SlideShare a Scribd company logo
Le precipitazioni estreme
Chi quadro
Riccardo Rigon
Kandinski-CompositionVI(Ildiluvio)-1913
R. Rigon
Il
2
Se una variabile X è distribuita secondo un curva normale a media nulla e
varianza unitaria, allora la variabile
e’ distribuita secondo la distribuzione del “Chi quadrato” (come fu provato
da Ernst Abbe, 1840-1905) e si indica con
che è una distribuzione monoparametrica della famiglia della distribuzione
Gamma. L’unico parametro è chiamato “gradi di libertà”
!2
Ancora sul test di Pearson
R. Rigon
La distribuzione, in effetti, è:
E la sua cumulata:
dove è la funzione “gamma” incompleta()
Il
2
from Wikipedia
!3
Ancora sul test di Pearson
R. Rigon
La funzione gamma incompleta
La funzione Gamma
4
Ancora sul test di Pearson
R. Rigon
Il
2
from Wikipedia
!5
Ancora sul test di Pearson
R. Rigon
Il valore atteso della distribuzione è pari al numero di gradi di libertà
Il
2
La varianza è pari a due volte il numero di gradi di libertà
E( k) = k
V ar( k) = 2k
from Wikipedia
!6
La moda è pari a
Ancora sul test di Pearson
R. Rigon
In generale il è usato in statistica (dopo il lavoro di Pearson e Fisher) per
stimare la bontà di una inferenza, ed in particolare l’uguguglianza di una
distribuzione di dati con una distribuzione di riferimento (ipotesi zero). Il
test ha la forma generale
Il
2
2
from Wikipedia
!7
Ancora sul test di Pearson
R. Rigon
Il
2
Assumendo che la radice della variabile rappresentata nella sommatoria sia
distribuita gaussianamente, allora ci si aspetta che la variabile somma dei
quadrati sia distribuita secondo il con un grado di libertà pari al numero
di addendi diminuito di 1.
2
from Wikipedia
!8
In altre parole, nell’ipotesi di ripetere un numero illimitato di volte
l’esperimento che ha prodotto i dati, ci si aspetta che la distribuzione
degli X2 , ottenuta dalla ripetizione dell’esperimento, sia un con
k-1 gradi di libertà.
Ancora sul test di Pearson
R. Rigon
Ovvero
Se i dati riproducono perfettamente l’ipotesi,
Il valore atteso dell’errore però pari al numero di gradi di libertà, k.
Un certo numero di campioni “sfortunati” avrà un elevato
9
Ancora sul test di Pearson
R. Rigon
Ovvero
Ci sono due modi per ottenere un valore elevato di X2:
•se i dati provengono dalla distribuzione ipotizzata, ma il campione è
relativamente raro
•se i dati NON sono rari MA provengono da un’altra distribuzione
10
Ancora sul test di Pearson
R. Rigon
Il ha importanza perchè possiamo fare due ipotesi mutuamente
esclusive. L’ipotesi zero:
Il
2
2
from Wikipedia
E il suo contrario, l’ ipotesi alternativa:
che campione e popolazione abbiano la medesima distribuzione
che campione e popolazione NON abbiano la medesima distribuzione
!11
Ancora sul test di Pearson
R. Rigon
Non c’è possibilità di distinguere un caso dall’altro
L’analisi statistica NON è in grado di distinguere il falso dal
vero con certezza
Però ci si può accordare che, per esempio, il nostro campione ha una
differenza dal campione di riferimento (misurata secondo Pearson),
ovvero un X2, che si rivela più di una volta su venti su possibili
ripetizioni dell’esperimento probabilistico (un periodo di ritorno di venti
tentativi) non possiamo rigettare (falsificare statisticamente) l’ipotesi che
i nostri dati provengano dalla distribuzione ipotizzata.
Dunque l’ipotesi zero si accetta e si rigetta l’ipotesi alternativa, con una
confidenza, nel caso descritto, di 1/20=0.05
12
Ancora sul test di Pearson
R. Rigon
L’accettazione dell’ipotesi zero
E’ dunque legata ad una scelta soggettiva (il margine di confidenza), assegnato
secondo un criterio assunto come “ragionevole”.
Per questo si usa tradizionalmente la dizione: “non si può rigettare”, invece di “si
accetta”.
A ben vedere però, la questione di come si dice, non è veramente sostanziale.
Il criterio per quanto soggettivo è organizzato quantitativamente, e dà risultati
ripetibili.
13
Ancora sul test di Pearson
R. Rigon
In pratica
Si assegna il grado di confidenza, c e si inverte la probabilità
ovvero:
14
Ancora sul test di Pearson
R. Rigon
Se
Si rigetta l’ipotesi zero
Viceversa
si accetta (nel gergo statistico: non si può rigettare)
15
Ancora sul test di Pearson
R. Rigon
Corollario
Avendo a disposizione più ipotesi zero valide
Si accetta
Quella con più piccolo
Che corrisponde ad eventi non rigettati (accettati!) con maggior grado di
confidenza.
16
Ancora sul test di Pearson

