SlideShare a Scribd company logo
1 of 57
Improper Integrals
An integral over an infinite interval such as ∫ e–x dx
may be interpreted as the
un-enclosed area under the
curve of y = e–x.
0
∞
(0,1)
y = e–x
Improper Integrals
An integral over an infinite interval such as ∫ e–x dx
may be interpreted as the
un-enclosed area under the
curve of y = e–x.
0
∞
Likewise ∫ 1/x dx may be
viewed as the un-enclosed
area under the curve of y = 1/x.
0
1
(0,1)
y = e–x
y = 1/x(1,1)
Improper Integrals
An integral over an infinite interval such as ∫ e–x dx
may be interpreted as the
un-enclosed area under the
curve of y = e–x.
0
∞
Likewise ∫ 1/x dx may be
viewed as the un-enclosed
area under the curve of y = 1/x.
0
1
(0,1)
y = e–x
Definite integrals of continuous
functions over infinite intervals (a, ∞)
(–∞, a), or (–∞, ∞), such as ∫ e–x dx,
y = 1/x(1,1)
0
∞
or integrals of unbounded continuous functions
such as ∫ 1/x dx are called improper integrals.0
1
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Example A. Find ∫0
∞
e–x dx
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x|
0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x| = lim (–e–x) – (–e0) = 1
x ∞0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x| = lim (–e–x) – (–e0) = 1
x ∞0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Similarly for a continuous function f(x) where x ≤ a,
we define the improper (definite) integral
∫–∞
lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u
a
u –∞ u –∞
a
–∞
f(x) dx ≡
a
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x| = lim (–e–x) – (–e0) = 1
x ∞0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Similarly for a continuous function f(x) where x ≤ a,
we define the improper (definite) integral
∫–∞
lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u
a
u –∞ u –∞
a
–∞
f(x) dx ≡
a
Example B. Find ∫ cos(x)dx
–∞
0
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x| = lim (–e–x) – (–e0) = 1
x ∞0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Similarly for a continuous function f(x) where x ≤ a,
we define the improper (definite) integral
∫–∞
lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u
a
u –∞ u –∞
a
–∞
f(x) dx ≡
a
Example B. Find ∫ cos(x)dx
∫
0
cos(x)dx = sin(x) |
–∞
0
–∞ –∞
0
Example A. Find ∫0
∞
e–x dx
∫0
∞
e–x dx = –e–x| = lim (–e–x) – (–e0) = 1
x ∞0
∞
∫a
∞
lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a
u
u ∞ u ∞a
∞
Improper Integrals
Let f(x) be a continuous function defined for a ≤ x
and F(x) is an antiderivative of f(x).
We define the improper (definite) integral
f(x) dx ≡
Similarly for a continuous function f(x) where x ≤ a,
we define the improper (definite) integral
∫–∞
lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u
a
u –∞ u –∞
a
–∞
f(x) dx ≡
a
Example B. Find ∫ cos(x)dx
∫
0
cos(x)dx = sin(x) | = lim sin(0) – sin(x) which is UDF.
x –∞
–∞
0
–∞ –∞
0
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
a
b
Improper Integrals
x a
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
a
b
Improper Integrals
x a
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The green area
under y = x–1 is ∞.
The blue area
under y = x–1/2 is 2.
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
b. Find ∫0
1
x–1 dx.
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
b. Find ∫0
1
x–1 dx.
∫0
1
x–1 dx = In(x) |
1
0
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
b. Find ∫0
1
x–1 dx.
∫0
1
x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞
1
0 x 0
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
b. Find ∫0
1
x–1 dx.
∫0
1
x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞
1
0 x 0
If the improper integral exists, we say it converges.
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let F(x) be an antiderivative of f(x) and lim f(x)  ∞.
We define
x a
∫a
b
f(x) dx = F(x)| ≡ F(b) – lim F(x)
Example C. a. Find ∫0
1
x–1/2 dx.
∫0
1
x–1/2 dx = 2x1/2 |
1
0
x 0
b. Find ∫0
1
x–1 dx.
∫0
1
x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞
1
0 x 0
