z w cos z 2 1 w cos z 1 z e 1 1 2 1 z e 1 1 2 1 ] n [ u n w cos z e 2 1 e 2 1 ] n [ u n w cos 0 0 0 0                   
  • 9.
    9 Time Shifting Property: Ifx[n]  X(z) then x[n-k]  z-kX(z) Proof: since then the change of variable m = n-k produces         n n z ] k n [ x ]] k n [ x [ z ) z ( X z z ] m [ x z z ] m [ x ]] k n [ x [ z k m m k m ) k m (                 
  • 10.
    10 Example: Find thez-transform of a unit step function. Use time shifting property to find z- transform of u[n] – u[n-N]. The z-transform of u[n] can be found as Now the z-transform of u[n]-u[n-N] may be found as follows: 1 2 1 0 n n n n z 1 1 ....... z z 1 z z ] n [ u ]] n [ u [ z                     1 N 1 N 1 z 1 z 1 z 1 1 z z 1 1 ]] N n [ u ] n [ u [ z              
  • 11.
    11 Scaling in thez-domain If x[n]  X(z) Then anx[n]  X(a-1z) For any constant a, real or complex. Proof: Example 5: Determine the z-transform of the signal an(cosw0n)u[n]. Solution: since       z a X z a ] n [ x z ] n [ x a ] n [ x a z 1 n n 1 n n n n                2 0 1 0 1 0 z w cos z 2 1 w cos z 1 ] n [ u ) n w [cos( z          2 2 0 1 0 1 0 n z a w cos az 2 1 w cos az 1 ]] n [ u n w cos a [ z        
  • 12.
    12 Time reversal If x[n] X(z) then x[-n]  X(z-1) Proof: Example 6: Determine the z-transform of u[-n]. Solution: since z[u[n]] = 1/(1 – z-1) Therefore, Z[u[-n]] = 1/(1-z)                         m m 1 m 1 m n n ) z ( X z ] m [ x z ] m [ x z ] n [ x ]] n [ x [ z
  • 13.
    13 Differentiation in thez - Domain x[n]  X(z) then nx[n] = -z(dX(z)/dz) Tutorial 4: Q1: Prove the differentiation property of z – transform. Example 7: Determine the z-transform of the signal x[n] = nanu[n]. Solution:  2 1 1 1 n 1 n az 1 az az 1 1 dz d z ]] n [ u na [ z az 1 1 ]] n [ u a [ z             
  • 14.
    14 Convolution of twosequences If x1[n]  X1(z) and x2[n]  X2(z) then x1[n]*x2[n]  X1(z)X2(z) Proof: The convolution of x1[n] and x2[n] is defined as        k 2 1 2 1 ] k n [ x ] n [ x ] n [ x * ] n [ x ] n [ x The z-transform of x[n] is                          n n n 2 1 n n z k n x ] k [ x z ] n [ x ) z ( X Upon interchanging the order of the summation and applying the time shifting property, we obtain           z X z X z ] k [ x z X z k n x k x ) z ( X 1 k 2 k 1 2 n n 2 k 1                        
  • 15.
    15 Example 8: Computethe convolution of the signals x1[n] = [1, -2, 1] and Solution: X1(z) = 1 – 2z-1 + z-2 X2(z) = 1 + z-1 + z-2 + z-3 + z-4 + z-5 Now X(z) = X1(z)X2(z) = 1 – z-1 – z-6 + z-7 Hence x[n] = [1, -1, 0, 0, 0, 0, -1, 1] Note: You should verify this result from the definition of the convolution sum.       elsewhere , 0 5 n 0 , 1 ] n [ x2
  • 16.
    16 Correlation of twosequences If x1[n]  X1(z) and x2[n]  X2(z) then rx1x2[k] = X1(z)X2(z-1)  Tutorial 4 Q2: Prove this property. The Initial Value Theorem: If x[n] is causal then ) z ( X lim ] 0 [ x z    Proof: .... z ] 2 [ x z ] 1 [ x ] 0 [ x z ] n [ x ) z ( X 2 1 0 n n            Obviously, as z  , z-n  0 since n >0, this proves the theorem.
