SlideShare a Scribd company logo
1 of 14
Download to read offline
1
บทที่ 1
บทนา
ที่มาและความสาคัญของโครงงาน
โดยทั่วไปแล้วรายวิชาคณิตศาสตร์มีลักษณะเป็นนามธรรม มีโครงสร้างที่ประกอบด้วย
คานิยาม บทนิยาม สัจพจน์ ที่เป็นข้อตกลงเบื้องต้น จากนั้นจึงใช้การให้เหตุผลที่สมเหตุสมผลสร้าง
ทฤษฎีบทต่าง ๆ ขึ้นและนาไปใช้อย่างเป็นระบบ คณิตศาสตร์มีความถูกต้องเที่ยงตรง คงเส้นคงวา
มีระเบียบแบบแผนเป็นเหตุเป็นผล และมีความสมบูรณ์ในตัวเอง หรือกล่าวได้ว่าคณิตศาสตร์เป็น
ศาสตร์และศิลป์ ที่ศึกษาเกี่ยวกับแบบรูปและความสัมพันธ์ เพื่อให้ได้ข้อสรุปและนาไปใช้
ประโยชน์ คณิตศาสตร์มีลักษณะเป็นภาษาสากลที่ทุกคนเข้าใจตรงกันในการสื่อสาร (สถาบัน
ส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี. 2544 : 2) สามารถนาประสบการณ์ทางด้านความรู้
ความคิดและทักษะที่ได้ไปใช้ในการเรียนรู้สิ่งต่าง ๆ และใช้ในชีวิตประจาวัน
ในการเรียนคณิตศาสตร์มีบทนิยาม ทฤษฏีบท และสูตรต่าง ๆ มาใช้อย่างหลากหลาย
โดยเฉพาะอย่างยิ่งในรายวิชาคณิตศาสตร์ของระดับชั้นมัธยมศึกษาตอนปลาย รวมการประยุกต์กับ
เรื่องอื่น ๆ ความรู้ความเข้าใจจะเป็นพื้นฐานที่สาคัญในการเรียนต่อในระดับที่สูงขึ้น
เนื่องจากในชีวิตประจาวันของผู้ศึกษาเองได้นาอาหารที่มีลักษณะเป็นทรงกลม เช่น
ส้ม,แตงโม,ส้มโอ,เค้ก,พิซซ่า,โดนัส เป็นต้น มาโรงเรียนเพื่อที่จะแบ่งให้เพื่อนๆ ให้ได้คนละ
เท่าๆ กัน โดยไม่ให้ใครมากหรือน้อยโดยการใช้มีดผ่าซึ่งเป็นการคาดปริมาณเองแล้วในใน
บางครั้งปริมาณของแต่ละบุคคลที่แบ่งก็ไม่เท่ากัน เราจึงคิดที่จะนาความรู้เรื่องมุมใน
ตรีโกณมิติมาประยุกต์ใช้ในการแบ่งอาหารที่มีลักษณะเป็นทรงกลมให้ได้ปริมาณอาหารที่
เท่า ๆ กัน
วัตถุประสงค์
1. เพื่อหาวิธีการในการแบ่งอาหารที่มีลักษณะเป็นทรงกลมให้ได้ในปริมาณที่
เท่าๆ กัน กับจานวนคน
2. เพื่อนาวิชาคณิตศาสตร์เรื่องตรีโกณมิติในระดับชั้น ม. 5 มาประยุกต์ใช้ใน
ชีวิตประจาวัน
3. เพื่อสร้างแนวคิดในการพัฒนาสิ่งประดิษฐ์ทางด้านวิทยาศาสตร์ต่อไป
2
ขอบเขตของการศึกษา
1. จัดทาโครงงานระหว่างวันที่ 26 ธันวาคม 2558 ถึง วันที่ 20 กุมภาพันธ์ 2559
2. เนื้อหาที่เกี่ยวข้องกับวิชาคณิตศาสตร์
2.1 เรื่องวงกลม ม.3
2.2 เรื่องตรีโกณมิติในระดับชั้น ม.5
นิยามศัพท์เฉพาะ
1. อาหารรูปทรงกลม หมายถึง คืออาหารที่รูปเรขาคณิตบนระนาบซึ่งทุกๆ จุดบนรูป
เรขาคณิตนี้อยู่ห่างจากจุดคงที่จุดหนึ่งบนระนาบเดียวกันเป็นระยะเท่ากันเรียกจุดคง
2. ฟังก์ชัน ตรีโกณมิติ หมายถึง ฟังก์ชันของมุม ซึ่งมีความสาคัญในการศึกษารูป
สามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ
3. เส้นสัมผัสวงกลม หมายถึง คือเส้นตรงที่ตัดวงกลมเพียงจุดเดียวเท่านั้นและเรียกจุดตัด
นั้น
4. เส้นผ่าศูนย์กลางวงกลม หมายถึง คือความยาวเส้นตรงที่ผ่านจุดศูนย์กลางวงกลมโดย
ที่ปลายทั้งสอง
ผลที่คาดว่าจะได้รับ
1. ได้รู้ถึงสิ่งในการแบ่งของที่มีลักษณะเป็นทรงกลมให้ได้ในปริมาณที่เท่าๆ กับ
กับจานวนคน
2. ได้นาความรู้ทางด้านวิชาคณิตศาสตร์ เรื่องตรีโกณมิติมาประยุกต์ใช้ใน
ชีวิตประจาวัน
3. ได้รู้ถึงแนวคิดในการสร้างสิ่งประดิษฐ์ทางด้านวิทยาศาสตร์และคณิตศาสตร์
ต่อไป
3
บทที่ 2
เอกสารที่เกี่ยวข้อง
ในการทาโครงงาน เรื่อง อาหารทรงกลมแบ่งให้เท่าเพราะเรารู้ตรีโกณฯ มีเนื้อหาวิชา
คณิตศาสตร์ที่เกี่ยวข้อง ดังนี้
1. ฟังก์ชันตรีโกณมิติ
2. วงกลม
2.1 รัศมี
2.2 เส้นผ่านศูนย์กลาง
2.3 เส้นสัมผัสวงกลม
ฟังก์ชันตรีโกณมิติ (อังกฤษ: Trigonometric function)
คือ ฟังก์ชันของมุม ซึ่งมีความสาคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ใน
ลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรือ
อัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือ
สมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นามาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุม
จึงเท่ากับ 180° เสมอ
ในปัจจุบัน มีฟังก์ชันตรีโกณมิติอยู่ 6 ฟังก์ชันที่นิยมใช้กันดังตารางข้างล่าง (สี่ฟังก์ชัน
สุดท้ายนิยามด้วยความสัมพันธ์กับฟังก์ชันอื่น แต่ก็สามารถนิยามด้วยเรขาคณิตได้)
ตาราง 1 แสดงความสัมพันธ์ทางตรีโกณมิติ
ฟังก์ชัน ตัวย่อ ความสัมพันธ์