If the improper integral exists, we say it converges.
If the improper integral fails to exist or it´s infinite,
we say it diverges.
a
b
Improper Integrals
x a
y = x–1/2
y = x–1
(1,1)
The blue area
under y = x–1/2 is 2.
The green area
under y = x–1 is ∞.
= 2 – lim (2x1/2) = 2
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
In the situations that we can’t find the anti-derivative
F(x) or the numerical answers, the next question is
to determine if the integrals converge or diverge
by comparing them to other known integrals.
Find ∫Example D.
–∞
∞
∫ 1/(1 + x2) dx
–∞
∞
= lim tan–1(u) – tan–1(–u)
= π/2 + π/2 = π.
u ∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
= lim tan–1(x) l–u
u
u ∞
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
u∞
= lim F(u) – F(–u).u∞
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
Find ∫Example D.
–∞
∞
1/(1 + x2)dx
u∞
= lim F(u) – F(–u).u∞
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
Find ∫Example D.
–∞
∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
Find ∫Example D.
–∞
∞
∫ 1/(1 + x2) dx
–∞
∞
u ∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
= lim tan–1(x) l–u
u
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
Find ∫Example D.
–∞
∞
∫ 1/(1 + x2) dx
–∞
∞
= lim tan–1(u) – tan–1(–u)
u ∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
= lim tan–1(x) l–u
u
u ∞
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
Find ∫Example D.
–∞
∞
∫ 1/(1 + x2) dx
–∞
∞
= lim tan–1(u) – tan–1(–u)
= π/2 + π/2 = π.
u ∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
= lim tan–1(x) l–u
u
u ∞
Let f(x) be a continuous function defined for all x’s,
and F´(x) = f(x), we define the improper integral
∫ f(x)dx ≡ lim
Improper Integrals
–∞
∞
∫f(x) dx
–u
u
In the situations that we can’t find the anti-derivative
F(x) or the numerical answers, the next question is
to determine if the integrals converge or diverge
by comparing them to other known integrals.
Find ∫Example D.
–∞
∞
∫ 1/(1 + x2) dx
–∞
∞
= lim tan–1(u) – tan–1(–u)
= π/2 + π/2 = π.
u ∞
y = 1/(1 + x2)1/(1 + x2)dx
x
u∞
= lim F(u) – F(–u).u∞
–x
= lim tan–1(x) l–u
u
u ∞
The Floor Principle
Improper Integrals
The Ceiling Principle
Here are two basic comparison-principles.
The Floor Principle
Improper Integrals
The Ceiling Principle
If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges
then g(x) dx converges also (a and b could be ±∞.)
∫a
b
∫a
b
Here are two basic comparison-principles.
The Floor Principle
Improper Integrals
The Ceiling Principle
If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges
then g(x) dx converges also (a and b could be ±∞.)
∫a
b
∫a
b
y = f(x)
y = g(x)
N
Here are two basic comparison-principles.
The Floor Principle
If f(x) ≥ g(x) ≥ 0 and g(x) dx = ∞, then f(x) dx = ∞.∫a
b
∫a
b
Improper Integrals
The Ceiling Principle
If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges
then g(x) dx converges also (a and b could be ±∞.)
∫a
b
∫a
b
y = f(x)
y = g(x)
N
Here are two basic comparison-principles.
The Floor Principle
If f(x) ≥ g(x) ≥ 0 and g(x) dx = ∞, then f(x) dx = ∞.∫a
b
∫a
b
y = f(x)
y = g(x)∞
Improper Integrals
The Ceiling Principle
If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges
then g(x) dx converges also (a and b could be ±∞.)
∫a
b
∫a
b
y = f(x)
y = g(x)
N
Here are two basic comparison-principles.
Note that no conclusion may be drawn if f ≥ g ≥ 0 with
g dx < ∞ finite, or with f dx = ∞.∫a
b
∫a
b
Improper Integrals
The important function which serves as a "boundary"
between divergent and convergent integrals is y = 1/x.
Note that no conclusion may be drawn if f ≥ g ≥ 0 with
g dx < ∞ finite, or with f dx = ∞.∫a
b
∫a
b
Improper Integrals
The important function which serves as a "boundary"
between divergent and convergent integrals is y = 1/x.
Note that no conclusion may be drawn if f ≥ g ≥ 0 with
g dx < ∞ finite, or with f dx = ∞.∫a
b
∫a
b
Improper Integrals
(1, 1)
Both of the following integrals diverge
∫1
∞
x
1
dx = Ln(x)| = ∞
1
∞
y = 1/x
The important function which serves as a "boundary"