  • 17.
    17 Final Value Theorem Ifx[n]  X(z), then   ) z ( X z 1 lim ] [ x 1 1 z       Tutorial 4 Q3: Prove the Final Value Theorem Example 9: Find the final value of 2 1 1 z 8 . 0 z 8 . 1 1 z 2 ) z ( X       Solution:     2 1 1 1 1 z 8 . 0 z 8 . 1 1 z 2 z 1 ) z ( X z 1               1 1 1 1 1 1 z 5 . 0 1 z 2 z 5 . 0 1 z 1 z 2 z 1             The final value theorem yields 10 2 . 0 2 z 8 . 0 1 z 2 lim ] [ y 1 1 1 z        
  • 18.
    18 Inverse z-transform In general,the inverse z-transform may be found by using any of the following methods:  Power series method  Partial fraction method
  • 19.
    19 Power Series Method Example2: Determine the z-transform of 2 1 z 5 . 0 z 5 . 1 1 1 ) z ( X      By dividing the numerator of X(z) by its denominator, we obtain the power series ... z z z z 1 z z 1 1 4 16 31 3 8 15 2 4 7 1 2 3 2 2 1 1 2 3                x[n] = [1, 3/2, 7/2, 15/8, 31/16,…. ]
  • 20.
    20 Power Series Method Example2:Determine the z-transform of 2 1 1 z z 2 2 z 4 ) z ( X        By dividing the numerator of X(z) by its denominator, we obtain the power series  x[n] = [2, 1.5, 0.5, 0.25, …..]
  • 21.
    21 Partial Fraction Method: Example1: Find the signal corresponding to the z-transform 2 1 3 z z 3 2 z ) z ( X       Solution:    5 . 0 z 1 z z 5 . 0 z 5 . 0 z 5 . 1 z 5 . 0 z z 3 2 z ) z ( X 2 3 2 1 3                5 . 0 z 4 1 z 1 z 1 z 3 5 . 0 z 1 z z 5 . 0 z ) z ( X 2 2           5 . 0 z z ) 4 ( 1 z z z 1 3 ) z ( X        or 1 1 1 z 5 . 0 1 1 4 z 1 1 z 3 ) z ( X            ] n [ u 5 . 0 4 ] n [ u ] 1 n [ ] n [ 3 ] n [ x n        
  • 22.
    22 Partial Fraction Method: Example2: Find the signal corresponding to the z- transform   2 1 1 z 2 . 0 1 z 2 . 0 1 1 ) z ( Y      Solution:   2 3 2 . 0 z 2 . 0 z z ) z ( Y        2 2 2 2 . 0 z 1 . 0 2 . 0 z 75 . 0 2 . 0 z 25 . 0 2 . 0 z 2 . 0 z z z ) z ( Y           2 2 . 0 z z 1 . 0 2 . 0 z z 75 . 0 1 z z 25 . 0 ) z ( Y        2 1 1 2 . 0 1 . 0 1 1 z 2 . 0 1 z 2 . 0 z 2 . 0 1 1 75 . 0 z 2 . 0 1 1 25 . 0                 ] n [ u 2 . 0 n 5 . 0 ] n [ u 2 . 0 75 . 0 ] n [ u 2 . 0 25 . 0 ] n [ y n n n     
  • 23.
    23 The One-Sided z-Transform Theone-sided or unilateral z-transform of a signal x[n] is defined by      0 n n z ] n [ x ) z ( X Characteristics: •It does not contain information about the signal x[n] for negative values of time. • It is unique only for causal signals.
  • 24.
    24 Pulse Transfer Function Itis defined as the ratio of the z-transform of the output to the z-transform of the input when all initial conditions are assumed to be zero. Mathematically,                       N 0 k k k M 0 k k k N N 2 2 1 1 0 M M 2 2 1 1 0 z a z b z a ..... z a z a a z b ..... z b z b b ) z ( H The roots of the denominator of a pulse transfer function are called Poles and those of the denominator are called Zeros. The above pulse transfer function has M zeros and N poles. We can represent X(z) graphically by a pole-zero plot in the Complex plane, which shows the location of poles by crosses () and the location of zeros by circles (o).
