SlideShare a Scribd company logo
1 of 57
Download to read offline
Calculating Coefficients
without Pascal’s Triangle
Calculating Coefficients
without Pascal’s Triangle
                      n!
         n
             Ck 
                  k!n  k !
Calculating Coefficients
 without Pascal’s Triangle
                       n!
          n
              Ck 
                   k!n  k !

Proof
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
        LHS  nC0
            1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                             n!
        LHS  nC0                                     RHS 
                                                            0!n!
            1
                                                            n!
                                                          
                                                            n!
                                                          1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                             n!
        LHS  nC0                                     RHS 
                                                            0!n!
            1
                                                            n!
                                                          
                                                            n!
                                LHS  RHS                1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                            n!
        LHS  nC0                                    RHS 
                                                           0!n!
            1
                                                           n!
                                                         
                                                           n!
                           LHS  RHS                    1
                     Hence the result is true for k = 0
Step 2 : Assume the result is true for k  r where r is an integer  0
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                           n!
                    i.e.n Cr 1 
                                  r  1!n  r  1!
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                           n!
                    i.e.n Cr 1 
                                  r  1!n  r  1!
Proof
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                        n  1!          n!
                                    
                    r  1!n  r ! r!n  r!
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                       n  1!          n!
                                   
                   r  1!n  r ! r!n  r!
                   n  1!n!r  1
                 
                     r  1!n  r !
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                       n  1!          n!
                                   
                   r  1!n  r ! r!n  r!
                   n  1!n!r  1
                 
                     r  1!n  r !
                   n!n  1  r  1
                 
                    r  1!n  r !
n!n  1  r  1

    r  1!n  r !
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
             n!

    r  1!n  r  1!
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
             n!

    r  1!n  r  1!
Hence the result is true for k = r + 1 if it is also true for k = r
n!n  1  r  1
   
      r  1!n  r !
         n!n  r 
    
      r  1!n  r !
                 n!
    
        r  1!n  r  1!
   Hence the result is true for k = r + 1 if it is also true for k = r

Step 4: Hence the result is true for all positive integral values of n
        by induction
The Binomial Theorem
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
             n
            nCk x k
            k 0
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
              n
            nCk x k
             k 0
                n!
 where Ck 
         n
                        and n is a positive integer
            k!n  k !
The Binomial Theorem
    1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                n
              nCk x k
               k 0
                   n!
  where Ck 
           n
                           and n is a positive integer
               k!n  k !
NOTE: there are (n + 1) terms
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0

e.g . Evaluate 11C4
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                              n
                              a  b    n C k a n  k b k
                                       n

                                           k 0
                                       11!
e.g . Evaluate 11C4           11
                                C4 
                                       4!7!
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                       n

                                           k 0
                                      11!
e.g . Evaluate 11C4           11
                                C4 
                                      4!7!
                                      1110  9  8
                                    
                                       4  3  2 1
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                       n

                                           k 0
                                      11!
e.g . Evaluate 11C4           11
                                C4 
                                      4!7!
                                      1110  9  8
                                    
                                       4  3  2 1
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                       n

                                           k 0
                                      11!
e.g . Evaluate 11C4           11
                                C4 
                                      4!7!       3
                                      1110  9  8
                                    
                                       4  3  2 1
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                       n

                                           k 0
                                      11!
e.g . Evaluate 11C4           11
                                C4 
                                      4!7!       3
                                      1110  9  8
                                    
                                       4  3  2 1
                                     330
(ii) Find the value of n so that;
(ii) Find the value of n so that;
 a) nC5  nC8
(ii) Find the value of n so that;
 a) nC5  nC8
     n
         Ck  nCnk
(ii) Find the value of n so that;
 a) nC5  nC8
     n
         Ck  nCnk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
     n
         Ck  nCnk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
                                      n 1
     n
         Ck  Cnk
             n
                                         Ck  n1Ck 1  nCk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
                                      n 1
     n
         Ck  Cnk
             n
                                         Ck  n1Ck 1  nCk
     8  n  5                                 n  19
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                   b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                   b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                   b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
                            4
                  7 3
     T5  C4 5a    
         11

                    b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                   b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
                             4
                  7 3
     T5  C4 5a    
         11

                    b
            11
            C 4 5 7 34 a 7
          
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                                 b) nC7  nC8  20C8
                                                n 1
     n
         Ck  Cnk
             n
                                                     Ck  n1Ck 1  nCk
     8  n  5                                             n  19
      n  13
                                                              11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                          b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
                             4
                  7 3
     T5  C4 5a    
         11

                    b
            11
            C 4 5 7 34 a 7
                                     unsimplified
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                                 b) nC7  nC8  20C8
                                                n 1
     n
         Ck  Cnk
             n
                                                     Ck  n1Ck 1  nCk
     8  n  5                                             n  19
      n  13
                                                              11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                          b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
                             4
                  7 3
     T5  C4 5a    
         11
                                                           
                                                             330  78125  81a 7
                    b                                              b4
            11
            C 4 5 7 34 a 7
                                     unsimplified
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                                 b) nC7  nC8  20C8
                                                n 1
     n
         Ck  Cnk
             n
                                                     Ck  n1Ck 1  nCk
     8  n  5                                             n  19
      n  13
                                                              11

iii  Find the 5th term in the expansion of  5a  3 
                                                     
                                                          b
                                  k
                    11 k  3 
    Tk 1  Ck 5a    
           11

                           b
                             4
                  7 3
     T5  C4 5a    
         11
                                                           
                                                             330  78125  81a 7
                    b                                              b4
            11
            C 4 5 7 34 a 7                                   2088281250a 7
                                     unsimplified         
                b4                                                  b4
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                2x 
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                 k
                                                        2x 
             Tk 1  Ck 3 x    
                               2 9 k    1 
                                            
