SlideShare a Scribd company logo
Kinetic Theory
Solids, Liquids & Gases
Solids
∙ Strong forces of attraction between
particles, particles are packed very closely
together in a fixed and regular pattern.
∙ Atoms vibrate in position but can’t change
position or move.
∙ Solids have a fixed volume, shape and high
density.
Liquids
∙ Weaker attractive forces in liquids than in
solids, particles are close together in
an irregular, unfixed.
∙ Particles can move and slide past each
other which is why liquids adopt the shape
of the container they’re in and also why
they are able to flow.
∙ Liquids have a fixed volume but not a fixed
shape and have a moderate to
high density.
Kinetic Theory
Solids, Liquids & Gases
Gases
∙ No intermolecular forces, particles are in random movement and so there is no
defined pattern.
∙ Particles are far apart and move quickly (around 500 m/s) in all directions,
they collide with each other and with the sides of the container (this is
how pressure is created inside a can of gas).
∙ No fixed volume, since there is a lot of space between the particles, gases can be
compressed into a much smaller volume. Gases have low density.
Note
∙ Solids, liquids and gases have different physical properties. The difference in these properties
comes from differences in how the particles are arranged in each state.
Kinetic Theory
Melting
∙ Melting is when a solid changes into a liquid.
∙ Requires heat energy which transforms into kinetic energy, allowing the particles to
move.
∙ Occurs at a specific temperature known as the melting point (m.p.) which is unique to
each pure solid.
Boiling
∙ Boiling is when a liquid changes into a gas.
∙ Requires heat which causes bubbles of gas to form below the surface of a liquid, allowing
for liquid particles to escape from the surface and within the liquid.
∙ Occurs at a specific temperature known as the boiling point (b.p.) which is unique to each
pure liquid.
States of Matter
Kinetic Theory
Freezing
∙ Freezing is when a liquid changes into a solid.
∙ This is the reverse of melting and occurs at exactly the same temperature as melting,
hence the melting point and freezing point of a pure substance are the same. Water for
example freezes and melts at 0°C.
∙ Requires a significant decrease in temperature (or loss of thermal energy) and occurs at a
specific temperature which is unique for each pure substance.
Evaporation
∙ When a liquid changes into a gas. Evaporation occurs only at the surface of liquids where
high energy particles can escape from the liquid’s surface at low temperatures, below the
b.p. of the liquid.
∙ The larger the surface area and the warmer the liquid/surface, the more quickly a liquid
can evaporate.
∙ No heat is required, and evaporation occurs over a range of temperatures.
States of Matter
Kinetic Theory
Condensation
∙ When a gas changes into a liquid, usually on cooling. When a gas is cooled its particles
lose energy and when they bump into each other they lack the energy to bounce away
again, instead they group together to form a liquid.
∙ No energy is required for condensation to occur and it takes place over a range of
temperatures.
Sublimation
∙ When a solid changes directly into a gas.
∙ This happens to only a few solids such as iodine or solid carbon dioxide.
∙ The reverse reaction also happens and is also called sublimation (sometimes called
deposition or desublimation).
∙ Sublimation occurs at a specific temperature which is unique for a pure substance.
States of Matter
Interconversion of solids, liquids, and gases
Note
∙ Questions on the particle theory of matter
show interconversion of states with a
reversible arrow: ⇌, which means that
the process can go forwards and
backwards.
∙ Read the question carefully and pick the
direction of the change in state that the
question refers to.
Gaseous Particles
∙ Gaseous particles are in constant and random motion.
∙ An increase in temperature increases the kinetic energy of each
