SlideShare a Scribd company logo
Geometric Series
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T
          r 2
               a
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T
          r 2
               a
               T
              3
               T2
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T
          r 2
               a
               T
              3
               T2
                Tn
           r
               Tn1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                      T1  a
          r 2
               a
               T
              3
               T2
                Tn
           r
               Tn1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                      T1  a
          r 2
               a                     T2  ar
               T
              3
               T2
                Tn
           r
               Tn1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                      T1  a
          r 2
               a                     T2  ar
             
               T3                    T3  ar 2
               T2
                Tn
           r
               Tn1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                      T1  a
          r 2
               a                     T2  ar
             
               T3                    T3  ar 2
               T2                    Tn  ar n1
                Tn
           r
               Tn1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
                                          a  2, r  4
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
            Tn  ar n1                   a  2, r  4
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
            Tn  ar n1                   a  2, r  4
                24
                       n1
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
            Tn  ar n1                   a  2, r  4
                24
                       n1


                22     
                       2 n 1


                22 
                        2 n2
Geometric Series
An geometric series is a sequence of numbers in which each term after
the first is found by multiplying a constant amount to the previous
term.
The constant amount is called the common ratio, symbolised, r.
              T                         T1  a
          r 2
               a                        T2  ar
             
               T3                       T3  ar 2
               T2                       Tn  ar n1
                Tn
           r
               Tn1    e.g.i  Find r and the general term of 2, 8, 32, 
            Tn  ar n1                   a  2, r  4
                24
                       n1


                22     
                       2 n 1
                                           Tn  22 n1
                22 
                        2 n2
ii  If T2  7 and T4  49, find r
ii  If T2  7 and T4  49, find r
           ar  7
ii  If T2  7 and T4  49, find r
           ar  7
          ar 3  49
ii  If T2  7 and T4  49, find r
           ar  7
          ar 3  49
            r2  7
ii  If T2  7 and T4  49, find r
           ar  7
          ar 3  49
            r2  7
             r 7
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
          ar 3  49
           r2  7
            r 7
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
          ar 3  49                  a  1, r  4
           r2  7
            r 7
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                        Tn  14
                                                                 n1
          ar 3  49                  a  1, r  4
           r2  7
            r 7
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
                                            log 4n1  log 500
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
                                            log 4n1  log 500
                                       n  1log 4  log 500
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
                                            log 4n1  log 500
                                       n  1log 4  log 500
                                               n  1  4.48
                                                  n  5.48
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
                                            log 4n1  log 500
                                       n  1log 4  log 500
                                               n  1  4.48
                                                  n  5.48
                                     T6  1024, is the first term  500
ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to
           ar  7                  be greater than 500.
                                                          Tn  14
                                                                   n1
          ar 3  49                  a  1, r  4
           r2  7                                 Tn  500
            r 7                               4n1  500
                                            log 4n1  log 500
                                       n  1log 4  log 500
                                               n  1  4.48
                                                  n  5.48
                                     T6  1024, is the first term  500


    Exercise 6E; 1be, 2cf, 3ad, 5ac, 6c, 8bd, 9ac, 10ac, 15, 17,
                             18ab, 20a

More Related Content

Similar to 11X1 T14 02 geometric series (2010)

11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)
Nigel Simmons
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
Nigel Simmons
 
11X1 T14 01 definitions & arithmetic series (2010)
11X1 T14 01 definitions & arithmetic series (2010)11X1 T14 01 definitions & arithmetic series (2010)
11X1 T14 01 definitions & arithmetic series (2010)
Nigel Simmons
 
11 x1 t14 02 geometric series (13)
11 x1 t14 02 geometric series (13)11 x1 t14 02 geometric series (13)
11 x1 t14 02 geometric series (13)
Nigel Simmons
 
11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)
Nigel Simmons
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
Kaviprathi
 
Pre-Cal 40S Slides January 16, 2008
Pre-Cal 40S Slides January 16,  2008Pre-Cal 40S Slides January 16,  2008
Pre-Cal 40S Slides January 16, 2008
Darren Kuropatwa
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008
Darren Kuropatwa
 
Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007
Darren Kuropatwa
 
Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007
Darren Kuropatwa
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009
Darren Kuropatwa
 

Similar to 11X1 T14 02 geometric series (2010) (13)

11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
 
11X1 T14 01 definitions & arithmetic series (2010)
11X1 T14 01 definitions & arithmetic series (2010)11X1 T14 01 definitions & arithmetic series (2010)
11X1 T14 01 definitions & arithmetic series (2010)
 
11 x1 t14 02 geometric series (13)
11 x1 t14 02 geometric series (13)11 x1 t14 02 geometric series (13)
11 x1 t14 02 geometric series (13)
 
11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Pre-Cal 40S Slides January 16, 2008
Pre-Cal 40S Slides January 16,  2008Pre-Cal 40S Slides January 16,  2008
Pre-Cal 40S Slides January 16, 2008
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008
 
Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007
 
Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 

Recently uploaded

Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 

Recently uploaded (20)

Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 

11X1 T14 02 geometric series (2010)

  • 2. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term.
  • 3. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r.
  • 4. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a
  • 5. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a T  3 T2
  • 6. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a T  3 T2 Tn r Tn1
  • 7. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T  3 T2 Tn r Tn1
  • 8. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar T  3 T2 Tn r Tn1
  • 9. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn r Tn1
  • 10. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1
  • 11. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32, 
  • 12. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  a  2, r  4
  • 13. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4
  • 14. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1
  • 15. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1  22  2 n 1  22  2 n2
  • 16. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1  22  2 n 1 Tn  22 n1  22  2 n2
  • 17. ii  If T2  7 and T4  49, find r
  • 18. ii  If T2  7 and T4  49, find r ar  7
  • 19. ii  If T2  7 and T4  49, find r ar  7 ar 3  49
  • 20. ii  If T2  7 and T4  49, find r ar  7 ar 3  49 r2  7
  • 21. ii  If T2  7 and T4  49, find r ar  7 ar 3  49 r2  7 r 7
  • 22. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. ar 3  49 r2  7 r 7
  • 23. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. ar 3  49 a  1, r  4 r2  7 r 7
  • 24. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 r 7
  • 25. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7
  • 26. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500
  • 27. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500
  • 28. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500
  • 29. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48
  • 30. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48 T6  1024, is the first term  500
  • 31. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48 T6  1024, is the first term  500 Exercise 6E; 1be, 2cf, 3ad, 5ac, 6c, 8bd, 9ac, 10ac, 15, 17, 18ab, 20a