between divergent and convergent integrals is y = 1/x.
Note that no conclusion may be drawn if f ≥ g ≥ 0 with
g dx < ∞ finite, or with f dx = ∞.∫a
b
∫a
b
Improper Integrals
∫
1
0
x
1
dx = Ln(x)| = ∞
(1, 1)
Both of the following integrals diverge
∫1
∞
x
1
dx = Ln(x)| = ∞
1
∞
1
0
y = 1/x
The important function which serves as a "boundary"
between divergent and convergent integrals is y = 1/x.
Note that no conclusion may be drawn if f ≥ g ≥ 0 with
g dx < ∞ finite, or with f dx = ∞.∫a
b
∫a
b
Improper Integrals
∫
1
0
x
1
dx = Ln(x)| = ∞
(1, 1)
Both of the following integrals diverge
∫1
∞
x
1
dx = Ln(x)| = ∞
1
∞
1
0
y = 1/x
The functions y = 1/xp
are called p-functions
and y = 1/x serves as the
“boundary” between the
convergent and divergent p-functions.
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
diverges for p ≤ 1.
We can verify the following theorems easily.
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
(1, 1)
y = 1/x
y = 1/x2
y = 1/x3
1
Area < ∞
diverges for p ≤ 1.
We can verify the following theorems easily.
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
(1, 1)
y = 1/x
y = 1/x2
y = 1/x3
1
Area < ∞
diverges for p ≤ 1.
We can verify the following theorems easily.
(So ∫1 x1.01
1∞
dx converges.)
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
(1, 1)
y = 1/x
y = 1/x2
y = 1/x3
1
Area < ∞
diverges for p ≤ 1.
We can verify the following theorems easily.
(So ∫1 x1.01
1∞
dx converges.)
∫ xp
1
dx converges for p < 1,B.
0
1
diverges for p ≥ 1.
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
0 1
(1, 1)
y = 1/x
y = 1/x2
y = 1/x3
1
Area < ∞
Area < ∞
y = 1/x1/2
y = 1/x
y = 1/x1/3
diverges for p ≤ 1.
(1, 1)
We can verify the following theorems easily.
(So ∫1 x1.01
1∞
dx converges.)
∫ xp
1
dx converges for p < 1,B.
0
1
diverges for p ≥ 1.
Theorem (p–function) ∫1
xp
1
∞
dx converges for p > 1,A.
Improper Integrals
0 1
(1, 1)
y = 1/x
y = 1/x2
y = 1/x3
1
Area < ∞
Area < ∞
y = 1/x1/2
y = 1/x
y = 1/x1/3
diverges for p ≤ 1.
(1, 1)
We can verify the following theorems easily.
(So ∫1 x1.01
1∞
dx converges.)
∫ xp
1
dx converges for p < 1,B.
0
1
diverges for p ≥ 1.
(So ∫ x0.99
1
dx converges.)
0
1
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx∫
∞
1
∫
∞
1
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫
∞
1
∫
∞
1
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫
∞
1
∫
∞
1
2
x3 + x2 = 2
x2(x + 1)
For 0 < x < 1,
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫
∞
1
∫
∞
1
2
x3 + x2 = 2
x2(x + 1)
>
1
x2For 0 < x < 1,
1
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫
∞
1
∫
∞
1
2
x3 + x2 = 2
x2(x + 1)
>
1
x2For 0 < x < 1,
1
so 2/(x3 + x2)dx >∫0
1
∫0
1
1/x2 dx
Improper Integrals
∫
Example E. Determine if the integral converges or
diverges using the comparison principle.
∞
1
1/(1 + x + x3/2) dxa.
∫0
1
2/(x3 + x2 )dxb.
Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫
∞
1
∫
∞
1
2
x3 + x2 = 2
x2(x + 1)
>
1
x2For 0 < x < 1,
1
so 2/(x3 + x2)dx >∫0
1
∫0
1
1/x2 dx = ∞ and it diverges.
An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1)
may be viewed as the area under the following
“multi–rule” function f(x) where
f(x) = 2–n for n ≤ x < n + 1
where n = 1, 2, 3,..
1
y = f(x)
2 3 4
y
5
Improper Integrals
An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1)
may be viewed as the area under the following
“multi–rule” function f(x) where
f(x) = 2–n for n ≤ x < n + 1
where n = 1, 2, 3,..
1
y = f(x)
2 3 4
y
5
That is ∫1
∞
f(x) dx
= 1/2 + 1/4 + 1/8 + 1/16.. = 1
∫1
2
f(x) dx + ∫2
3
f(x) dx + ∫3
4
f(x) dx +. .=
Improper Integrals
An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1)
may be viewed as the area under the following
“multi–rule” function f(x) where
f(x) = 2–n for n ≤ x < n + 1
where n = 1, 2, 3,..
1
y = f(x)
2 3 4
y
5
That is ∫1
∞
f(x) dx
= 1/2 + 1/4 + 1/8 + 1/16.. = 1
∫1
2
f(x) dx + ∫2
3
f(x) dx + ∫3
4
f(x) dx +. .=
In the next section, we establish the
relation between summing series
versus integrating functions,
i.e. the discrete vs. the continuous.
Improper Integrals