More Related Content

Viewers also liked

10.11 precipitazioni - gumbel - massima verosimiglianza
10.11   precipitazioni - gumbel - massima verosimiglianza10.11   precipitazioni - gumbel - massima verosimiglianza
10.11 precipitazioni - gumbel - massima verosimiglianza
Riccardo Rigon
 
10.10 precipitazioni - gumbel - metodo dei momenti
10.10   precipitazioni - gumbel - metodo dei momenti10.10   precipitazioni - gumbel - metodo dei momenti
10.10 precipitazioni - gumbel - metodo dei momenti
Riccardo Rigon
 
10.9 precipitazioni - gumbel
10.9   precipitazioni - gumbel10.9   precipitazioni - gumbel
10.9 precipitazioni - gumbel
Riccardo Rigon
 
10.8 precipitazioni-le curve di possibilità pluviometrica
10.8   precipitazioni-le curve di possibilità pluviometrica10.8   precipitazioni-le curve di possibilità pluviometrica
10.8 precipitazioni-le curve di possibilità pluviometrica
Riccardo Rigon
 
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
Riccardo Rigon
 
10.6 precipitazione-sintesi
10.6   precipitazione-sintesi10.6   precipitazione-sintesi
10.6 precipitazione-sintesi
Riccardo Rigon
 
Measuring Precipitation
Measuring PrecipitationMeasuring Precipitation
Measuring Precipitation
Riccardo Rigon
 
10.1 precipitazioni; circolazione generale e gradienti barici
10.1   precipitazioni; circolazione generale e gradienti barici10.1   precipitazioni; circolazione generale e gradienti barici
10.1 precipitazioni; circolazione generale e gradienti barici
Riccardo Rigon
 
10.5 precipitazioni-meccanismi di formazione delle precipitazioni
10.5   precipitazioni-meccanismi di formazione delle precipitazioni10.5   precipitazioni-meccanismi di formazione delle precipitazioni
10.5 precipitazioni-meccanismi di formazione delle precipitazioni
Riccardo Rigon
 
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
Riccardo Rigon
 
10.2 precipitazioni- gradiente adiabatico
10.2   precipitazioni- gradiente adiabatico 10.2   precipitazioni- gradiente adiabatico
10.2 precipitazioni- gradiente adiabatico
Riccardo Rigon
 
10.3 precipitazioni-la stabilita atmosferica
10.3 precipitazioni-la stabilita atmosferica10.3 precipitazioni-la stabilita atmosferica
10.3 precipitazioni-la stabilita atmosferica
Riccardo Rigon
 
10.4 precipitazioni - l'evoluzione dello strato limite
10.4   precipitazioni - l'evoluzione dello strato limite10.4   precipitazioni - l'evoluzione dello strato limite
10.4 precipitazioni - l'evoluzione dello strato limite
Riccardo Rigon
 