ไซน์ (Sine) sin
โคไซน์ (Cosine) cos
แทนเจนต์ (Tangent) Tan
(หรือ tg)
4
ฟังก์ชัน ตัวย่อ ความสัมพันธ์
โคแทนเจนต์ (Cotangent) cot
(หรือ ctg หรือ ctn)
ซีแคนต์ (Secant) sec
โคซีแคนต์ (Cosecant) csc
รูปภาพ 1 แสดงมุมเรเดียน
วงกลม(Circle)
1. วงกลม เป็นรูปเรขาคณิตบนระนาบซึ่งทุกๆ จุดบนรูปเรขาคณิตนี้อยู่ห่างจากจุดคงที่จุด
หนึ่งบนระนาบเดียวกันเป็นระยะเท่ากันเรียกจุดคงที่นี้ว่า จุดศูนย์กลาง (Center)
2. รัศมี (Radius) คือระยะจากจุดศูนย์กลางถึงเส้นรอบวง
3. เส้นผ่านศูนย์กลาง (Diameter) คือความยาวเส้นตรงที่ผ่านจุดศูนย์กลางวงกลมโดยที่
ปลายทั้งสอง
4. เส้นสัมผัสวงกลม (Tangent line) คือเส้นตรงที่ตัดวงกลมเพียงจุดเดียวเท่านั้นและเรียก
จุดตัดนั้นว่า จุดสัมผัส (point of tangency)
5
รูปภาพ 2 แสดงเส้นของวงกลมต่าง ๆ
O เป็นจุดศูนย์กลาง
OA เป็นรัศมีวงกลม
BC เป็นเส้นผ่านศูนย์กลางวงกลม
DE เป็นคอร์ดของวงกลม
L1 เป็นเส้นตัดวงกลม โดยตัดวงกลมที่จุด F และ G
L2 เป็นเส้นสัมผัสวงกลมที่จุด H
ทฤษฎี เส้นสัมผัสวงกลม จะตั้งฉากกับรัศมีของวงกลมที่จุดสัมผัส
รูปภาพ 3 แสดงเส้นสัมผัสลากมาตั้งฉากกับเส้นผ่านศูนย์กลาง
6
บทที่ 3
วิธีการดาเนินการ
วิธีดาเนินการโครงงานคณิตศาสตร์ เรื่อง อาหารทรงกลมแบ่งให้เท่าเพราะเรารู้ตรีโกณฯ
คณะผู้จัดทาได้ดาเนินการดังนี้
1. ขั้นการวางแผนการดาเนินงาน
กลุ่มผู้จัดทาโครงงานได้วางแผนการดาเนินงาน ดังนี้
1. รวบรวมสมาชิกที่มีความสนใจในเรื่องเดียวกัน เพื่อเข้ากลุ่มทาโครงงานคณิตศาสตร์
2. ตั้งชื่อเรื่องโครงงานคณิตศาสตร์
3. เขียนเค้าโครงโครงงานคณิตศาสตร์
4. กาหนดแผนปฏิบัติงานโครงงานคณิตศาสตร์
5. แบ่งหน้าที่ให้ทุกคนไปศึกษาข้อมูลเกี่ยวกับโครงงานคณิตศาสตร์
6. รวบรวมข้อมูลที่เกี่ยวข้องเกี่ยวกับการทาโครงงานคณิตศาสตร์ ได้แก่ มุมทาง
ตรีโกณมิติ และเส้นสัมผัสวงกลมกับเส้นผ่านศูนย์กลาง
7. การวิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณในการแบ่งอาหารที่มีลักษณะเป็น
ทรงกลม
8. สรุปการดาเนินงาน
9. จัดทารูปเล่มโครงงาน
10. ตรวจสอบความถูกต้องของโครงงาน
11. นาเสนอโครงงาน
7
2. ขั้นการดาเนินงาน
1. ค้นคว้า ศึกษาข้อมูล หลักการ เนื้อหาวิชาคณิตศาสตร์ บทนิยามและทฤษฎีที่เกี่ยวข้อง
กับมุมทางตรีโกณมิติ และเส้นสัมผัสวงกลมกับเส้นผ่านศูนย์กลาง
2. รวบรวมข้อมูลเกี่ยวกับการพิสูจน์และการให้เหตุผล
3. วิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณในการแบ่งอาหารที่มีลักษณะเป็นทรง
กลมให้ได้ในจานวนที่เท่ากัน
4. นาเสนอข้อมูลในรูปแบบของตาราง การหาวิธีการคานวณในการแบ่งอาหารที่มี
ลักษณะเป็นทรงกลมให้ได้ในปริมาณที่เท่ากัน
5. จัดทารายงานรูปเล่มโครงงานคณิตศาสตร์ และแผงสาหรับแสดงโครงงาน
คณิตศาสตร์โดยกาหนดให้แผงสาหรับแสดงโครงงานคณิตศาสตร์ตามขนาดมาตรฐาน
6. นาเสนอการจัดทาโครงงาน คณิตศาสตร์ ให้กับผู้ที่สนใจ
3. ปฏิทินปฏิบัติงาน
วันที่/เดือน/ปี การดาเนินงาน ผู้รับผิดชอบ
26 ธันวาคม 2558 รวบรวมสมาชิกที่มีความสนใจในเรื่องเดียวกัน เพื่อเข้า
กลุ่มทาโครงงานคณิตศาสตร์
สมาชิกทุกคน
9-10 มกราคม 2559 ตั้งชื่อเรื่องโครงงานคณิตศาสตร์ สมาชิกทุกคน
12-13 มกราคม 2559 เขียนเค้าโครงโครงงานคณิตศาสตร์ สมาชิกทุกคน
16 มกราคม 2559 กาหนดแผนปฏิบัติงานโครงงานคณิตศาสตร์ สมาชิกทุกคน
18-24 มกราคม 2559 แบ่งหน้าที่ให้ทุกคนไปศึกษาข้อมูลเกี่ยวกับโครงงาน
คณิตศาสตร์
สมาชิกทุกคน
25-30 มกราคม 2559 รวบรวมข้อมูลที่เกี่ยวข้องเกี่ยวกับการทาโครงงาน
คณิตศาสตร์ ได้แก่ มุมทางตรีโกณมิติ และเส้นสัมผัส
วงกลมกับเส้นผ่านศูนย์กลาง
สมาชิกทุกคน
2-8 กุมภาพันธ์ 2559 การวิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณใน
การแบ่งอาหารที่มีลักษณะเป็นทรงกลม
สมาชิกทุกคน
8-10 กุมภาพันธ์ 2559 สรุปการดาเนินงาน สมาชิกทุกคน
10-15กุมภาพันธ์ 2559 จัดทารูปเล่มโครงงาน สมาชิกทุกคน
8
วันที่/เดือน/ปี การดาเนินงาน ผู้รับผิดชอบ
15-16กุมภาพันธ์ 2559 ตรวจสอบความถูกต้องของโครงงาน สมาชิกทุกคน
20 กุมภาพันธ์ 2559 นาเสนอโครงงาน สมาชิกทุกคน
9
บทที่ 4
ผลการดาเนินการ
จากการดาเนินการหารูปแบบความสัมพันธ์การแบ่งอาหารทรงกลมด้วยตรีโกณมิติ