More Related Content

What's hot

12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions xmath266
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas xmath266
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-xmath266
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-xmath266
 
6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii xmath266
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-xmath266
 
10 fluid pressures x
10 fluid pressures x10 fluid pressures x
10 fluid pressures xmath266
 
9 work x
9 work x9 work x
9 work xmath266
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions xmath266
 
1 review on derivatives
1 review on derivatives1 review on derivatives
1 review on derivativesmath266
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts xmath266
 
2 integration and the substitution methods x
2 integration and the substitution methods x2 integration and the substitution methods x
2 integration and the substitution methods xmath266
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence xmath266
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus xmath266
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions xmath266
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotientmath265
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient xmath260
 
1.7 derivative
1.7 derivative1.7 derivative
1.7 derivativemath265
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 

What's hot (20)

12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-x
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x6 volumes of solids of revolution ii x
6 volumes of solids of revolution ii x
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-x
 
10 fluid pressures x
10 fluid pressures x10 fluid pressures x
10 fluid pressures x
 
9 work x
9 work x9 work x
9 work x
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
 
1 review on derivatives
1 review on derivatives1 review on derivatives
1 review on derivatives
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
2 integration and the substitution methods x
2 integration and the substitution methods x2 integration and the substitution methods x
2 integration and the substitution methods x
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions x
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotient
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
1.7 derivative
1.7 derivative1.7 derivative
1.7 derivative
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 

Similar to 23 improper integrals send-x

2301Antiderivatives_and_Indefinite_Integrals.ppt
2301Antiderivatives_and_Indefinite_Integrals.ppt2301Antiderivatives_and_Indefinite_Integrals.ppt
2301Antiderivatives_and_Indefinite_Integrals.pptJasonBesinBaroy
 
0.5.derivatives
0.5.derivatives0.5.derivatives
0.5.derivativesm2699
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityParthDave57
 
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...BRNSS Publication Hub
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral dicosmo178
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral dicosmo178
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdfRajuSingh806014
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
AEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesAEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesSukhvinder Singh
 
3.7 applications of tangent lines
3.7 applications of tangent lines3.7 applications of tangent lines
3.7 applications of tangent linesmath265
 
limits and continuity
limits and continuitylimits and continuity
limits and continuityElias Dinsa
 
Differentiation
DifferentiationDifferentiation
Differentiationpuspitaaya
 
Calculus- Basics
Calculus- BasicsCalculus- Basics
Calculus- BasicsRabin BK
 

Similar to 23 improper integrals send-x (20)

2301Antiderivatives_and_Indefinite_Integrals.ppt
2301Antiderivatives_and_Indefinite_Integrals.ppt2301Antiderivatives_and_Indefinite_Integrals.ppt
2301Antiderivatives_and_Indefinite_Integrals.ppt
 
