SlideShare a Scribd company logo
Dynamic Behavior of Closed-
Loop Control Systems
Chapter
11
4-20 mA
Chapter
11
Next, we develop a transfer function for each of the five elements
in the feedback control loop. For the sake of simplicity, flow rate
w1 is assumed to be constant, and the system is initially operating
at the nominal steady rate.
Process
In section 4.3 the approximate dynamic model of a stirred-tank
blending system was developed:
     
1 2
1 2 (11-1)
τ 1 τ 1
K K
X s X s W s
s s
   
  
 
   
 
   
where
1
1 2
ρ 1
, , and (11-2)
w
V x
K K
w w w


  
Chapter
11
Chapter
11
      (11-5)
sp m
e t x t x t
 
 
or after taking Laplace transforms,
      (11-6)
sp m
E s X s X s
 
 
The symbol denotes the internal set-point composition
expressed as an equivalent electrical current signal. This signal
is used internally by the controller. is related to the actual
composition set point by the composition sensor-
transmitter gain Km:
 
sp
x t

 
sp
x t

 
sp
x t

    (11-7)
sp m sp
x t K x t
 

Thus
 
 
(11-8)
sp
m
sp
X s
K
X s



Chapter
11
Current-to-Pressure (I/P) Transducer
Because transducers are usually designed to have linear
characteristics and negligible (fast) dynamics, we assume that the
transducer transfer function merely consists of a steady-state gain
KIP:
 
 
(11-9)
t
IP
P s
K
P s



Control Valve
As discussed in Section 9.2, control valves are usually designed so
that the flow rate through the valve is a nearly linear function of
the signal to the valve actuator. Therefore, a first-order transfer
function usually provides an adequate model for operation of an
installed valve in the vicinity of a nominal steady state. Thus, we
assume that the control valve can be modeled as
 
 
2
(11-10)
τ 1
v
t v
W s K
P s s


 
Chapter
11
Composition Sensor-Transmitter (Analyzer)
We assume that the dynamic behavior of the composition sensor-
transmitter can be approximated by a first-order transfer function:
 
 
(11-3)
τ 1
m m
m
X s K
X s s


 
Controller
Suppose that an electronic proportional plus integral controller is
used. From Chapter 8, the controller transfer function is
 
 
1
1 (11-4)
τ
c
I
P s
K
E s s
  
 
 
 
where and E(s) are the Laplace transforms of the controller
output and the error signal e(t). Note that and e are
electrical signals that have units of mA, while Kc is dimensionless.
The error signal is expressed as
 
P s

 
p t
 p
Chapter
11
Chapter
11
Transfer Functions of Control
Systems
 
 
 
 
1
Set-Point Change: ?
Load Change: ?
sp
X s
X s
X s
X s






1. Summer
2. Comparator
3. Block
•Blocks in Series
are equivalent to...
G(s)X(s)
Y(s) 

Chapter
11
Chapter
11
Closed-Loop Transfer Function
for Set-Point Change (Servo
Problem)
 
             
       
         
         
 
 
2
0
1
p v p
v p c
v p c sp
v p c m sp m
m c v p
sp c v p m
D s
Y s X s G s U s G s G s P s
G s G s G s E s
G s G s G s Y s B s
G s G s G s K Y s G Y s
K G G G
Y s
Y s G G G G

  

 
 
 
 
 
 



Closed-Loop Transfer Function
for Load Change (Regulator
Problem)
 
     
       
             
           
 
 
1 2
0
1
sp
d p
d v p c m
d v p c
m s
m
d
c v m
p
p
Y s
Y s X s X s
G s D s G s U s
G s D s G s G s G s G
K Y Y s
G s D s G s G s G s G Y s
Y s G
D s G G
s
G G

 
 
 
  
 
  
 
 



General Expression of Closed-
Loop Transfer Function
1
where
, :any two variables in block diagram
: product of the transfer functions in the
path from to
: product of the transfer functions in the
feedback loop.
f
e
f
e
Y
X
X Y
X Y






Servo Problem
open-loop transfer function
sp
f m c v p
e c v p m OL
X Y
Y Y
K G G G
G G G G G