นาเสนอรูปแบบความสัมพันธ์ได้ดังนี้
1. หาเส้นผ่านศูนย์กลาง โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจาก
จุดสัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง
A A
B
รูปภาพ 4 แสดงเส้นสัมผัสไปตั้งฉาก
2. แบ่งเส้นผ่านศูนย์กลาง โดยหา รัศมี ( r ) จาก r =
̅̅̅̅
โดย
ความยาวเส้นผ่านศูนย์กลาง
A
B
รูปภาพ 5 แสดงจุดกึ่งกลาง
10
3. การผ่าในแต่ละครั้ง สามารถหาได้จาก =
คนที่ 1 ได้ 1 ครั้งที่
คนที่ 2 ได้ 2 ครั้งที่
คนที่ 3 ได้ 3 ครั้งที่ เมื่อ คือ จานวนคน
คือ มุม
คนที่ ได้ ครั้งที่
เช่น
คุณครูซื้อพิซซ่ามาหนึ่งถาดให้นักเรียนทุกคนในห้อง ม.5/10 ซึ่งมีนักเรียน 12 คน ต้องการ
แบ่งให้กับทุก ๆ คน โดยให้ได้คนละ เท่า ๆ กัน
จากโจทย์
A A
B
รูปภาพ 6 แสดงเส้นสัมผัสไปตั้งฉากของพิซาซ่า
ระยะ ̅̅̅̅ ยาว 30 เชนติเมตร
หาเส้นผ่านศูนย์กลาง
̅̅̅̅
= = 15
15 cm
รูปภาพ 7 แสดงจุดกึ่งกลางของพิซซ่า
11
= เมื่อ คือ คน
คนที่ 1 ได้ 1 ครั้งที่
คนที่ 2 ได้ 2 ครั้งที่
คนที่ 3 ได้ 3 ครั้งที่
คนที่ 4 ได้ 4 ครั้งที่
คนที่ 5 ได้ 5 ครั้งที่
คนที่ 6 ได้ 6 ครั้งที่
คนที่ 7 ได้ 7 ครั้งที่
คนที่ 8 ได้ 8 ครั้งที่
คนที่ 9 ได้ 9 ครั้งที่
คนที่ 10 ได้ 10 ครั้งที่
คนที่ 11 ได้ 11 ครั้งที่
คนที่ 12 ได้ 12 ครั้งที่
มุมที่ได้ จากการแบ่ง
คนที่ 2 คนที่ 1 คนที่ 12
15 cm
คนที่ 3 คนที่ 11
คนที่ 4 30° 30° คนที่ 10
30°
คนที่ 5 คนที่ 9
คนที่ 6 คนที่ 7 คนที่ 8
รูปภาพแสดง 8 มุมในการแบ่งแต่ละคน
12
จากการแบ่งอาหาร จะได้ว่า พิซซ่ามีเส้นผ่านศูนย์กลาง 30 เซนติเมตร และจานวน
นักเรียนมี 12 คน จะได้ว่า มีรัศมีเท่ากับ 15 เซนติเมตร แล ะได้มุมคือ 30 ,
m=30 คนที่ 1 ได้ 1 ครั้งที่ , คนที่ 2 ได้ 2 ครั้งที่ คนที่ 3 ได้
3 ครั้งที่ , คนที่ 4 ได้ 4 ครั้งที่ , คนที่ 5 ได้ 5 ครั้งที่
, คนที่ 6 ได้ 6 ครั้งที่ , คนที่ 7 ได้ 7 ครั้งที่ , คนที่ 8 ได้ 8
ครั้งที่ , คนที่ 9 ได้ 9 ครั้งที่ , คนที่ 10 ได้ 10 ครั้งที่
, คนที่ 11 ได้ 11 ครั้งที่ , คนที่ 12 ได้ 12 ครั้งที่
จากการแบ่งอาหารที่มีลักษณะเป็นทรงกลม สามารถหาได้โดยการทราบเส้นผ่าน
ศูนย์กลางของอาหารนั้น ๆ โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจากจุด
สัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง แล้วหารัศมี
( r ) จาก r =
̅̅̅̅
ต่อจากนั้นจะเป็นการหมุน หมุนโดยการหาจาก เมื่อ n คือ จานวนคน
จะได้คนละ = m มื่อ m คือ มุม หมุนไปเลื่อย ๆ จนครบจานวนคน ( n ) คือ ครบ 360
องศา โคยตัดทีละ โดยต้องเริ่มจากจุดสัมผัสกับไม้
บรรทัดเสมอ
13
บทที่ 5
สรุป อภิปรายผล และข้อเสนอแนะ
สรุปผล
จากการดาเนินการหารูปแบบความสัมพันธ์การแบ่งอาหารทรงกลมด้วยตรีโกณมิติ
นาเสนอรูปแบบความสัมพันธ์ได้ดังนี้
1. หาเส้นผ่านศูนย์กลาง โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้ว
ลากจากจุดสัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง
2. แบ่งเส้นผ่านศูนย์กลาง โดยหา รัศมี ( r ) จาก r =
̅̅̅̅
โดย
ความยาวเส้นผ่านศูนย์กลาง
3. การผ่าในแต่ละครั้ง สามารถหาได้จาก =
คนที่ 1 ได้ 1 ครั้งที่
คนที่ 2 ได้ 2 ครั้งที่
คนที่ 3 ได้ 3 ครั้งที่
คนที่ ได้ ครั้งที่
เมื่อ คือ จานวนคน
คือ มุม
14
อภิปรายผล
จากการแบ่งอาหารที่มีลักษณะเป็นทรงกลม สามารถหาได้โดยการทราบเส้นผ่าน
ศูนย์กลางของอาหารนั้น ๆ โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจากจุด
สัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง แล้วหารัศมี
( r ) จาก r =
̅̅̅̅
ต่อจากนั้นจะเป็นการหมุน หมุนโดยการหาจาก เมื่อ n คือ จานวนคน
จะได้คนละ = m มื่อ m คือ มุม หมุนไปเลื่อย ๆ จนครบจานวนคน ( n ) คือ ครบ 360
องศา โคยตัดทีละ โดยต้องเริ่มจากจุดสัมผัสกับไม้
บรรทัดเสมอ
สามารถสร้างความสัมพันธ์ในการแบ่งอาหารให้ได้ในปริมาณที่เท่ากัน เพื่อช่วยในการ
คานวณในการแบ่งอาหาร สร้างความเข้าใจในการสรุปความเข้าใจทางคณิตศาสตร์อย่างเป็น
รูปธรรม
ข้อเสนอแนะ
1. ควรที่จะมีการจัดแบ่งอาหารในลักษะรูปทรงเรขาคณิตแบบอื่น ๆ
2. ควรที่จะมีการวัดปริมาตรอาหารที่แบ่งให้ได้ในปริมาตรที่เท่ากันด้วย
3. ควรที่จะมีการแบ่งในรูปแบบอื่น ๆ ที่ไม่ให้เท่ากันแล้วแต่ความต้องการ