1c il controllolocale
1c il controllolocale1c il controllolocale
1c il controllolocale
Riccardo Rigon
 
1b le partidellaretefognaria
1b le partidellaretefognaria1b le partidellaretefognaria
1b le partidellaretefognaria
Riccardo Rigon
 
1d legge deilavoripubblici
1d legge deilavoripubblici1d legge deilavoripubblici
1d legge deilavoripubblici
Riccardo Rigon
 
1a modern urbanhydrology-an overview
1a modern urbanhydrology-an overview1a modern urbanhydrology-an overview
1a modern urbanhydrology-an overview
Riccardo Rigon
 
1e il passatoeilfuturo
1e il passatoeilfuturo1e il passatoeilfuturo
1e il passatoeilfuturo
Riccardo Rigon
 
Introduzione alle Lezioni 2017
Introduzione alle Lezioni 2017Introduzione alle Lezioni 2017
Introduzione alle Lezioni 2017
Riccardo Rigon
 
3.5 metodo italiano
3.5 metodo italiano3.5 metodo italiano
3.5 metodo italiano
Riccardo Rigon
 

Viewers also liked (20)

10.11 precipitazioni - gumbel - massima verosimiglianza
10.11   precipitazioni - gumbel - massima verosimiglianza10.11   precipitazioni - gumbel - massima verosimiglianza
10.11 precipitazioni - gumbel - massima verosimiglianza
 
10.10 precipitazioni - gumbel - metodo dei momenti
10.10   precipitazioni - gumbel - metodo dei momenti10.10   precipitazioni - gumbel - metodo dei momenti
10.10 precipitazioni - gumbel - metodo dei momenti
 
10.9 precipitazioni - gumbel
10.9   precipitazioni - gumbel10.9   precipitazioni - gumbel
10.9 precipitazioni - gumbel
 
10.8 precipitazioni-le curve di possibilità pluviometrica
10.8   precipitazioni-le curve di possibilità pluviometrica10.8   precipitazioni-le curve di possibilità pluviometrica
10.8 precipitazioni-le curve di possibilità pluviometrica
 
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
10.7 precipitaizoni-caratteristiche delle precipitazioni al suolo
 
10.6 precipitazione-sintesi
10.6   precipitazione-sintesi10.6   precipitazione-sintesi
10.6 precipitazione-sintesi
 
Measuring Precipitation
Measuring PrecipitationMeasuring Precipitation
Measuring Precipitation
 
10.1 precipitazioni; circolazione generale e gradienti barici
10.1   precipitazioni; circolazione generale e gradienti barici10.1   precipitazioni; circolazione generale e gradienti barici
10.1 precipitazioni; circolazione generale e gradienti barici
 
10.5 precipitazioni-meccanismi di formazione delle precipitazioni
10.5   precipitazioni-meccanismi di formazione delle precipitazioni10.5   precipitazioni-meccanismi di formazione delle precipitazioni
10.5 precipitazioni-meccanismi di formazione delle precipitazioni
 
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
9b Calcolo delle linee segnalatrici di possibilità pluviometrica con R
 
10.2 precipitazioni- gradiente adiabatico
10.2   precipitazioni- gradiente adiabatico 10.2   precipitazioni- gradiente adiabatico
10.2 precipitazioni- gradiente adiabatico
 
10.3 precipitazioni-la stabilita atmosferica
10.3 precipitazioni-la stabilita atmosferica10.3 precipitazioni-la stabilita atmosferica
10.3 precipitazioni-la stabilita atmosferica
 
10.4 precipitazioni - l'evoluzione dello strato limite
10.4   precipitazioni - l'evoluzione dello strato limite10.4   precipitazioni - l'evoluzione dello strato limite
10.4 precipitazioni - l'evoluzione dello strato limite
 
1c il controllolocale
1c il controllolocale1c il controllolocale
1c il controllolocale
 