0.5.derivatives
0.5.derivatives0.5.derivatives
0.5.derivatives
 
The integral
The integralThe integral
The integral
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
1_AJMS_229_19[Review].pdf
1_AJMS_229_19[Review].pdf1_AJMS_229_19[Review].pdf
1_AJMS_229_19[Review].pdf
 
Derivatives
DerivativesDerivatives
Derivatives
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and Differentiability
 
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
3. Functions II.pdf
3. Functions II.pdf3. Functions II.pdf
3. Functions II.pdf
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
AEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesAEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactories
 
3.7 applications of tangent lines
3.7 applications of tangent lines3.7 applications of tangent lines
3.7 applications of tangent lines
 
limits and continuity
limits and continuitylimits and continuity
limits and continuity
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
Calculus- Basics
Calculus- BasicsCalculus- Basics
Calculus- Basics
 

More from math266

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formulamath266
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-nmath266
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule iimath266
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule imath266
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinatemath266
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series xmath266
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-xmath266
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions xmath266
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule iimath266
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule imath266
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions xmath266
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences xmath266
 
20 sequences x
20 sequences x20 sequences x
20 sequences xmath266
 
30 computation techniques for maclaurin expansions x
30 computation techniques for  maclaurin expansions x30 computation techniques for  maclaurin expansions x
30 computation techniques for maclaurin expansions xmath266
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions xmath266
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions xmath266
 
27 power series x
27 power series x27 power series x
27 power series xmath266
 

More from math266 (20)

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule ii
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule i
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions x
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule ii
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule i
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions x
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences x
 
20 sequences x
20 sequences x20 sequences x
20 sequences x
 
30 computation techniques for maclaurin expansions x
30 computation techniques for  maclaurin expansions x30 computation techniques for  maclaurin expansions x
30 computation techniques for maclaurin expansions x
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions x
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions x
 
27 power series x
27 power series x27 power series x
27 power series x
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 