particle, as the thermal energy is transformed to kinetic energy, so
they move faster.
∙ Decreasing the temperature has the opposite effect.
∙ The pressure that a gas creates inside a closed container is produced
by the gaseous particles hitting the inside walls of the container. As the
temperature increases, the particles in the gas move faster, impacting
the container’s walls more frequently.
∙ Therefore an increase in temperature causes an increase in pressure.
∙ Moving particles of gas colliding with each other and the container
walls:
Kinetic Theory
Heating Curve
Brownian Motion & Diffusion
Brownian Motion
∙ Brownian motion is defined as the random movement of particles in a liquid or a gas
produced by large numbers of collisions with smaller, often invisible particles.
∙ The observation of Brownian motion proves the correctness of the kinetic particle
theory.
∙ Large particles show jerky and erratic movement caused by many collisions with
smaller particles:
Diffusion
∙ This is the process by which different gases or different liquids mix and is due to the
random motion of their particles.
∙ Diffusing particles move from an area of high concentration to an area of low
concentration.
∙ Eventually the concentration of particles is even as they spread out to occupy all of the
available space.
∙ Diffusion happens on its own and no energy input is required although it occurs faster at
higher temperatures.
Diffusion of potassium manganate (VI) in water. After a few hours the
concentration of KMnO4 is the same everywhere in the solution:
Diffusion of potassium manganate (VI) in water. After a few hours the
concentration of KMnO4 is the same everywhere in the solution:
Changes in State & Kinetic Theory
∙ When substances are heated, the particles absorb thermal energy which is converted into
kinetic energy. This is the basis of the kinetic theory of matter.
∙ Heating a solid causes its particles to vibrate more and as the temperature increases, they
vibrate so much that the solid expands until the structure breaks and the solid melts.
∙ On further heating, the now liquid substance expands more and some particles at the surface
gain sufficient energy to overcome the intermolecular forces and evaporate.
∙ When the b.p. temperature is reached, all the particles gain enough energy to escape and the
liquids boils.
∙ These changes in state can be shown on a graph which is called a heating curve.
∙ Cooling down a gas has the reverse effect, and this would be called a cooling curve.
∙ These curves are used to show how changes in temperature affect changes of state.
Heating & cooling curve for water with
interconversions of state
Note
∙ While changing state, the temperature of
the substance remains the same as the
heat energy is rapidly converted into
kinetic energy. This is called latent heat
and corresponds to the horizontal
sections of a heating / cooling curve.
Diffusion
Brownian Motion
Explanation and evidence for Brownian motion
∙ An example of Brownian motion is the observed jerky and erratic motion of smoke particles
as they are hit by the unseen molecules in the air which can be seen under a microscope.
∙ In 1905, physicist Albert Einstein explained that pollen grains in water were being moved by
individual water molecules.
∙ In all cases, larger and visible particles are caused to move by the random bombardment of
smaller, invisible particles.
Diffusion & Molecular Mass
∙ Diffusion occurs much faster in gases than in liquids as gaseous particles move much
quicker than liquid particles.
∙ At the same temperature, different gases do not diffuse at the same rate.
∙ This is due to the difference in their relative molecular masses.
∙ Lighter gas particles can travel faster and hence further, therefore the lower its relative
mass the faster a gas will diffuse.
NH3 molecules have less mass than the HCl molecule, so diffuse faster,
hence the product (a white cloud of NH4Cl) forms closer to the end
where the HCl is.