More Related Content

What's hot

โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูดโครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
Bio Beau
 
โครงงาน เพาว์เวอร์พอย
โครงงาน เพาว์เวอร์พอยโครงงาน เพาว์เวอร์พอย
โครงงาน เพาว์เวอร์พอย
Nick Nook
 
โครงงานกระถางรีไซเคิล
โครงงานกระถางรีไซเคิลโครงงานกระถางรีไซเคิล
โครงงานกระถางรีไซเคิล
พัน พัน
 
ถอดบทเรียนเศรษฐกิจพอเพียง
ถอดบทเรียนเศรษฐกิจพอเพียงถอดบทเรียนเศรษฐกิจพอเพียง
ถอดบทเรียนเศรษฐกิจพอเพียง
krupornpana55
 
โครงงานชาผักสมุนไพรพื้นบ้าน
โครงงานชาผักสมุนไพรพื้นบ้านโครงงานชาผักสมุนไพรพื้นบ้าน
โครงงานชาผักสมุนไพรพื้นบ้าน
Chok Ke
 
ศิลปการพับผ้า2
ศิลปการพับผ้า2ศิลปการพับผ้า2
ศิลปการพับผ้า2
Jakkrapan Jamnae
 
คู่มือสภานักเรียน
คู่มือสภานักเรียนคู่มือสภานักเรียน
คู่มือสภานักเรียน
krupornpana55
 
บทที่ 2 เอกสารที่เกี่ยวข้อง
บทที่ 2 เอกสารที่เกี่ยวข้องบทที่ 2 เอกสารที่เกี่ยวข้อง
บทที่ 2 เอกสารที่เกี่ยวข้อง
Kittichai Pinlert
 

What's hot (20)

โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูดโครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
โครงงานวิทยาศาสตร์แชมพูสระผมมะกรูด
 
โครงงาน เพาว์เวอร์พอย
โครงงาน เพาว์เวอร์พอยโครงงาน เพาว์เวอร์พอย
โครงงาน เพาว์เวอร์พอย
 
สะเต็มศึกษากับชีวิตประจำวัน
สะเต็มศึกษากับชีวิตประจำวันสะเต็มศึกษากับชีวิตประจำวัน
สะเต็มศึกษากับชีวิตประจำวัน
 
โครงงานกระถางรีไซเคิล
โครงงานกระถางรีไซเคิลโครงงานกระถางรีไซเคิล
โครงงานกระถางรีไซเคิล
 
โครงงานเปรียบเทียบการใช้ปุ๋ยน้ำ
โครงงานเปรียบเทียบการใช้ปุ๋ยน้ำโครงงานเปรียบเทียบการใช้ปุ๋ยน้ำ
โครงงานเปรียบเทียบการใช้ปุ๋ยน้ำ
 
การยับยั้งเชื้อราด้วยสารสกัดจากข่า
การยับยั้งเชื้อราด้วยสารสกัดจากข่าการยับยั้งเชื้อราด้วยสารสกัดจากข่า
การยับยั้งเชื้อราด้วยสารสกัดจากข่า
 
โครงงานเรขาคณิตศาสตร์
โครงงานเรขาคณิตศาสตร์โครงงานเรขาคณิตศาสตร์
โครงงานเรขาคณิตศาสตร์
 
ลม ฟ้า อากาศ
ลม ฟ้า อากาศลม ฟ้า อากาศ
ลม ฟ้า อากาศ
 
ถอดบทเรียนเศรษฐกิจพอเพียง
ถอดบทเรียนเศรษฐกิจพอเพียงถอดบทเรียนเศรษฐกิจพอเพียง
ถอดบทเรียนเศรษฐกิจพอเพียง
 
โครงงานชาผักสมุนไพรพื้นบ้าน
โครงงานชาผักสมุนไพรพื้นบ้านโครงงานชาผักสมุนไพรพื้นบ้าน
โครงงานชาผักสมุนไพรพื้นบ้าน
 