23 improper integrals send-x

  • 1. Improper Integrals An integral over an infinite interval such as ∫ e–x dx may be interpreted as the un-enclosed area under the curve of y = e–x. 0 ∞ (0,1) y = e–x
  • 2. Improper Integrals An integral over an infinite interval such as ∫ e–x dx may be interpreted as the un-enclosed area under the curve of y = e–x. 0 ∞ Likewise ∫ 1/x dx may be viewed as the un-enclosed area under the curve of y = 1/x. 0 1 (0,1) y = e–x y = 1/x(1,1)
  • 3. Improper Integrals An integral over an infinite interval such as ∫ e–x dx may be interpreted as the un-enclosed area under the curve of y = e–x. 0 ∞ Likewise ∫ 1/x dx may be viewed as the un-enclosed area under the curve of y = 1/x. 0 1 (0,1) y = e–x Definite integrals of continuous functions over infinite intervals (a, ∞) (–∞, a), or (–∞, ∞), such as ∫ e–x dx, y = 1/x(1,1) 0 ∞ or integrals of unbounded continuous functions such as ∫ 1/x dx are called improper integrals.0 1
  • 4. Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x).
  • 5. ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡
  • 6. Example A. Find ∫0 ∞ e–x dx ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡
  • 7. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| 0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡
  • 8. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| = lim (–e–x) – (–e0) = 1 x ∞0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡
  • 9. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| = lim (–e–x) – (–e0) = 1 x ∞0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡ Similarly for a continuous function f(x) where x ≤ a, we define the improper (definite) integral ∫–∞ lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u a u –∞ u –∞ a –∞ f(x) dx ≡ a
  • 10. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| = lim (–e–x) – (–e0) = 1 x ∞0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡ Similarly for a continuous function f(x) where x ≤ a, we define the improper (definite) integral ∫–∞ lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u a u –∞ u –∞ a –∞ f(x) dx ≡ a Example B. Find ∫ cos(x)dx –∞ 0
  • 11. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| = lim (–e–x) – (–e0) = 1 x ∞0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡ Similarly for a continuous function f(x) where x ≤ a, we define the improper (definite) integral ∫–∞ lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u a u –∞ u –∞ a –∞ f(x) dx ≡ a Example B. Find ∫ cos(x)dx ∫ 0 cos(x)dx = sin(x) | –∞ 0 –∞ –∞ 0
  • 12. Example A. Find ∫0 ∞ e–x dx ∫0 ∞ e–x dx = –e–x| = lim (–e–x) – (–e0) = 1 x ∞0 ∞ ∫a ∞ lim f(x) dx = F(x)| ≡ lim F(u) – F(a)∫a u u ∞ u ∞a ∞ Improper Integrals Let f(x) be a continuous function defined for a ≤ x and F(x) is an antiderivative of f(x). We define the improper (definite) integral f(x) dx ≡ Similarly for a continuous function f(x) where x ≤ a, we define the improper (definite) integral ∫–∞ lim f(x) dx = F(x)| ≡ lim F(a) – F(u)∫u a u –∞ u –∞ a –∞ f(x) dx ≡ a Example B. Find ∫ cos(x)dx ∫ 0 cos(x)dx = sin(x) | = lim sin(0) – sin(x) which is UDF. x –∞ –∞ 0 –∞ –∞ 0
  • 13. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) a b Improper Integrals x a
  • 14. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. a b Improper Integrals x a
  • 15. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The green area under y = x–1 is ∞. The blue area under y = x–1/2 is 2.
  • 16. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞.
  • 17. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 18. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 b. Find ∫0 1 x–1 dx. a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 19. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 b. Find ∫0 1 x–1 dx. ∫0 1 x–1 dx = In(x) | 1 0 a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 20. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 b. Find ∫0 1 x–1 dx. ∫0 1 x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞ 1 0 x 0 a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 21. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 b. Find ∫0 1 x–1 dx. ∫0 1 x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞ 1 0 x 0 If the improper integral exists, we say it converges. a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 22. Let F(x) be an antiderivative of f(x) and lim f(x)  ∞. We define x a ∫a b f(x) dx = F(x)| ≡ F(b) – lim F(x) Example C. a. Find ∫0 1 x–1/2 dx. ∫0 1 x–1/2 dx = 2x1/2 | 1 0 x 0 b. Find ∫0 1 x–1 dx. ∫0 1 x–1 dx = In(x) | = 0 – lim In(x) = 0 – (–∞) = ∞ 1 0 x 0 If the improper integral exists, we say it converges. If the improper integral fails to exist or it´s infinite, we say it diverges. a b Improper Integrals x a y = x–1/2 y = x–1 (1,1) The blue area under y = x–1/2 is 2. The green area under y = x–1 is ∞. = 2 – lim (2x1/2) = 2