More Related Content

What's hot

3.2 thermal properties of matter
3.2 thermal properties of matter3.2 thermal properties of matter
3.2 thermal properties of matter
JohnPaul Kennedy
 
The Particle Theory
The Particle TheoryThe Particle Theory
The Particle Theory
mohamad gohary
 
Grade 7 diffusion PPT
Grade 7 diffusion PPTGrade 7 diffusion PPT
Grade 7 diffusion PPT
rahul yadav
 
IGCSE Chemistry- matters.ppt
IGCSE Chemistry- matters.pptIGCSE Chemistry- matters.ppt
IGCSE Chemistry- matters.ppt
ssuser8c31e5
 
Kinetic model of matter
Kinetic model of matterKinetic model of matter
Kinetic model of matter
Basecamp Learning Centre
 
Surface area to volume ratio in biology powerpoint
Surface area to volume ratio in biology powerpointSurface area to volume ratio in biology powerpoint
Surface area to volume ratio in biology powerpoint
Jakob Garlick
 
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdfGIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
FarhadAlsaeid
 
Ch.8.particle theory
Ch.8.particle theoryCh.8.particle theory
Ch.8.particle theory
Reem Bakr
 
Thermal physics
Thermal physics Thermal physics
Thermal physics
Saugat Insan
 
Describing matter powerpoint
Describing matter powerpointDescribing matter powerpoint
Describing matter powerpoint
kristannsnyder
 
Light
LightLight
Physical and chemical change
Physical and chemical changePhysical and chemical change
Physical and chemical change
gülçin bozkurt
 
CHEMICAL EQUATIONS AND REACTIONS
CHEMICAL EQUATIONS AND REACTIONSCHEMICAL EQUATIONS AND REACTIONS
CHEMICAL EQUATIONS AND REACTIONSAditee Chakurkar
 
GCSE IGCSE Biology by Syllabus points
GCSE IGCSE Biology by Syllabus pointsGCSE IGCSE Biology by Syllabus points
GCSE IGCSE Biology by Syllabus points
Marc Rodriguez
 
Particle model presentation
Particle model presentationParticle model presentation
Particle model presentationDevinda_vs
 
Gravity mass weight
Gravity mass weightGravity mass weight
Gravity mass weightiesbscience
 
Kinetic Theory of Matter
Kinetic Theory of MatterKinetic Theory of Matter
Kinetic Theory of Matter
meenng
 
Matter
MatterMatter
Change of state
Change of stateChange of state
Change of state
Soha Bedair
 

What's hot (20)

3.2 thermal properties of matter
3.2 thermal properties of matter3.2 thermal properties of matter
3.2 thermal properties of matter
 
The Particle Theory
The Particle TheoryThe Particle Theory
The Particle Theory
 
Grade 7 diffusion PPT
Grade 7 diffusion PPTGrade 7 diffusion PPT
Grade 7 diffusion PPT
 
IGCSE Chemistry- matters.ppt
IGCSE Chemistry- matters.pptIGCSE Chemistry- matters.ppt
IGCSE Chemistry- matters.ppt
 
Kinetic model of matter
Kinetic model of matterKinetic model of matter
Kinetic model of matter
 
Surface area to volume ratio in biology powerpoint
Surface area to volume ratio in biology powerpointSurface area to volume ratio in biology powerpoint
Surface area to volume ratio in biology powerpoint
 
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdfGIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
GIANT IONIC AND COVALENT STRUCTURES-GCSE.pdf
 
Ch.8.particle theory
Ch.8.particle theoryCh.8.particle theory
Ch.8.particle theory
 
COMPOUNDS
COMPOUNDSCOMPOUNDS
COMPOUNDS
 
Thermal physics
Thermal physics Thermal physics
Thermal physics
 
Describing matter powerpoint
Describing matter powerpointDescribing matter powerpoint
Describing matter powerpoint
 
Light
LightLight
Light
 
Physical and chemical change
Physical and chemical changePhysical and chemical change
Physical and chemical change
 
CHEMICAL EQUATIONS AND REACTIONS
CHEMICAL EQUATIONS AND REACTIONSCHEMICAL EQUATIONS AND REACTIONS
CHEMICAL EQUATIONS AND REACTIONS
 
GCSE IGCSE Biology by Syllabus points
GCSE IGCSE Biology by Syllabus pointsGCSE IGCSE Biology by Syllabus points
GCSE IGCSE Biology by Syllabus points
 
Particle model presentation
Particle model presentationParticle model presentation
Particle model presentation
 
Gravity mass weight
Gravity mass weightGravity mass weight
Gravity mass weight
 
Kinetic Theory of Matter
Kinetic Theory of MatterKinetic Theory of Matter
Kinetic Theory of Matter
 
Matter
MatterMatter
Matter
 
Change of state
Change of stateChange of state
Change of state
 

Similar to 1. the particulate nature of matter igcse version 1

The Kinetic Model of Matter
The Kinetic Model of MatterThe Kinetic Model of Matter
The Kinetic Model of Matter
Hamza Muhammad
 