ตัวอย่างเค้าโครงข้อเสนอโครงงานคอมพิวเตอร์
ตัวอย่างเค้าโครงข้อเสนอโครงงานคอมพิวเตอร์ตัวอย่างเค้าโครงข้อเสนอโครงงานคอมพิวเตอร์
ตัวอย่างเค้าโครงข้อเสนอโครงงานคอมพิวเตอร์
 
90 โครงงานคณิตศาสตร์ ตอนที่3_การถอดรากที่3
90 โครงงานคณิตศาสตร์ ตอนที่3_การถอดรากที่390 โครงงานคณิตศาสตร์ ตอนที่3_การถอดรากที่3
90 โครงงานคณิตศาสตร์ ตอนที่3_การถอดรากที่3
 
กิตติกรรมประกาศ
กิตติกรรมประกาศกิตติกรรมประกาศ
กิตติกรรมประกาศ
 
โครงงานอาชีพ
โครงงานอาชีพโครงงานอาชีพ
โครงงานอาชีพ
 
โครงงานฉบับสมบูรณ์
โครงงานฉบับสมบูรณ์โครงงานฉบับสมบูรณ์
โครงงานฉบับสมบูรณ์
 
ศิลปการพับผ้า2
ศิลปการพับผ้า2ศิลปการพับผ้า2
ศิลปการพับผ้า2
 
คู่มือสภานักเรียน
คู่มือสภานักเรียนคู่มือสภานักเรียน
คู่มือสภานักเรียน
 
การหายใจแสง พืช C4 พืช cam (t)
การหายใจแสง พืช C4 พืช cam (t)การหายใจแสง พืช C4 พืช cam (t)
การหายใจแสง พืช C4 พืช cam (t)
 
บทที่ 2 เอกสารที่เกี่ยวข้อง
บทที่ 2 เอกสารที่เกี่ยวข้องบทที่ 2 เอกสารที่เกี่ยวข้อง
บทที่ 2 เอกสารที่เกี่ยวข้อง
 
แนวทางการดำเนินงานกิจกรรมสภานักเรียน
แนวทางการดำเนินงานกิจกรรมสภานักเรียนแนวทางการดำเนินงานกิจกรรมสภานักเรียน
แนวทางการดำเนินงานกิจกรรมสภานักเรียน
 

Similar to บทที่ 1

คณิตศาสตร์คืออะไร
คณิตศาสตร์คืออะไรคณิตศาสตร์คืออะไร
คณิตศาสตร์คืออะไร
Jiraprapa Suwannajak
 
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิวแผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
Duangnapa Jangmoraka
 
สื่อที่ใช้ ชุดการสอน
สื่อที่ใช้  ชุดการสอนสื่อที่ใช้  ชุดการสอน
สื่อที่ใช้ ชุดการสอน
Lampang Rajabhat University
 
1 การวิเคราะห์เส้นทาง path analysis
1 การวิเคราะห์เส้นทาง path analysis1 การวิเคราะห์เส้นทาง path analysis
1 การวิเคราะห์เส้นทาง path analysis
khuwawa2513
 

Similar to บทที่ 1 (20)

01 เซต บทนำ
01 เซต บทนำ01 เซต บทนำ
01 เซต บทนำ
 
แผนพื้นที่ผิวและปริมาตร
แผนพื้นที่ผิวและปริมาตรแผนพื้นที่ผิวและปริมาตร
แผนพื้นที่ผิวและปริมาตร
 
บทความวิชาการ
บทความวิชาการบทความวิชาการ
บทความวิชาการ
 
แผนพื้นที่ผิวและปริมาตร
แผนพื้นที่ผิวและปริมาตรแผนพื้นที่ผิวและปริมาตร
แผนพื้นที่ผิวและปริมาตร
 
ตัวอย่างแผนการสอนเรื่องพื้นที่ผิวและปริมาตร
ตัวอย่างแผนการสอนเรื่องพื้นที่ผิวและปริมาตรตัวอย่างแผนการสอนเรื่องพื้นที่ผิวและปริมาตร
ตัวอย่างแผนการสอนเรื่องพื้นที่ผิวและปริมาตร
 
คณิตศาสตร์คืออะไร
คณิตศาสตร์คืออะไรคณิตศาสตร์คืออะไร
คณิตศาสตร์คืออะไร
 
แผน 1 นวัตกรรม (1)
แผน 1 นวัตกรรม (1)แผน 1 นวัตกรรม (1)
แผน 1 นวัตกรรม (1)
 
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
 
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิวแผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
แผนการสอน เรื่อง ปริมาตรและพื้นที่ผิว
 
Plan 1
Plan 1Plan 1
Plan 1
 
แผน 8 นวัตกรรม บูรณาการอาเซียนศึกษา
แผน 8 นวัตกรรม บูรณาการอาเซียนศึกษาแผน 8 นวัตกรรม บูรณาการอาเซียนศึกษา
แผน 8 นวัตกรรม บูรณาการอาเซียนศึกษา
 
สื่อที่ใช้ ชุดการสอน
สื่อที่ใช้  ชุดการสอนสื่อที่ใช้  ชุดการสอน
สื่อที่ใช้ ชุดการสอน
 
1 การวิเคราะห์เส้นทาง path analysis
1 การวิเคราะห์เส้นทาง path analysis1 การวิเคราะห์เส้นทาง path analysis
1 การวิเคราะห์เส้นทาง path analysis
 
72 การนับและความน่าจะเป็น ตอนที่7_ความน่าจะเป็น2
72 การนับและความน่าจะเป็น ตอนที่7_ความน่าจะเป็น272 การนับและความน่าจะเป็น ตอนที่7_ความน่าจะเป็น2
72 การนับและความน่าจะเป็น ตอนที่7_ความน่าจะเป็น2
 
การวิเคราะห์สารสนเทศ ตอนที่ 1
การวิเคราะห์สารสนเทศ ตอนที่ 1การวิเคราะห์สารสนเทศ ตอนที่ 1
การวิเคราะห์สารสนเทศ ตอนที่ 1
 
วิจัย
วิจัย วิจัย
วิจัย
 
แผนการจัดการเรียนรู้ที่ 1
แผนการจัดการเรียนรู้ที่ 1แผนการจัดการเรียนรู้ที่ 1
แผนการจัดการเรียนรู้ที่ 1
 