  • 23. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u In the situations that we can’t find the anti-derivative F(x) or the numerical answers, the next question is to determine if the integrals converge or diverge by comparing them to other known integrals. Find ∫Example D. –∞ ∞ ∫ 1/(1 + x2) dx –∞ ∞ = lim tan–1(u) – tan–1(–u) = π/2 + π/2 = π. u ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x = lim tan–1(x) l–u u u ∞
  • 24. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u u∞ = lim F(u) – F(–u).u∞
  • 25. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u Find ∫Example D. –∞ ∞ 1/(1 + x2)dx u∞ = lim F(u) – F(–u).u∞
  • 26. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u Find ∫Example D. –∞ ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x
  • 27. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u Find ∫Example D. –∞ ∞ ∫ 1/(1 + x2) dx –∞ ∞ u ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x = lim tan–1(x) l–u u
  • 28. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u Find ∫Example D. –∞ ∞ ∫ 1/(1 + x2) dx –∞ ∞ = lim tan–1(u) – tan–1(–u) u ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x = lim tan–1(x) l–u u u ∞
  • 29. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u Find ∫Example D. –∞ ∞ ∫ 1/(1 + x2) dx –∞ ∞ = lim tan–1(u) – tan–1(–u) = π/2 + π/2 = π. u ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x = lim tan–1(x) l–u u u ∞
  • 30. Let f(x) be a continuous function defined for all x’s, and F´(x) = f(x), we define the improper integral ∫ f(x)dx ≡ lim Improper Integrals –∞ ∞ ∫f(x) dx –u u In the situations that we can’t find the anti-derivative F(x) or the numerical answers, the next question is to determine if the integrals converge or diverge by comparing them to other known integrals. Find ∫Example D. –∞ ∞ ∫ 1/(1 + x2) dx –∞ ∞ = lim tan–1(u) – tan–1(–u) = π/2 + π/2 = π. u ∞ y = 1/(1 + x2)1/(1 + x2)dx x u∞ = lim F(u) – F(–u).u∞ –x = lim tan–1(x) l–u u u ∞
  • 31. The Floor Principle Improper Integrals The Ceiling Principle Here are two basic comparison-principles.
  • 32. The Floor Principle Improper Integrals The Ceiling Principle If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges then g(x) dx converges also (a and b could be ±∞.) ∫a b ∫a b Here are two basic comparison-principles.
  • 33. The Floor Principle Improper Integrals The Ceiling Principle If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges then g(x) dx converges also (a and b could be ±∞.) ∫a b ∫a b y = f(x) y = g(x) N Here are two basic comparison-principles.
  • 34. The Floor Principle If f(x) ≥ g(x) ≥ 0 and g(x) dx = ∞, then f(x) dx = ∞.∫a b ∫a b Improper Integrals The Ceiling Principle If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges then g(x) dx converges also (a and b could be ±∞.) ∫a b ∫a b y = f(x) y = g(x) N Here are two basic comparison-principles.
  • 35. The Floor Principle If f(x) ≥ g(x) ≥ 0 and g(x) dx = ∞, then f(x) dx = ∞.∫a b ∫a b y = f(x) y = g(x)∞ Improper Integrals The Ceiling Principle If f(x) ≥ g(x) ≥ 0 and f(x) dx = N converges then g(x) dx converges also (a and b could be ±∞.) ∫a b ∫a b y = f(x) y = g(x) N Here are two basic comparison-principles.
  • 36. Note that no conclusion may be drawn if f ≥ g ≥ 0 with g dx < ∞ finite, or with f dx = ∞.∫a b ∫a b Improper Integrals
  • 37. The important function which serves as a "boundary" between divergent and convergent integrals is y = 1/x. Note that no conclusion may be drawn if f ≥ g ≥ 0 with g dx < ∞ finite, or with f dx = ∞.∫a b ∫a b Improper Integrals
  • 38. The important function which serves as a "boundary" between divergent and convergent integrals is y = 1/x. Note that no conclusion may be drawn if f ≥ g ≥ 0 with g dx < ∞ finite, or with f dx = ∞.∫a b ∫a b Improper Integrals (1, 1) Both of the following integrals diverge ∫1 ∞ x 1 dx = Ln(x)| = ∞ 1 ∞ y = 1/x