  • 25.
    25 Stability: A discrete timesystem is said to be stable if, and only if, all of its poles lie inside a unit circle. If any pole(s) lie(s) on the unit circle, the system is said to be marginally stable. Im(z) Re(z)     Unit circle Stable System   Unstable System  Marginally stable
  • 26.
    26 Example: A systemis characterized by by the difference equation y[n] – 0.1y[n-1] – 0.02 y[n-2] = 2x[n] – x[n-1]. Find the system transfer function and unit impulse response. Solution: Taking the z-transform of both sides of the difference equation (ignoring the initial conditions) we have Y(z) – 0.1 z-1Y(z) – 0.02z-2Y(z) = 2X(z) – z-1X(z) Y(z) [ 1 –0.1z-1 – 0.02z-2 ]= X(z [2 – z-1] 2 1 1 z 02 . 0 z 1 . 0 1 z 2 ) z ( X ) z ( Y        This transfer function has two poles (i.e. z = -0.1, 0.2) and Two zeros at z =0, 0.5. This shows that the system is BIBO stable. The Pole-zero plot is given on the next slide.
  • 27.
    27 -1.5 -1 -0.50 0.5 1 1.5 -1 0 1 Real Part Imaginary Part Pole-zero plot
  • 28.
    28 To find theunit impulse response, we compute the inverse z-transform of H(z) by using partial fraction expansion:    1 . 0 z 2 . 0 z 2 z 2 02 . 0 z 1 . 0 z z z 2 z 02 . 0 z 1 . 0 1 z 2 ) z ( H 2 2 2 2 1 1                   1 . 0 z 4 2 . 0 z 2 1 . 0 z 2 . 0 z 1 z 2 z ) z ( H                                  1 1 z 1 . 0 1 1 4 z 2 . 0 1 1 2 1 . 0 z z 4 2 . 0 z z 2 ) z ( H and, the unit impulse response is H[n] = -2(0.2)nu[n] + 4(-0.1)nu[n]
  • 29.
    29 Response of systemswith non-zero initial conditions  We can use z-transform to solve the difference equation that characterizes a causal, linear, time invariant system. The following expressions are especially useful to solve the difference equations:  z[y[(n-1)T] = z-1Y(z) +y[-T]  Z[y(n-2)T] = z-2Y(z) + z-1y[-T] + y[-2T]  Z[y(n-3)T] = z-3Y(z) + z-2y[-T] + z-1y[-2T] + y[-3T]
  • 30.
    30 Tutorial 5 Q1:Determine the step response of the system y[n]=ay[n-1] + x[n], -1 < a < 1 when the initial condition is y[-1] = 1.
  • 31.
    31 Example: Consider thefollowing difference equation: y[nT] –0.1y[(n-1)T] – 0.02y[(n-2)T] = 2x[nT] – x[(n-1)T] where the initial conditions are y[-T] = -10 and y[- 2T] = 20. Find the output y[nT] when x[nT] is the unit step input. Solution: Computing the z-transform of the difference equation gives Y(z) – 0.1[z-1Y(z) + y[-T]] – 0.02[z-2Y(z) + z-1y[-T] + y[-2T]] = 2X(z) – z-1X(z) Substituting the initial conditions we get Y(z) – 0.1z-1Y(z) +1 – 0.02z-2Y(z) + 0.2z-1 –0.4 = (2 – z-1)X(z)
  • 32.