บทความวิชาการ
บทความวิชาการบทความวิชาการ
บทความวิชาการ
 
59 ลำดับและอนุกรม ตอนที่1_ลำดับ
59 ลำดับและอนุกรม ตอนที่1_ลำดับ59 ลำดับและอนุกรม ตอนที่1_ลำดับ
59 ลำดับและอนุกรม ตอนที่1_ลำดับ
 
06 การให้เหตุผลและตรรกศาสตร์ บทนำ
06 การให้เหตุผลและตรรกศาสตร์ บทนำ06 การให้เหตุผลและตรรกศาสตร์ บทนำ
06 การให้เหตุผลและตรรกศาสตร์ บทนำ
 

More from ศุภกรณ์ วัฒนศรี (7)

กิตติกรรมประกาศ'งานลูกเกศ
กิตติกรรมประกาศ'งานลูกเกศกิตติกรรมประกาศ'งานลูกเกศ
กิตติกรรมประกาศ'งานลูกเกศ
 
บรรณานุกรม
บรรณานุกรมบรรณานุกรม
บรรณานุกรม
 
ภาคผนวก
ภาคผนวกภาคผนวก
ภาคผนวก
 
ปกโครงงานคณิตศาสตร์
ปกโครงงานคณิตศาสตร์ปกโครงงานคณิตศาสตร์
ปกโครงงานคณิตศาสตร์
 
บทที่ 1
บทที่ 1 บทที่ 1
บทที่ 1
 
สารบัญ
สารบัญสารบัญ
สารบัญ
 
บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อ
 

บทที่ 1

  • 1. 1 บทที่ 1 บทนา ที่มาและความสาคัญของโครงงาน โดยทั่วไปแล้วรายวิชาคณิตศาสตร์มีลักษณะเป็นนามธรรม มีโครงสร้างที่ประกอบด้วย คานิยาม บทนิยาม สัจพจน์ ที่เป็นข้อตกลงเบื้องต้น จากนั้นจึงใช้การให้เหตุผลที่สมเหตุสมผลสร้าง ทฤษฎีบทต่าง ๆ ขึ้นและนาไปใช้อย่างเป็นระบบ คณิตศาสตร์มีความถูกต้องเที่ยงตรง คงเส้นคงวา มีระเบียบแบบแผนเป็นเหตุเป็นผล และมีความสมบูรณ์ในตัวเอง หรือกล่าวได้ว่าคณิตศาสตร์เป็น ศาสตร์และศิลป์ ที่ศึกษาเกี่ยวกับแบบรูปและความสัมพันธ์ เพื่อให้ได้ข้อสรุปและนาไปใช้ ประโยชน์ คณิตศาสตร์มีลักษณะเป็นภาษาสากลที่ทุกคนเข้าใจตรงกันในการสื่อสาร (สถาบัน ส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี. 2544 : 2) สามารถนาประสบการณ์ทางด้านความรู้ ความคิดและทักษะที่ได้ไปใช้ในการเรียนรู้สิ่งต่าง ๆ และใช้ในชีวิตประจาวัน ในการเรียนคณิตศาสตร์มีบทนิยาม ทฤษฏีบท และสูตรต่าง ๆ มาใช้อย่างหลากหลาย โดยเฉพาะอย่างยิ่งในรายวิชาคณิตศาสตร์ของระดับชั้นมัธยมศึกษาตอนปลาย รวมการประยุกต์กับ เรื่องอื่น ๆ ความรู้ความเข้าใจจะเป็นพื้นฐานที่สาคัญในการเรียนต่อในระดับที่สูงขึ้น เนื่องจากในชีวิตประจาวันของผู้ศึกษาเองได้นาอาหารที่มีลักษณะเป็นทรงกลม เช่น ส้ม,แตงโม,ส้มโอ,เค้ก,พิซซ่า,โดนัส เป็นต้น มาโรงเรียนเพื่อที่จะแบ่งให้เพื่อนๆ ให้ได้คนละ เท่าๆ กัน โดยไม่ให้ใครมากหรือน้อยโดยการใช้มีดผ่าซึ่งเป็นการคาดปริมาณเองแล้วในใน บางครั้งปริมาณของแต่ละบุคคลที่แบ่งก็ไม่เท่ากัน เราจึงคิดที่จะนาความรู้เรื่องมุมใน ตรีโกณมิติมาประยุกต์ใช้ในการแบ่งอาหารที่มีลักษณะเป็นทรงกลมให้ได้ปริมาณอาหารที่ เท่า ๆ กัน วัตถุประสงค์ 1. เพื่อหาวิธีการในการแบ่งอาหารที่มีลักษณะเป็นทรงกลมให้ได้ในปริมาณที่ เท่าๆ กัน กับจานวนคน 2. เพื่อนาวิชาคณิตศาสตร์เรื่องตรีโกณมิติในระดับชั้น ม. 5 มาประยุกต์ใช้ใน ชีวิตประจาวัน 3. เพื่อสร้างแนวคิดในการพัฒนาสิ่งประดิษฐ์ทางด้านวิทยาศาสตร์ต่อไป
  • 2. 2 ขอบเขตของการศึกษา 1. จัดทาโครงงานระหว่างวันที่ 26 ธันวาคม 2558 ถึง วันที่ 20 กุมภาพันธ์ 2559 2. เนื้อหาที่เกี่ยวข้องกับวิชาคณิตศาสตร์ 2.1 เรื่องวงกลม ม.3 2.2 เรื่องตรีโกณมิติในระดับชั้น ม.5 นิยามศัพท์เฉพาะ 1. อาหารรูปทรงกลม หมายถึง คืออาหารที่รูปเรขาคณิตบนระนาบซึ่งทุกๆ จุดบนรูป เรขาคณิตนี้อยู่ห่างจากจุดคงที่จุดหนึ่งบนระนาบเดียวกันเป็นระยะเท่ากันเรียกจุดคง 2. ฟังก์ชัน ตรีโกณมิติ หมายถึง ฟังก์ชันของมุม ซึ่งมีความสาคัญในการศึกษารูป สามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ 3. เส้นสัมผัสวงกลม หมายถึง คือเส้นตรงที่ตัดวงกลมเพียงจุดเดียวเท่านั้นและเรียกจุดตัด นั้น 4. เส้นผ่าศูนย์กลางวงกลม หมายถึง คือความยาวเส้นตรงที่ผ่านจุดศูนย์กลางวงกลมโดย ที่ปลายทั้งสอง ผลที่คาดว่าจะได้รับ 1. ได้รู้ถึงสิ่งในการแบ่งของที่มีลักษณะเป็นทรงกลมให้ได้ในปริมาณที่เท่าๆ กับ กับจานวนคน 2. ได้นาความรู้ทางด้านวิชาคณิตศาสตร์ เรื่องตรีโกณมิติมาประยุกต์ใช้ใน ชีวิตประจาวัน 3. ได้รู้ถึงแนวคิดในการสร้างสิ่งประดิษฐ์ทางด้านวิทยาศาสตร์และคณิตศาสตร์ ต่อไป