  • 39. The important function which serves as a "boundary" between divergent and convergent integrals is y = 1/x. Note that no conclusion may be drawn if f ≥ g ≥ 0 with g dx < ∞ finite, or with f dx = ∞.∫a b ∫a b Improper Integrals ∫ 1 0 x 1 dx = Ln(x)| = ∞ (1, 1) Both of the following integrals diverge ∫1 ∞ x 1 dx = Ln(x)| = ∞ 1 ∞ 1 0 y = 1/x
  • 40. The important function which serves as a "boundary" between divergent and convergent integrals is y = 1/x. Note that no conclusion may be drawn if f ≥ g ≥ 0 with g dx < ∞ finite, or with f dx = ∞.∫a b ∫a b Improper Integrals ∫ 1 0 x 1 dx = Ln(x)| = ∞ (1, 1) Both of the following integrals diverge ∫1 ∞ x 1 dx = Ln(x)| = ∞ 1 ∞ 1 0 y = 1/x The functions y = 1/xp are called p-functions and y = 1/x serves as the “boundary” between the convergent and divergent p-functions.
  • 41. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals diverges for p ≤ 1. We can verify the following theorems easily.
  • 42. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals (1, 1) y = 1/x y = 1/x2 y = 1/x3 1 Area < ∞ diverges for p ≤ 1. We can verify the following theorems easily.
  • 43. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals (1, 1) y = 1/x y = 1/x2 y = 1/x3 1 Area < ∞ diverges for p ≤ 1. We can verify the following theorems easily. (So ∫1 x1.01 1∞ dx converges.)
  • 44. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals (1, 1) y = 1/x y = 1/x2 y = 1/x3 1 Area < ∞ diverges for p ≤ 1. We can verify the following theorems easily. (So ∫1 x1.01 1∞ dx converges.) ∫ xp 1 dx converges for p < 1,B. 0 1 diverges for p ≥ 1.
  • 45. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals 0 1 (1, 1) y = 1/x y = 1/x2 y = 1/x3 1 Area < ∞ Area < ∞ y = 1/x1/2 y = 1/x y = 1/x1/3 diverges for p ≤ 1. (1, 1) We can verify the following theorems easily. (So ∫1 x1.01 1∞ dx converges.) ∫ xp 1 dx converges for p < 1,B. 0 1 diverges for p ≥ 1.
  • 46. Theorem (p–function) ∫1 xp 1 ∞ dx converges for p > 1,A. Improper Integrals 0 1 (1, 1) y = 1/x y = 1/x2 y = 1/x3 1 Area < ∞ Area < ∞ y = 1/x1/2 y = 1/x y = 1/x1/3 diverges for p ≤ 1. (1, 1) We can verify the following theorems easily. (So ∫1 x1.01 1∞ dx converges.) ∫ xp 1 dx converges for p < 1,B. 0 1 diverges for p ≥ 1. (So ∫ x0.99 1 dx converges.) 0 1
  • 47. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb.
  • 48. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x,
  • 49. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx∫ ∞ 1 ∫ ∞ 1
  • 50. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫ ∞ 1 ∫ ∞ 1
  • 51. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫ ∞ 1 ∫ ∞ 1 2 x3 + x2 = 2 x2(x + 1) For 0 < x < 1,
  • 52. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫ ∞ 1 ∫ ∞ 1 2 x3 + x2 = 2 x2(x + 1) > 1 x2For 0 < x < 1, 1
  • 53. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫ ∞ 1 ∫ ∞ 1 2 x3 + x2 = 2 x2(x + 1) > 1 x2For 0 < x < 1, 1 so 2/(x3 + x2)dx >∫0 1 ∫0 1 1/x2 dx
  • 54. Improper Integrals ∫ Example E. Determine if the integral converges or diverges using the comparison principle. ∞ 1 1/(1 + x + x3/2) dxa. ∫0 1 2/(x3 + x2 )dxb. Since 1/(1 + x + x3/2) < 1/x3/2 for 1 < x, so 1/(1 + x + x3/2) dx < 1/x3/2 dx < ∞ converges.∫ ∞ 1 ∫ ∞ 1 2 x3 + x2 = 2 x2(x + 1) > 1 x2For 0 < x < 1, 1 so 2/(x3 + x2)dx >∫0 1 ∫0 1 1/x2 dx = ∞ and it diverges.
  • 55. An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1) may be viewed as the area under the following “multi–rule” function f(x) where f(x) = 2–n for n ≤ x < n + 1 where n = 1, 2, 3,.. 1 y = f(x) 2 3 4 y 5 Improper Integrals
  • 56. An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1) may be viewed as the area under the following “multi–rule” function f(x) where f(x) = 2–n for n ≤ x < n + 1 where n = 1, 2, 3,.. 1 y = f(x) 2 3 4 y 5 That is ∫1 ∞ f(x) dx = 1/2 + 1/4 + 1/8 + 1/16.. = 1 ∫1 2 f(x) dx + ∫2 3 f(x) dx + ∫3 4 f(x) dx +. .= Improper Integrals
  • 57. An infinite series such as 1/2 + 1/4 + 1/8 + 1/16.. (= 1) may be viewed as the area under the following “multi–rule” function f(x) where f(x) = 2–n for n ≤ x < n + 1 where n = 1, 2, 3,.. 1 y = f(x) 2 3 4 y 5 That is ∫1 ∞ f(x) dx = 1/2 + 1/4 + 1/8 + 1/16.. = 1 ∫1 2 f(x) dx + ∫2 3 f(x) dx + ∫3 4 f(x) dx +. .= In the next section, we establish the relation between summing series versus integrating functions, i.e. the discrete vs. the continuous. Improper Integrals