Chapt 1 kpt of solids, liquids & gases (1)
Chapt 1 kpt of solids, liquids & gases (1)Chapt 1 kpt of solids, liquids & gases (1)
Chapt 1 kpt of solids, liquids & gases (1)Danica Balilla
 
Kinetic particle theory
Kinetic particle theoryKinetic particle theory
Kinetic particle theory
Angela Toh
 
Matter in Our Surroundings
Matter in Our SurroundingsMatter in Our Surroundings
Matter in Our Surroundings
AnjaliLamba
 
Kineticparticletheory (002)
Kineticparticletheory (002)Kineticparticletheory (002)
Kineticparticletheory (002)
Trnka
 
phasechanges.ppt
phasechanges.pptphasechanges.ppt
phasechanges.ppt
levi0417
 
Thermal 3.1
Thermal 3.1Thermal 3.1
Thermal 3.1
Paula Mills
 
Chapter 2 chemical engineering.pptxvihihigigicugu
Chapter 2 chemical engineering.pptxvihihigigicuguChapter 2 chemical engineering.pptxvihihigigicugu
Chapter 2 chemical engineering.pptxvihihigigicugu
djihaneboussekine
 
S L G & Their properties gggg hhhh h.pptx
S L G & Their properties gggg hhhh h.pptxS L G & Their properties gggg hhhh h.pptx
S L G & Their properties gggg hhhh h.pptx
tamimhaque1
 
The states of matter.pptx
The states of matter.pptxThe states of matter.pptx
The states of matter.pptx
tamimhaque1
 
Chapter 9
Chapter 9Chapter 9
Matter in our surroundings
Matter in our surroundingsMatter in our surroundings
Matter in our surroundings
BHAVAN VIDYALAYA, PANCHKULA
 
Kinetic theory
Kinetic theoryKinetic theory
Kinetic theoryreastment
 
Matter-Chemistry
Matter-ChemistryMatter-Chemistry
Matter-Chemistry
Devesh Saini
 
Notes for science
Notes for scienceNotes for science
Notes for sciencenph2000
 
Notes for science
Notes for scienceNotes for science
Notes for sciencenph2000
 
Notes for science
Notes for scienceNotes for science
Notes for sciencenph2000
 
Notes for science
Notes for scienceNotes for science
Notes for sciencenph2000
 
22 the states of matter
22 the states of matter22 the states of matter
22 the states of matter
omneya_ghis ghis
 

Similar to 1. the particulate nature of matter igcse version 1 (20)

The Kinetic Model of Matter
The Kinetic Model of MatterThe Kinetic Model of Matter
The Kinetic Model of Matter
 
Chapt 1 kpt of solids, liquids & gases (1)
Chapt 1 kpt of solids, liquids & gases (1)Chapt 1 kpt of solids, liquids & gases (1)
Chapt 1 kpt of solids, liquids & gases (1)
 
Kinetic particle theory
Kinetic particle theoryKinetic particle theory
Kinetic particle theory
 
Matter in Our Surroundings
Matter in Our SurroundingsMatter in Our Surroundings
Matter in Our Surroundings
 
Kineticparticletheory (002)
Kineticparticletheory (002)Kineticparticletheory (002)
Kineticparticletheory (002)
 
Thermal 3.1
Thermal 3.1Thermal 3.1
Thermal 3.1
 
phasechanges.ppt
phasechanges.pptphasechanges.ppt
phasechanges.ppt
 
Thermal 3.1
Thermal 3.1Thermal 3.1
Thermal 3.1
 
Chapter 2 chemical engineering.pptxvihihigigicugu
Chapter 2 chemical engineering.pptxvihihigigicuguChapter 2 chemical engineering.pptxvihihigigicugu
Chapter 2 chemical engineering.pptxvihihigigicugu
 