    32    6 . 0 z 2 . 0 z 1 1 z 2 ) z ( Y z 02 . 0 z 1 . 0 1 1 1 1 2 1               6 . 0 z 2 . 0 z 1 z 2 z 02 . 0 z 2 . 0 1 ) z ( Y 1 1 1 2 1                    1 1 1 2 1 2 1 1 2 1 z 1 . 0 1 z 2 . 0 1 z 1 z 2 . 0 z 6 . 0 4 . 1 z 02 . 0 z 1 . 0 1 z 1 z 2 . 0 z 6 . 0 4 . 1 ) z ( Y                           1 . 0 z 2 . 0 z 1 z z 2 . 0 z 6 . 0 z 4 . 1 2 3       1 . 0 z 830 . 0 2 . 0 z 567 . 0 1 z 136 . 1 z ) z ( Y        1 1 1 z 1 . 0 1 1 830 . 0 z 2 . 0 1 1 567 . 0 z 1 1 136 . 1 ) z ( Y          and the output signal y[nT] is ] nT [ u ) 1 . 0 ( 830 . 0 ] nT [ u ) 2 . 0 ( 567 . 0 ] nT [ u 136 . 1 ] nT [ y n n    
  • 33.
    33 Pole-Zero Cancellation  Whena z-transform has a pole that is at the same location as a zero, the pole is cancelled by the zero and, consequently, the term containing that pole in the inverse z-transform vanishes.  Pole-zero cancellation may occur either in the system function itself or in the product of the system function with the z-transform of the input signal.  When the zero is located very near the pole but not exactly at the same location, the term in the response has a very small amplitude.  Pole-zero cancellation may cause instability and should be avoided in most cases.
  • 34.
    34 Example: Determine theunit impulse response of the system characterized by the difference equation y[n] = 2.5y[n-1] – y[n-2] + x[n] – 5x[n-1] + 6x[n-2] Solution: Taking the z-transform of both sides of the above difference equation and ignoring all initial conditions, we obtain the following pulse transfer function:       1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 2 1 z 1 z 5 . 2 1 z 1 z 3 1 z 2 1 z 1 z 3 1 z 2 1 z z 5 . 2 1 z 6 z 5 1 ) z ( H                             and therefore   ] 1 n [ u 5 . 2 ] n [ ] n [ h 1 n 2 1     
  • 35.
    35 System Frequency response Thefrequency response of a BIBO stable system is defined as H(w) = H(z)|z = e jw The frequency response function is usually expressed in terms of its magnitude |H(w)| and phase (w), where H(w) = |H(w)|ej(w) Usually, the magnitude is plotted on a logarithmic scale as |H(w)|dB = 20log10|H(w)|
  • 36.
    36 Example: Determine thefrequency response function H(w) and the magnitude |H(w)|dB for the LTI system characterized by the difference equation y[n] = 1.8y[n-1] – 0.81y[n-2] + x[n] + 0.95x[n-1] Solution: The pulse transfer function is  2 1 1 2 1 1 z 9 . 0 1 z 95 . 0 1 z 81 . 0 z 8 . 1 1 z 95 . 0 1 ) z ( H             Now the frequency response function may be obtained as    2 jw jw e 9 . 0 1 e 95 . 0 1 w H      The magnitude response is w cos 8 . 1 81 . 1 w cos 9 . 1 9025 . 1 | ) w ( H |   
  • 37.
    37 We note that|H(w)| has its maximum at w = 0, where |H(0)| = 195. It is customary to normalize |H(w)| by its peak value and plot 20log|H(w)|/|H|max. A plot of the normalized magnitude of the frequency response is shown below: 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 - 
  • 38.
    38 Example: Find thefrequency response for the system y[n] = -0.1y[n-1] + 0.2y[n-2] + x[n] + x[n-1] Solution: The system function is 2 1 1 z 2 . 0 z 1 . 0 1 z 1 ) z ( H        Now ) z z ( 2 . 0 ) z z ( 08 . 0 05 . 1 z z 2 z 2 . 0 z 1 . 0 1 z 1 z 2 . 0 z 1 . 0 1 z 1 ) z ( H ) z ( H 2 2 1 1 2 2 1 1 1                      w cos 8 . 0 w cos 16 . 0 45 . 1 w cos 2 2 | ) z ( H ) z ( H | | ) w ( H | 2 e z 1 2 jw        w cos 8 . 0 w cos 16 . 0 45 . 1 w cos 2 2 | ) w ( H | 2     