1b le partidellaretefognaria
1b le partidellaretefognaria1b le partidellaretefognaria
1b le partidellaretefognaria
 
1d legge deilavoripubblici
1d legge deilavoripubblici1d legge deilavoripubblici
1d legge deilavoripubblici
 
1a modern urbanhydrology-an overview
1a modern urbanhydrology-an overview1a modern urbanhydrology-an overview
1a modern urbanhydrology-an overview
 
1e il passatoeilfuturo
1e il passatoeilfuturo1e il passatoeilfuturo
1e il passatoeilfuturo
 
Introduzione alle Lezioni 2017
Introduzione alle Lezioni 2017Introduzione alle Lezioni 2017
Introduzione alle Lezioni 2017
 
3.5 metodo italiano
3.5 metodo italiano3.5 metodo italiano
3.5 metodo italiano
 

More from Riccardo Rigon

10 Idrologia & Clima
10 Idrologia & Clima10 Idrologia & Clima
10 Idrologia & Clima
Riccardo Rigon
 
12.13 acqua neisuoli-watertableequations
12.13 acqua neisuoli-watertableequations12.13 acqua neisuoli-watertableequations
12.13 acqua neisuoli-watertableequations
Riccardo Rigon
 
12.6b just ks
12.6b just ks12.6b just ks
12.6b just ks
Riccardo Rigon
 
12.6 acquanei suoli-k
12.6 acquanei suoli-k12.6 acquanei suoli-k
12.6 acquanei suoli-k
Riccardo Rigon
 
12.1b tessitura e struttura
12.1b   tessitura e struttura12.1b   tessitura e struttura
12.1b tessitura e struttura
Riccardo Rigon
 
12.1a acqua neisuoli-suoli
12.1a acqua neisuoli-suoli12.1a acqua neisuoli-suoli
12.1a acqua neisuoli-suoli
Riccardo Rigon
 
4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2 4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2
Riccardo Rigon
 
3 alberti-seconda parte - About Spatial Correlation
3 alberti-seconda parte - About Spatial Correlation3 alberti-seconda parte - About Spatial Correlation
3 alberti-seconda parte - About Spatial Correlation
Riccardo Rigon
 
2 - Simple Kriging
2 - Simple Kriging2 - Simple Kriging
2 - Simple Kriging
Riccardo Rigon
 
1 alberti-prima parte - Metodi di Interpolazione
1 alberti-prima parte - Metodi di Interpolazione1 alberti-prima parte - Metodi di Interpolazione
1 alberti-prima parte - Metodi di Interpolazione
Riccardo Rigon
 
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
Riccardo Rigon
 
6 l-radiation-table ofsymbols
6 l-radiation-table ofsymbols6 l-radiation-table ofsymbols
6 l-radiation-table ofsymbols
Riccardo Rigon
 
6 i-longwave radiation
6 i-longwave radiation6 i-longwave radiation
6 i-longwave radiation
Riccardo Rigon
 
6 h-coping withterrain
6 h-coping withterrain6 h-coping withterrain
6 h-coping withterrain
Riccardo Rigon
 
6 g-considering clouds
6 g-considering clouds6 g-considering clouds
6 g-considering clouds
Riccardo Rigon
 
6 f-radiation-absorptions
6 f-radiation-absorptions6 f-radiation-absorptions
6 f-radiation-absorptions
Riccardo Rigon
 
6 e-coping withearthsurface
6 e-coping withearthsurface6 e-coping withearthsurface
6 e-coping withearthsurface
Riccardo Rigon
 
6 d-radiation-from sun2earth
6 d-radiation-from sun2earth6 d-radiation-from sun2earth
6 d-radiation-from sun2earth
Riccardo Rigon
 
6 c-radiation-stefan boltzman
6 c-radiation-stefan boltzman6 c-radiation-stefan boltzman
6 c-radiation-stefan boltzman
Riccardo Rigon
 