S L G & Their properties gggg hhhh h.pptx
S L G & Their properties gggg hhhh h.pptxS L G & Their properties gggg hhhh h.pptx
S L G & Their properties gggg hhhh h.pptx
 
The states of matter.pptx
The states of matter.pptxThe states of matter.pptx
The states of matter.pptx
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Matter in our surroundings
Matter in our surroundingsMatter in our surroundings
Matter in our surroundings
 
Kinetic theory
Kinetic theoryKinetic theory
Kinetic theory
 
Matter-Chemistry
Matter-ChemistryMatter-Chemistry
Matter-Chemistry
 
Notes for science
Notes for scienceNotes for science
Notes for science
 
Notes for science
Notes for scienceNotes for science
Notes for science
 
Notes for science
Notes for scienceNotes for science
Notes for science
 
Notes for science
Notes for scienceNotes for science
Notes for science
 
22 the states of matter
22 the states of matter22 the states of matter
22 the states of matter
 

Recently uploaded

Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 

Recently uploaded (20)

Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 

1. the particulate nature of matter igcse version 1

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10. Kinetic Theory Solids, Liquids & Gases Solids ∙ Strong forces of attraction between particles, particles are packed very closely together in a fixed and regular pattern. ∙ Atoms vibrate in position but can’t change position or move. ∙ Solids have a fixed volume, shape and high density. Liquids ∙ Weaker attractive forces in liquids than in solids, particles are close together in an irregular, unfixed. ∙ Particles can move and slide past each other which is why liquids adopt the shape of the container they’re in and also why they are able to flow. ∙ Liquids have a fixed volume but not a fixed shape and have a moderate to high density.
  • 11. Kinetic Theory Solids, Liquids & Gases Gases ∙ No intermolecular forces, particles are in random movement and so there is no defined pattern. ∙ Particles are far apart and move quickly (around 500 m/s) in all directions, they collide with each other and with the sides of the container (this is how pressure is created inside a can of gas). ∙ No fixed volume, since there is a lot of space between the particles, gases can be compressed into a much smaller volume. Gases have low density. Note ∙ Solids, liquids and gases have different physical properties. The difference in these properties comes from differences in how the particles are arranged in each state.
  • 12. Kinetic Theory Melting ∙ Melting is when a solid changes into a liquid. ∙ Requires heat energy which transforms into kinetic energy, allowing the particles to move. ∙ Occurs at a specific temperature known as the melting point (m.p.) which is unique to each pure solid. Boiling ∙ Boiling is when a liquid changes into a gas. ∙ Requires heat which causes bubbles of gas to form below the surface of a liquid, allowing for liquid particles to escape from the surface and within the liquid. ∙ Occurs at a specific temperature known as the boiling point (b.p.) which is unique to each pure liquid. States of Matter
  • 13. Kinetic Theory Freezing ∙ Freezing is when a liquid changes into a solid. ∙ This is the reverse of melting and occurs at exactly the same temperature as melting, hence the melting point and freezing point of a pure substance are the same. Water for example freezes and melts at 0°C. ∙ Requires a significant decrease in temperature (or loss of thermal energy) and occurs at a specific temperature which is unique for each pure substance. Evaporation ∙ When a liquid changes into a gas. Evaporation occurs only at the surface of liquids where high energy particles can escape from the liquid’s surface at low temperatures, below the b.p. of the liquid. ∙ The larger the surface area and the warmer the liquid/surface, the more quickly a liquid can evaporate. ∙ No heat is required, and evaporation occurs over a range of temperatures. States of Matter
  • 14. Kinetic Theory Condensation ∙ When a gas changes into a liquid, usually on cooling. When a gas is cooled its particles lose energy and when they bump into each other they lack the energy to bounce away again, instead they group together to form a liquid. ∙ No energy is required for condensation to occur and it takes place over a range of temperatures. Sublimation ∙ When a solid changes directly into a gas. ∙ This happens to only a few solids such as iodine or solid carbon dioxide. ∙ The reverse reaction also happens and is also called sublimation (sometimes called deposition or desublimation). ∙ Sublimation occurs at a specific temperature which is unique for a pure substance. States of Matter