 

Regulator Problem
open-loop transfer function
f d
e c v p m OL
X D
Y Y
G
G G G G G





 

Chapter
11
I O
Example
2 1
4
2 1 2
1 1 2 3
1 2 3 1
1 1 2 3
1 2 3 1
1 1 2 1 2 3
2 1 2 1 2 1
4
4
2 3 1
2 1
2 1 2
2 1
2 1 2
1
1
1
1
1
1
c
c m
m c
sp c m
m c
c m
c
c m
c
c
m c c
c m c c m
m
G
G
G G
G G
G G
O
G
I G G G
K G G G
C
Y G
G
G G G
K G G G
G G G G
K G G G G G
G G G G G G
G
G G
G
G
G
G
G
 
 
 






 
 








Chapter
11
Chapter
11
Closed-Loop Response with
P Control (Set-Point Change)
 
 
1
1
1
1
1
1
1
1
where
and open-loop gain = 0
1
1
p
m c v
p
sp
c v m
OL
OL m c v p
OL
OL
K
K K K
H s K
s
K
H s s
K K K
s
K
K K K K K K
K
K




 
 
 
 


  

 

Closed-Loop Response with
P Control (Set-Point Change)
     
   
   
1
/
1
1
1
1
offset
1
offset and
sp sp
t
sp
OL
OL
M
h t M S t H s
s
h t K M e
M
h h M K M
K
K



 
   
  
 
      

    
Chapter
11
Chapter
11
Closed-Loop Response with
P Control (Load Change)
 
 
         
   
1
2
1 1
2
/
1 1 2
2
1
1
1
1
1
where
1
1
offset 0
1
offset and
p
p
c v m
p
OL
t
p
sp
OL
OL
K
H s K
s
K
Q s s
K K K
s
K
K
K
M
q t M S t Q s h t K M e
s
K M
h h K M
K
K






 
 
 




  
      
 
       

    
Chapter
11
Closed-Loop Response with
PI Control (Set-Point Change)
 
 
 
1
1
1
1
1 1
1
1
1
1
1
1
c c
I
p
p
m v
m v
p p
sp
v m
c m
c
c
I
c
I
v
G
K
s K
s
K
K K K
K K
H s s
s
K K
H s
G s
K K K K
s
K
s s
G





 
 

 
 
 

 
 
 
 
 
 
 

 

 
 
Closed-Loop Response with
PI Control (Load Change)
 
 
2 2
3
1
3
2 3 3
3 3 3
1 1
1 1
1 1
1
1
where
1
1
1
2 1
1
, ,
2
p p
p p
v m v m
I
c v m
OL
I
I
OL OL
OL
I I I
c v m O
c
O
I
L
c
L
K K
H s s s
K K
Q s
K K K K
s s
s
K K K K s
K
s s
K K
K
K
K
G
K K K K
K
s
s s
 
 



  
 
 



  
 

 
 
 

 

  
 

 
 
 
Closed-Loop Response with
PI Control (Load Change)
     
 
 
3
3
1 1
3
2 2
3 3 3
2
3
3
2
3
3 3
1
2 1
1
sin
1
Note that offset is eliminated!
t
q t S t Q s
s
K
H s
s s
K
h t e t


  


 

 
  
 
 
 

  

 
  
Closed-Loop Response with
PI Control (Load Change)
   
   
3 3
3 3
faster response , less oscillatory
faster response , more oscillatory
c
I
K
 

 

  

  
EXAMPLE 1: P.I. control of liquid level
Block Diagram:
Chapter
11
Assumptions
1. q1, varies with time; q2 is constant.
2. Constant density and x-sectional area of tank, A.
3. (for uncontrolled process)
4. The transmitter and control valve have negligible dynamics
(compared with dynamics of tank).
5. Ideal PI controller is used (direct-acting).
)
h
(
f
q3 
0
K
As
1
)
s
(
G
As
1
)
s
(
G
K
)
s
(
G
K
)
s
(
G
s
1
1
K
)
s
(
G
C
L
P
V
V
M
M
I
C
C


