6 b-radiation-the sun
6 b-radiation-the sun6 b-radiation-the sun
6 b-radiation-the sun
Riccardo Rigon
 

More from Riccardo Rigon (20)

10 Idrologia & Clima
10 Idrologia & Clima10 Idrologia & Clima
10 Idrologia & Clima
 
12.13 acqua neisuoli-watertableequations
12.13 acqua neisuoli-watertableequations12.13 acqua neisuoli-watertableequations
12.13 acqua neisuoli-watertableequations
 
12.6b just ks
12.6b just ks12.6b just ks
12.6b just ks
 
12.6 acquanei suoli-k
12.6 acquanei suoli-k12.6 acquanei suoli-k
12.6 acquanei suoli-k
 
12.1b tessitura e struttura
12.1b   tessitura e struttura12.1b   tessitura e struttura
12.1b tessitura e struttura
 
12.1a acqua neisuoli-suoli
12.1a acqua neisuoli-suoli12.1a acqua neisuoli-suoli
12.1a acqua neisuoli-suoli
 
4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2 4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2
 
3 alberti-seconda parte - About Spatial Correlation
3 alberti-seconda parte - About Spatial Correlation3 alberti-seconda parte - About Spatial Correlation
3 alberti-seconda parte - About Spatial Correlation
 
2 - Simple Kriging
2 - Simple Kriging2 - Simple Kriging
2 - Simple Kriging
 
1 alberti-prima parte - Metodi di Interpolazione
1 alberti-prima parte - Metodi di Interpolazione1 alberti-prima parte - Metodi di Interpolazione
1 alberti-prima parte - Metodi di Interpolazione
 
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
Introduzione all'uso della Console di OMS e di QGIS (per le analisi del corso...
 
6 l-radiation-table ofsymbols
6 l-radiation-table ofsymbols6 l-radiation-table ofsymbols
6 l-radiation-table ofsymbols
 
6 i-longwave radiation
6 i-longwave radiation6 i-longwave radiation
6 i-longwave radiation
 
6 h-coping withterrain
6 h-coping withterrain6 h-coping withterrain
6 h-coping withterrain
 
6 g-considering clouds
6 g-considering clouds6 g-considering clouds
6 g-considering clouds
 
6 f-radiation-absorptions
6 f-radiation-absorptions6 f-radiation-absorptions
6 f-radiation-absorptions
 
6 e-coping withearthsurface
6 e-coping withearthsurface6 e-coping withearthsurface
6 e-coping withearthsurface
 
6 d-radiation-from sun2earth
6 d-radiation-from sun2earth6 d-radiation-from sun2earth
6 d-radiation-from sun2earth
 
6 c-radiation-stefan boltzman
6 c-radiation-stefan boltzman6 c-radiation-stefan boltzman
6 c-radiation-stefan boltzman
 
6 b-radiation-the sun
6 b-radiation-the sun6 b-radiation-the sun
6 b-radiation-the sun
 