  • 3. 3 บทที่ 2 เอกสารที่เกี่ยวข้อง ในการทาโครงงาน เรื่อง อาหารทรงกลมแบ่งให้เท่าเพราะเรารู้ตรีโกณฯ มีเนื้อหาวิชา คณิตศาสตร์ที่เกี่ยวข้อง ดังนี้ 1. ฟังก์ชันตรีโกณมิติ 2. วงกลม 2.1 รัศมี 2.2 เส้นผ่านศูนย์กลาง 2.3 เส้นสัมผัสวงกลม ฟังก์ชันตรีโกณมิติ (อังกฤษ: Trigonometric function) คือ ฟังก์ชันของมุม ซึ่งมีความสาคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ใน ลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรือ อัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือ สมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นามาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุม จึงเท่ากับ 180° เสมอ ในปัจจุบัน มีฟังก์ชันตรีโกณมิติอยู่ 6 ฟังก์ชันที่นิยมใช้กันดังตารางข้างล่าง (สี่ฟังก์ชัน สุดท้ายนิยามด้วยความสัมพันธ์กับฟังก์ชันอื่น แต่ก็สามารถนิยามด้วยเรขาคณิตได้) ตาราง 1 แสดงความสัมพันธ์ทางตรีโกณมิติ ฟังก์ชัน ตัวย่อ ความสัมพันธ์ ไซน์ (Sine) sin โคไซน์ (Cosine) cos แทนเจนต์ (Tangent) Tan (หรือ tg)
  • 4. 4 ฟังก์ชัน ตัวย่อ ความสัมพันธ์ โคแทนเจนต์ (Cotangent) cot (หรือ ctg หรือ ctn) ซีแคนต์ (Secant) sec โคซีแคนต์ (Cosecant) csc รูปภาพ 1 แสดงมุมเรเดียน วงกลม(Circle) 1. วงกลม เป็นรูปเรขาคณิตบนระนาบซึ่งทุกๆ จุดบนรูปเรขาคณิตนี้อยู่ห่างจากจุดคงที่จุด หนึ่งบนระนาบเดียวกันเป็นระยะเท่ากันเรียกจุดคงที่นี้ว่า จุดศูนย์กลาง (Center) 2. รัศมี (Radius) คือระยะจากจุดศูนย์กลางถึงเส้นรอบวง 3. เส้นผ่านศูนย์กลาง (Diameter) คือความยาวเส้นตรงที่ผ่านจุดศูนย์กลางวงกลมโดยที่ ปลายทั้งสอง 4. เส้นสัมผัสวงกลม (Tangent line) คือเส้นตรงที่ตัดวงกลมเพียงจุดเดียวเท่านั้นและเรียก จุดตัดนั้นว่า จุดสัมผัส (point of tangency)
  • 5. 5 รูปภาพ 2 แสดงเส้นของวงกลมต่าง ๆ O เป็นจุดศูนย์กลาง OA เป็นรัศมีวงกลม BC เป็นเส้นผ่านศูนย์กลางวงกลม DE เป็นคอร์ดของวงกลม L1 เป็นเส้นตัดวงกลม โดยตัดวงกลมที่จุด F และ G L2 เป็นเส้นสัมผัสวงกลมที่จุด H ทฤษฎี เส้นสัมผัสวงกลม จะตั้งฉากกับรัศมีของวงกลมที่จุดสัมผัส รูปภาพ 3 แสดงเส้นสัมผัสลากมาตั้งฉากกับเส้นผ่านศูนย์กลาง
  • 6. 6 บทที่ 3 วิธีการดาเนินการ วิธีดาเนินการโครงงานคณิตศาสตร์ เรื่อง อาหารทรงกลมแบ่งให้เท่าเพราะเรารู้ตรีโกณฯ คณะผู้จัดทาได้ดาเนินการดังนี้ 1. ขั้นการวางแผนการดาเนินงาน กลุ่มผู้จัดทาโครงงานได้วางแผนการดาเนินงาน ดังนี้ 1. รวบรวมสมาชิกที่มีความสนใจในเรื่องเดียวกัน เพื่อเข้ากลุ่มทาโครงงานคณิตศาสตร์ 2. ตั้งชื่อเรื่องโครงงานคณิตศาสตร์ 3. เขียนเค้าโครงโครงงานคณิตศาสตร์ 4. กาหนดแผนปฏิบัติงานโครงงานคณิตศาสตร์ 5. แบ่งหน้าที่ให้ทุกคนไปศึกษาข้อมูลเกี่ยวกับโครงงานคณิตศาสตร์ 6. รวบรวมข้อมูลที่เกี่ยวข้องเกี่ยวกับการทาโครงงานคณิตศาสตร์ ได้แก่ มุมทาง ตรีโกณมิติ และเส้นสัมผัสวงกลมกับเส้นผ่านศูนย์กลาง 7. การวิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณในการแบ่งอาหารที่มีลักษณะเป็น ทรงกลม 8. สรุปการดาเนินงาน 9. จัดทารูปเล่มโครงงาน 10. ตรวจสอบความถูกต้องของโครงงาน 11. นาเสนอโครงงาน