For these assumptions, the transfer functions are:
Chapter
11
M
P
V
C
L
G
G
G
G
G
Q
H
D
Y





1
1
M
V
I
C K
As
K
s
K
As
D
Y


















1
1
1
1
1

M
P
C
I
M
V
C
I
I
K
K
K
s
K
K
K
s
A
s
D
Y






2
0
2


 M
P
C
I
M
V
C
I K
K
K
s
K
K
K
s
A 

1
s
2
s
K
)
s
(
G 2
2





The closed-loop transfer function is:
Substitute,
Simplify,
Characteristic Equation:
Recall the standard 2nd Order Transfer Function:
(11-68)
(2)
(3)
(4)
(5)
Chapter
11
For 0 <  < 1 , closed-loop response is oscillatory. Thus
decreased degree of oscillation by increasing Kc or I (for constant
Kv, KM, and A).
To place Eqn. (4) in the same form as the denominator of the
T.F. in Eqn. (5), divide by Kc, KV, KM :
0
1
s
s
K
K
K
A
I
2
M
V
C
I





A
K
K
K
2
1 I
M
V
C 


1
0 


Comparing coefficients (5) and (6) gives:
Substitute,















2
2
K
K
K
A
K
K
K
A
I
I
M
V
C
I
M
V
C
I
2
•unusual property of PI control of integrating system
•better to use P only
Chapter
11

More Related Content

Similar to 1413570.ppt

Chapter_6.ppt
Chapter_6.pptChapter_6.ppt
Chapter_6.ppt
JayanthReddy100
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systems
Joanna Lock
 
Sequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital Electronics
Vinoth Loganathan
 
ANALOG AND DIGITAL ELECTRONICS unit 5
ANALOG AND DIGITAL ELECTRONICS unit 5ANALOG AND DIGITAL ELECTRONICS unit 5
ANALOG AND DIGITAL ELECTRONICS unit 5
ACE ENGINEERING COLLEGE
 
lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptx
AYMENGOODKid
 
Active RC Filters Design Techniques
Active RC Filters Design TechniquesActive RC Filters Design Techniques
Active RC Filters Design Techniques
Hoopeer Hoopeer
 
Sequential logic circuit
Sequential logic circuitSequential logic circuit
Sequential logic circuit
AswiniT3
 
Analysis
AnalysisAnalysis
Discrete control
Discrete controlDiscrete control
Discrete control
cairo university
 
DLD Chapter-5.pdf
DLD Chapter-5.pdfDLD Chapter-5.pdf
DLD Chapter-5.pdf
TamiratDejene1
 
Modern control 2
Modern control 2Modern control 2
Modern control 2
cairo university
 
Discrete control2
Discrete control2Discrete control2
Discrete control2
cairo university
 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
SohaibUllah5
 
Flip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas AghaniFlip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas Aghani
Information Technology Center
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
Claudia Sin
 
Hydraulic Actuation System modeling for developmental Gas Turbine Engine
Hydraulic Actuation System modeling for developmental Gas Turbine EngineHydraulic Actuation System modeling for developmental Gas Turbine Engine
Hydraulic Actuation System modeling for developmental Gas Turbine Engine
PREMNATH N
 
Ee2351 psa notes new
Ee2351 psa notes newEe2351 psa notes new
Ee2351 psa notes new
Arul Raj
 
Flip flop
Flip flopFlip flop
Solar Panel Using Active Stacked Npc Multi Level Converter
Solar Panel Using Active Stacked Npc Multi Level ConverterSolar Panel Using Active Stacked Npc Multi Level Converter
Solar Panel Using Active Stacked Npc Multi Level Converter
irjes
 
Problems-On-Block-Diagram-Reduction
Problems-On-Block-Diagram-ReductionProblems-On-Block-Diagram-Reduction
Problems-On-Block-Diagram-Reduction
KennedyRodriguez10
 

Similar to 1413570.ppt (20)

Chapter_6.ppt
Chapter_6.pptChapter_6.ppt
Chapter_6.ppt
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systems
 
Sequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital Electronics
 
ANALOG AND DIGITAL ELECTRONICS unit 5
ANALOG AND DIGITAL ELECTRONICS unit 5ANALOG AND DIGITAL ELECTRONICS unit 5
ANALOG AND DIGITAL ELECTRONICS unit 5
 
lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptx
 
Active RC Filters Design Techniques
Active RC Filters Design TechniquesActive RC Filters Design Techniques
Active RC Filters Design Techniques
 
Sequential logic circuit
Sequential logic circuitSequential logic circuit
Sequential logic circuit
 
Analysis
AnalysisAnalysis
Analysis
 
Discrete control
Discrete controlDiscrete control
Discrete control
 
DLD Chapter-5.pdf
DLD Chapter-5.pdfDLD Chapter-5.pdf
DLD Chapter-5.pdf
 
Modern control 2
Modern control 2Modern control 2
Modern control 2
 
Discrete control2
Discrete control2Discrete control2
Discrete control2
 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
 
Flip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas AghaniFlip & flop by Zaheer Abbas Aghani
Flip & flop by Zaheer Abbas Aghani
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
Hydraulic Actuation System modeling for developmental Gas Turbine Engine
Hydraulic Actuation System modeling for developmental Gas Turbine EngineHydraulic Actuation System modeling for developmental Gas Turbine Engine
Hydraulic Actuation System modeling for developmental Gas Turbine Engine
 
Ee2351 psa notes new
Ee2351 psa notes newEe2351 psa notes new
Ee2351 psa notes new
 
Flip flop
Flip flopFlip flop
Flip flop
 
Solar Panel Using Active Stacked Npc Multi Level Converter
Solar Panel Using Active Stacked Npc Multi Level ConverterSolar Panel Using Active Stacked Npc Multi Level Converter
Solar Panel Using Active Stacked Npc Multi Level Converter
 
Problems-On-Block-Diagram-Reduction
Problems-On-Block-Diagram-ReductionProblems-On-Block-Diagram-Reduction
Problems-On-Block-Diagram-Reduction
 

More from MuhammadMubeen58

3603939.ppt
3603939.ppt3603939.ppt
3603939.ppt
MuhammadMubeen58
 
3330716.ppt
3330716.ppt3330716.ppt
3330716.ppt
MuhammadMubeen58
 
2760114.ppt
2760114.ppt2760114.ppt
2760114.ppt
MuhammadMubeen58
 
2706264.ppt
2706264.ppt2706264.ppt
2706264.ppt
MuhammadMubeen58
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
MuhammadMubeen58
 
1578385.ppt
1578385.ppt1578385.ppt
1578385.ppt
MuhammadMubeen58
 
1577320.ppt
1577320.ppt1577320.ppt
1577320.ppt
MuhammadMubeen58
 
1496818.ppt
1496818.ppt1496818.ppt
1496818.ppt
MuhammadMubeen58
 
1474058.ppt
1474058.ppt1474058.ppt
1474058.ppt
MuhammadMubeen58
 
223296.ppt
223296.ppt223296.ppt
223296.ppt
MuhammadMubeen58
 
14446351.ppt
14446351.ppt14446351.ppt
14446351.ppt
MuhammadMubeen58
 
4470838.ppt
4470838.ppt4470838.ppt
4470838.ppt
MuhammadMubeen58
 

More from MuhammadMubeen58 (12)

3603939.ppt
3603939.ppt3603939.ppt
3603939.ppt
 
3330716.ppt
3330716.ppt3330716.ppt
3330716.ppt
 
2760114.ppt
2760114.ppt2760114.ppt
2760114.ppt
 
2706264.ppt
2706264.ppt2706264.ppt
2706264.ppt
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
 