10.14 precipitazioni - chi quadro

  • 1. Le precipitazioni estreme Chi quadro Riccardo Rigon Kandinski-CompositionVI(Ildiluvio)-1913
  • 2. R. Rigon Il 2 Se una variabile X è distribuita secondo un curva normale a media nulla e varianza unitaria, allora la variabile e’ distribuita secondo la distribuzione del “Chi quadrato” (come fu provato da Ernst Abbe, 1840-1905) e si indica con che è una distribuzione monoparametrica della famiglia della distribuzione Gamma. L’unico parametro è chiamato “gradi di libertà” !2 Ancora sul test di Pearson
  • 3. R. Rigon La distribuzione, in effetti, è: E la sua cumulata: dove è la funzione “gamma” incompleta() Il 2 from Wikipedia !3 Ancora sul test di Pearson
  • 4. R. Rigon La funzione gamma incompleta La funzione Gamma 4 Ancora sul test di Pearson
  • 6. R. Rigon Il valore atteso della distribuzione è pari al numero di gradi di libertà Il 2 La varianza è pari a due volte il numero di gradi di libertà E( k) = k V ar( k) = 2k from Wikipedia !6 La moda è pari a Ancora sul test di Pearson
  • 7. R. Rigon In generale il è usato in statistica (dopo il lavoro di Pearson e Fisher) per stimare la bontà di una inferenza, ed in particolare l’uguguglianza di una distribuzione di dati con una distribuzione di riferimento (ipotesi zero). Il test ha la forma generale Il 2 2 from Wikipedia !7 Ancora sul test di Pearson
  • 8. R. Rigon Il 2 Assumendo che la radice della variabile rappresentata nella sommatoria sia distribuita gaussianamente, allora ci si aspetta che la variabile somma dei quadrati sia distribuita secondo il con un grado di libertà pari al numero di addendi diminuito di 1. 2 from Wikipedia !8 In altre parole, nell’ipotesi di ripetere un numero illimitato di volte l’esperimento che ha prodotto i dati, ci si aspetta che la distribuzione degli X2 , ottenuta dalla ripetizione dell’esperimento, sia un con k-1 gradi di libertà. Ancora sul test di Pearson
  • 9. R. Rigon Ovvero Se i dati riproducono perfettamente l’ipotesi, Il valore atteso dell’errore però pari al numero di gradi di libertà, k. Un certo numero di campioni “sfortunati” avrà un elevato 9 Ancora sul test di Pearson
  • 10. R. Rigon Ovvero Ci sono due modi per ottenere un valore elevato di X2: •se i dati provengono dalla distribuzione ipotizzata, ma il campione è relativamente raro •se i dati NON sono rari MA provengono da un’altra distribuzione 10 Ancora sul test di Pearson
  • 11. R. Rigon Il ha importanza perchè possiamo fare due ipotesi mutuamente esclusive. L’ipotesi zero: Il 2 2 from Wikipedia E il suo contrario, l’ ipotesi alternativa: che campione e popolazione abbiano la medesima distribuzione che campione e popolazione NON abbiano la medesima distribuzione !11 Ancora sul test di Pearson
  • 12. R. Rigon Non c’è possibilità di distinguere un caso dall’altro L’analisi statistica NON è in grado di distinguere il falso dal vero con certezza Però ci si può accordare che, per esempio, il nostro campione ha una differenza dal campione di riferimento (misurata secondo Pearson), ovvero un X2, che si rivela più di una volta su venti su possibili ripetizioni dell’esperimento probabilistico (un periodo di ritorno di venti tentativi) non possiamo rigettare (falsificare statisticamente) l’ipotesi che i nostri dati provengano dalla distribuzione ipotizzata. Dunque l’ipotesi zero si accetta e si rigetta l’ipotesi alternativa, con una confidenza, nel caso descritto, di 1/20=0.05 12 Ancora sul test di Pearson
  • 13. R. Rigon L’accettazione dell’ipotesi zero E’ dunque legata ad una scelta soggettiva (il margine di confidenza), assegnato secondo un criterio assunto come “ragionevole”. Per questo si usa tradizionalmente la dizione: “non si può rigettare”, invece di “si accetta”. A ben vedere però, la questione di come si dice, non è veramente sostanziale. Il criterio per quanto soggettivo è organizzato quantitativamente, e dà risultati ripetibili. 13 Ancora sul test di Pearson
  • 14. R. Rigon In pratica Si assegna il grado di confidenza, c e si inverte la probabilità ovvero: 14 Ancora sul test di Pearson
  • 15. R. Rigon Se Si rigetta l’ipotesi zero Viceversa si accetta (nel gergo statistico: non si può rigettare) 15 Ancora sul test di Pearson
  • 16. R. Rigon Corollario Avendo a disposizione più ipotesi zero valide Si accetta Quella con più piccolo Che corrisponde ad eventi non rigettati (accettati!) con maggior grado di confidenza. 16 Ancora sul test di Pearson