  • 15. Interconversion of solids, liquids, and gases Note ∙ Questions on the particle theory of matter show interconversion of states with a reversible arrow: ⇌, which means that the process can go forwards and backwards. ∙ Read the question carefully and pick the direction of the change in state that the question refers to.
  • 16. Gaseous Particles ∙ Gaseous particles are in constant and random motion. ∙ An increase in temperature increases the kinetic energy of each particle, as the thermal energy is transformed to kinetic energy, so they move faster. ∙ Decreasing the temperature has the opposite effect. ∙ The pressure that a gas creates inside a closed container is produced by the gaseous particles hitting the inside walls of the container. As the temperature increases, the particles in the gas move faster, impacting the container’s walls more frequently. ∙ Therefore an increase in temperature causes an increase in pressure. ∙ Moving particles of gas colliding with each other and the container walls: Kinetic Theory
  • 17. Heating Curve Brownian Motion & Diffusion Brownian Motion ∙ Brownian motion is defined as the random movement of particles in a liquid or a gas produced by large numbers of collisions with smaller, often invisible particles. ∙ The observation of Brownian motion proves the correctness of the kinetic particle theory. ∙ Large particles show jerky and erratic movement caused by many collisions with smaller particles:
  • 18. Diffusion ∙ This is the process by which different gases or different liquids mix and is due to the random motion of their particles. ∙ Diffusing particles move from an area of high concentration to an area of low concentration. ∙ Eventually the concentration of particles is even as they spread out to occupy all of the available space. ∙ Diffusion happens on its own and no energy input is required although it occurs faster at higher temperatures.
  • 19. Diffusion of potassium manganate (VI) in water. After a few hours the concentration of KMnO4 is the same everywhere in the solution:
  • 20. Diffusion of potassium manganate (VI) in water. After a few hours the concentration of KMnO4 is the same everywhere in the solution:
  • 21. Changes in State & Kinetic Theory ∙ When substances are heated, the particles absorb thermal energy which is converted into kinetic energy. This is the basis of the kinetic theory of matter. ∙ Heating a solid causes its particles to vibrate more and as the temperature increases, they vibrate so much that the solid expands until the structure breaks and the solid melts. ∙ On further heating, the now liquid substance expands more and some particles at the surface gain sufficient energy to overcome the intermolecular forces and evaporate. ∙ When the b.p. temperature is reached, all the particles gain enough energy to escape and the liquids boils. ∙ These changes in state can be shown on a graph which is called a heating curve. ∙ Cooling down a gas has the reverse effect, and this would be called a cooling curve. ∙ These curves are used to show how changes in temperature affect changes of state.
  • 22. Heating & cooling curve for water with interconversions of state Note ∙ While changing state, the temperature of the substance remains the same as the heat energy is rapidly converted into kinetic energy. This is called latent heat and corresponds to the horizontal sections of a heating / cooling curve.
  • 23. Diffusion Brownian Motion Explanation and evidence for Brownian motion ∙ An example of Brownian motion is the observed jerky and erratic motion of smoke particles as they are hit by the unseen molecules in the air which can be seen under a microscope. ∙ In 1905, physicist Albert Einstein explained that pollen grains in water were being moved by individual water molecules. ∙ In all cases, larger and visible particles are caused to move by the random bombardment of smaller, invisible particles. Diffusion & Molecular Mass ∙ Diffusion occurs much faster in gases than in liquids as gaseous particles move much quicker than liquid particles. ∙ At the same temperature, different gases do not diffuse at the same rate. ∙ This is due to the difference in their relative molecular masses. ∙ Lighter gas particles can travel faster and hence further, therefore the lower its relative mass the faster a gas will diffuse.
  • 24. NH3 molecules have less mass than the HCl molecule, so diffuse faster, hence the product (a white cloud of NH4Cl) forms closer to the end where the HCl is.