1578385.ppt
1578385.ppt1578385.ppt
1578385.ppt
 
1577320.ppt
1577320.ppt1577320.ppt
1577320.ppt
 
1496818.ppt
1496818.ppt1496818.ppt
1496818.ppt
 
1474058.ppt
1474058.ppt1474058.ppt
1474058.ppt
 
223296.ppt
223296.ppt223296.ppt
223296.ppt
 
14446351.ppt
14446351.ppt14446351.ppt
14446351.ppt
 
4470838.ppt
4470838.ppt4470838.ppt
4470838.ppt
 

Recently uploaded

Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
gaafergoudaay7aga
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
Madan Karki
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
IJECEIAES
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
ramrag33
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 

Recently uploaded (20)

Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 

1413570.ppt

  • 1. Dynamic Behavior of Closed- Loop Control Systems Chapter 11 4-20 mA
  • 3. Next, we develop a transfer function for each of the five elements in the feedback control loop. For the sake of simplicity, flow rate w1 is assumed to be constant, and the system is initially operating at the nominal steady rate. Process In section 4.3 the approximate dynamic model of a stirred-tank blending system was developed:       1 2 1 2 (11-1) τ 1 τ 1 K K X s X s W s s s                    where 1 1 2 ρ 1 , , and (11-2) w V x K K w w w      Chapter 11
  • 5.       (11-5) sp m e t x t x t     or after taking Laplace transforms,       (11-6) sp m E s X s X s     The symbol denotes the internal set-point composition expressed as an equivalent electrical current signal. This signal is used internally by the controller. is related to the actual composition set point by the composition sensor- transmitter gain Km:   sp x t    sp x t    sp x t      (11-7) sp m sp x t K x t    Thus     (11-8) sp m sp X s K X s    Chapter 11
  • 6. Current-to-Pressure (I/P) Transducer Because transducers are usually designed to have linear characteristics and negligible (fast) dynamics, we assume that the transducer transfer function merely consists of a steady-state gain KIP:     (11-9) t IP P s K P s    Control Valve As discussed in Section 9.2, control valves are usually designed so that the flow rate through the valve is a nearly linear function of the signal to the valve actuator. Therefore, a first-order transfer function usually provides an adequate model for operation of an installed valve in the vicinity of a nominal steady state. Thus, we assume that the control valve can be modeled as     2 (11-10) τ 1 v t v W s K P s s     Chapter 11
  • 7. Composition Sensor-Transmitter (Analyzer) We assume that the dynamic behavior of the composition sensor- transmitter can be approximated by a first-order transfer function:     (11-3) τ 1 m m m X s K X s s     Controller Suppose that an electronic proportional plus integral controller is used. From Chapter 8, the controller transfer function is     1 1 (11-4) τ c I P s K E s s          where and E(s) are the Laplace transforms of the controller output and the error signal e(t). Note that and e are electrical signals that have units of mA, while Kc is dimensionless. The error signal is expressed as   P s    p t  p Chapter 11
  • 9. Transfer Functions of Control Systems         1 Set-Point Change: ? Load Change: ? sp X s X s X s X s      
  • 10. 1. Summer 2. Comparator 3. Block •Blocks in Series are equivalent to... G(s)X(s) Y(s)   Chapter 11
  • 12. Closed-Loop Transfer Function for Set-Point Change (Servo Problem)                                                 2 0 1 p v p v p c v p c sp v p c m sp m m c v p sp c v p m D s Y s X s G s U s G s G s P s G s G s G s E s G s G s G s Y s B s G s G s G s K Y s G Y s K G G G Y s Y s G G G G                    
  • 13. Closed-Loop Transfer Function for Load Change (Regulator Problem)                                               1 2 0 1 sp d p d v p c m d v p c m s m d c v m p p Y s Y s X s X s G s D s G s U s G s D s G s G s G s G K Y Y s G s D s G s G s G s G Y s Y s G D s G G s G G                      