                   9

                                         2x 
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                        k
                                                2x 
             Tk 1  Ck 3 x    
                             1 
                               2 9 k
                                 
                   9

                             2x 
    term independent of x means term with x 0
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                 k
                                                         2x 
             Tk 1  Ck 3 x    
                             1 
                               2 9 k
                                 
                   9

                             2x 
    term independent of x means term with x 0
                        x  x 
                          2 9 k        1 k
                                                x0
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                 k
                                                         2x 
             Tk 1  Ck 3 x    
                             1 
                               2 9 k
                                 
                   9

                             2x 
    term independent of x means term with x 0
                        x  x 
                          2 9 k        1 k
                                                x0
                          x182 k  x k  x 0
                              18  3k  0
                                       k 6
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                    k
                                                            2x 
                Tk 1  Ck 3 x    
                             1 2 9 k
                                 
                       9

                             2x 
    term independent of x means term with x 0
                           x  x 
                               2 9 k      1 k
                                                   x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
    9
                
               2 3    1 
                         
                      2x 
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                    k
                                                            2x 
                Tk 1  Ck 3 x    
                             1 2 9 k
                                 
                       9

                             2x 
    term independent of x means term with x 0
                           x  x 
                               2 9 k      1 k
                                                   x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
    9
                
               2 3    1 
                         
                      2x 
     9
    C6 33
    6
     2
9

iv  Obtain the term independent of x in  3x 2  1 
                                                    
                                                    k
                                                            2x 
                Tk 1  Ck 3 x    
                             1 2 9 k
                                 
                       9

                             2x 
    term independent of x means term with x 0
                           x  x 
                               2 9 k      1 k
                                                   x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
    9
                
               2 3    1 
                         
                      2x 
     9
    C6 33
    6
     2                                     Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13,
                                                      14, 15ac, 19, 25

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 

Recently uploaded (20)

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 

12X1 T08 03 binomial theorem (2010)

  • 2. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k !
  • 3. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof
  • 4. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0
  • 5. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 LHS  nC0 1
  • 6. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n! 1
  • 7. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n!  LHS  RHS 1
  • 8. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n!  LHS  RHS 1 Hence the result is true for k = 0
  • 9. Step 2 : Assume the result is true for k  r where r is an integer  0
  • 10. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r !
  • 11. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1
  • 12. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1!
  • 13. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof
  • 14. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1
  • 15. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr
  • 16. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r!
  • 17. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r! n  1!n!r  1  r  1!n  r !
  • 18. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r! n  1!n!r  1  r  1!n  r ! n!n  1  r  1  r  1!n  r !
  • 19. n!n  1  r  1  r  1!n  r !
  • 20. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r !
  • 21. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1!
  • 22. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1! Hence the result is true for k = r + 1 if it is also true for k = r
  • 23. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1! Hence the result is true for k = r + 1 if it is also true for k = r Step 4: Hence the result is true for all positive integral values of n by induction
  • 25. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
  • 26. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0
  • 27. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k !
  • 28. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms
  • 29. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0
  • 30. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 e.g . Evaluate 11C4
  • 31. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! e.g . Evaluate 11C4 11 C4  4!7!
  • 32. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! e.g . Evaluate 11C4 11 C4  4!7! 1110  9  8  4  3  2 1
  • 33. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! e.g . Evaluate 11C4 11 C4  4!7! 1110  9  8  4  3  2 1
  • 34. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! e.g . Evaluate 11C4 11 C4  4!7! 3 1110  9  8  4  3  2 1
  • 35. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! e.g . Evaluate 11C4 11 C4  4!7! 3 1110  9  8  4  3  2 1  330
  • 36. (ii) Find the value of n so that;
  • 37. (ii) Find the value of n so that; a) nC5  nC8
  • 38. (ii) Find the value of n so that; a) nC5  nC8 n Ck  nCnk
  • 39. (ii) Find the value of n so that; a) nC5  nC8 n Ck  nCnk 8  n  5 n  13
  • 40. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n Ck  nCnk 8  n  5 n  13
  • 41. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  13
  • 42. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13
  • 43. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b
  • 44. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b
  • 45. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b 4 7 3 T5  C4 5a     11  b
  • 46. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b 4 7 3 T5  C4 5a     11  b 11 C 4 5 7 34 a 7  b4
  • 47. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b 4 7 3 T5  C4 5a     11  b 11 C 4 5 7 34 a 7  unsimplified b4
  • 48. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b 4 7 3 T5  C4 5a     11  330  78125  81a 7  b b4 11 C 4 5 7 34 a 7  unsimplified b4
  • 49. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11 iii  Find the 5th term in the expansion of  5a  3     b k 11 k  3  Tk 1  Ck 5a     11  b 4 7 3 T5  C4 5a     11  330  78125  81a 7  b b4 11 C 4 5 7 34 a 7 2088281250a 7  unsimplified  b4 b4
  • 50. 9 iv  Obtain the term independent of x in  3x 2  1     2x 
  • 51. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x  2 9 k  1    9  2x 
  • 52. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1  2 9 k   9  2x  term independent of x means term with x 0
  • 53. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1  2 9 k   9  2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0
  • 54. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1  2 9 k   9  2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 k 6
  • 55. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1 2 9 k   9  2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x 
  • 56. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1 2 9 k   9  2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x  9 C6 33  6 2
  • 57. 9 iv  Obtain the term independent of x in  3x 2  1    k  2x  Tk 1  Ck 3 x   1 2 9 k   9  2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x  9 C6 33  6 2 Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13, 14, 15ac, 19, 25