  • 14. General Expression of Closed- Loop Transfer Function 1 where , :any two variables in block diagram : product of the transfer functions in the path from to : product of the transfer functions in the feedback loop. f e f e Y X X Y X Y      
  • 15. Servo Problem open-loop transfer function sp f m c v p e c v p m OL X Y Y Y K G G G G G G G G        
  • 16. Regulator Problem open-loop transfer function f d e c v p m OL X D Y Y G G G G G G        
  • 18. Example 2 1 4 2 1 2 1 1 2 3 1 2 3 1 1 1 2 3 1 2 3 1 1 1 2 1 2 3 2 1 2 1 2 1 4 4 2 3 1 2 1 2 1 2 2 1 2 1 2 1 1 1 1 1 1 c c m m c sp c m m c c m c c m c c m c c c m c c m m G G G G G G G G O G I G G G K G G G C Y G G G G G K G G G G G G G K G G G G G G G G G G G G G G G G G G G                        
  • 21. Closed-Loop Response with P Control (Set-Point Change)     1 1 1 1 1 1 1 1 where and open-loop gain = 0 1 1 p m c v p sp c v m OL OL m c v p OL OL K K K K H s K s K H s s K K K s K K K K K K K K K                     
  • 22. Closed-Loop Response with P Control (Set-Point Change)               1 / 1 1 1 1 offset 1 offset and sp sp t sp OL OL M h t M S t H s s h t K M e M h h M K M K K                           
  • 25. Closed-Loop Response with P Control (Load Change)                   1 2 1 1 2 / 1 1 2 2 1 1 1 1 1 where 1 1 offset 0 1 offset and p p c v m p OL t p sp OL OL K H s K s K Q s s K K K s K K K M q t M S t Q s h t K M e s K M h h K M K K                                          
  • 27. Closed-Loop Response with PI Control (Set-Point Change)       1 1 1 1 1 1 1 1 1 1 1 1 c c I p p m v m v p p sp v m c m c c I c I v G K s K s K K K K K K H s s s K K H s G s K K K K s K s s G                                       
  • 28. Closed-Loop Response with PI Control (Load Change)     2 2 3 1 3 2 3 3 3 3 3 1 1 1 1 1 1 1 1 where 1 1 1 2 1 1 , , 2 p p p p v m v m I c v m OL I I OL OL OL I I I c v m O c O I L c L K K H s s s K K Q s K K K K s s s K K K K s K s s K K K K K G K K K K K s s s                                             
  • 29. Closed-Loop Response with PI Control (Load Change)           3 3 1 1 3 2 2 3 3 3 2 3 3 2 3 3 3 1 2 1 1 sin 1 Note that offset is eliminated! t q t S t Q s s K H s s s K h t e t                               
  • 30. Closed-Loop Response with PI Control (Load Change)         3 3 3 3 faster response , less oscillatory faster response , more oscillatory c I K             
  • 31. EXAMPLE 1: P.I. control of liquid level Block Diagram: Chapter 11
  • 32. Assumptions 1. q1, varies with time; q2 is constant. 2. Constant density and x-sectional area of tank, A. 3. (for uncontrolled process) 4. The transmitter and control valve have negligible dynamics (compared with dynamics of tank). 5. Ideal PI controller is used (direct-acting). ) h ( f q3  0 K As 1 ) s ( G As 1 ) s ( G K ) s ( G K ) s ( G s 1 1 K ) s ( G C L P V V M M I C C                   For these assumptions, the transfer functions are: Chapter 11
  • 33. M P V C L G G G G G Q H D Y      1 1 M V I C K As K s K As D Y                   1 1 1 1 1  M P C I M V C I I K K K s K K K s A s D Y       2 0 2    M P C I M V C I K K K s K K K s A   1 s 2 s K ) s ( G 2 2      The closed-loop transfer function is: Substitute, Simplify, Characteristic Equation: Recall the standard 2nd Order Transfer Function: (11-68) (2) (3) (4) (5) Chapter 11
  • 34. For 0 <  < 1 , closed-loop response is oscillatory. Thus decreased degree of oscillation by increasing Kc or I (for constant Kv, KM, and A). To place Eqn. (4) in the same form as the denominator of the T.F. in Eqn. (5), divide by Kc, KV, KM : 0 1 s s K K K A I 2 M V C I      A K K K 2 1 I M V C    1 0    Comparing coefficients (5) and (6) gives: Substitute,                2 2 K K K A K K K A I I M V C I M V C I 2 •unusual property of PI control of integrating system •better to use P only Chapter 11