  • 7. 7 2. ขั้นการดาเนินงาน 1. ค้นคว้า ศึกษาข้อมูล หลักการ เนื้อหาวิชาคณิตศาสตร์ บทนิยามและทฤษฎีที่เกี่ยวข้อง กับมุมทางตรีโกณมิติ และเส้นสัมผัสวงกลมกับเส้นผ่านศูนย์กลาง 2. รวบรวมข้อมูลเกี่ยวกับการพิสูจน์และการให้เหตุผล 3. วิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณในการแบ่งอาหารที่มีลักษณะเป็นทรง กลมให้ได้ในจานวนที่เท่ากัน 4. นาเสนอข้อมูลในรูปแบบของตาราง การหาวิธีการคานวณในการแบ่งอาหารที่มี ลักษณะเป็นทรงกลมให้ได้ในปริมาณที่เท่ากัน 5. จัดทารายงานรูปเล่มโครงงานคณิตศาสตร์ และแผงสาหรับแสดงโครงงาน คณิตศาสตร์โดยกาหนดให้แผงสาหรับแสดงโครงงานคณิตศาสตร์ตามขนาดมาตรฐาน 6. นาเสนอการจัดทาโครงงาน คณิตศาสตร์ ให้กับผู้ที่สนใจ 3. ปฏิทินปฏิบัติงาน วันที่/เดือน/ปี การดาเนินงาน ผู้รับผิดชอบ 26 ธันวาคม 2558 รวบรวมสมาชิกที่มีความสนใจในเรื่องเดียวกัน เพื่อเข้า กลุ่มทาโครงงานคณิตศาสตร์ สมาชิกทุกคน 9-10 มกราคม 2559 ตั้งชื่อเรื่องโครงงานคณิตศาสตร์ สมาชิกทุกคน 12-13 มกราคม 2559 เขียนเค้าโครงโครงงานคณิตศาสตร์ สมาชิกทุกคน 16 มกราคม 2559 กาหนดแผนปฏิบัติงานโครงงานคณิตศาสตร์ สมาชิกทุกคน 18-24 มกราคม 2559 แบ่งหน้าที่ให้ทุกคนไปศึกษาข้อมูลเกี่ยวกับโครงงาน คณิตศาสตร์ สมาชิกทุกคน 25-30 มกราคม 2559 รวบรวมข้อมูลที่เกี่ยวข้องเกี่ยวกับการทาโครงงาน คณิตศาสตร์ ได้แก่ มุมทางตรีโกณมิติ และเส้นสัมผัส วงกลมกับเส้นผ่านศูนย์กลาง สมาชิกทุกคน 2-8 กุมภาพันธ์ 2559 การวิเคราะห์ข้อมูล โดยการหารูปแบบการคานวณใน การแบ่งอาหารที่มีลักษณะเป็นทรงกลม สมาชิกทุกคน 8-10 กุมภาพันธ์ 2559 สรุปการดาเนินงาน สมาชิกทุกคน 10-15กุมภาพันธ์ 2559 จัดทารูปเล่มโครงงาน สมาชิกทุกคน
  • 8. 8 วันที่/เดือน/ปี การดาเนินงาน ผู้รับผิดชอบ 15-16กุมภาพันธ์ 2559 ตรวจสอบความถูกต้องของโครงงาน สมาชิกทุกคน 20 กุมภาพันธ์ 2559 นาเสนอโครงงาน สมาชิกทุกคน
  • 9. 9 บทที่ 4 ผลการดาเนินการ จากการดาเนินการหารูปแบบความสัมพันธ์การแบ่งอาหารทรงกลมด้วยตรีโกณมิติ นาเสนอรูปแบบความสัมพันธ์ได้ดังนี้ 1. หาเส้นผ่านศูนย์กลาง โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจาก จุดสัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง A A B รูปภาพ 4 แสดงเส้นสัมผัสไปตั้งฉาก 2. แบ่งเส้นผ่านศูนย์กลาง โดยหา รัศมี ( r ) จาก r = ̅̅̅̅ โดย ความยาวเส้นผ่านศูนย์กลาง A B รูปภาพ 5 แสดงจุดกึ่งกลาง
  • 10. 10 3. การผ่าในแต่ละครั้ง สามารถหาได้จาก = คนที่ 1 ได้ 1 ครั้งที่ คนที่ 2 ได้ 2 ครั้งที่ คนที่ 3 ได้ 3 ครั้งที่ เมื่อ คือ จานวนคน คือ มุม คนที่ ได้ ครั้งที่ เช่น คุณครูซื้อพิซซ่ามาหนึ่งถาดให้นักเรียนทุกคนในห้อง ม.5/10 ซึ่งมีนักเรียน 12 คน ต้องการ แบ่งให้กับทุก ๆ คน โดยให้ได้คนละ เท่า ๆ กัน จากโจทย์ A A B รูปภาพ 6 แสดงเส้นสัมผัสไปตั้งฉากของพิซาซ่า ระยะ ̅̅̅̅ ยาว 30 เชนติเมตร หาเส้นผ่านศูนย์กลาง ̅̅̅̅ = = 15 15 cm รูปภาพ 7 แสดงจุดกึ่งกลางของพิซซ่า
  • 11. 11 = เมื่อ คือ คน คนที่ 1 ได้ 1 ครั้งที่ คนที่ 2 ได้ 2 ครั้งที่ คนที่ 3 ได้ 3 ครั้งที่ คนที่ 4 ได้ 4 ครั้งที่ คนที่ 5 ได้ 5 ครั้งที่ คนที่ 6 ได้ 6 ครั้งที่ คนที่ 7 ได้ 7 ครั้งที่ คนที่ 8 ได้ 8 ครั้งที่ คนที่ 9 ได้ 9 ครั้งที่ คนที่ 10 ได้ 10 ครั้งที่ คนที่ 11 ได้ 11 ครั้งที่ คนที่ 12 ได้ 12 ครั้งที่ มุมที่ได้ จากการแบ่ง คนที่ 2 คนที่ 1 คนที่ 12 15 cm คนที่ 3 คนที่ 11 คนที่ 4 30° 30° คนที่ 10 30° คนที่ 5 คนที่ 9 คนที่ 6 คนที่ 7 คนที่ 8 รูปภาพแสดง 8 มุมในการแบ่งแต่ละคน
  • 12. 12 จากการแบ่งอาหาร จะได้ว่า พิซซ่ามีเส้นผ่านศูนย์กลาง 30 เซนติเมตร และจานวน นักเรียนมี 12 คน จะได้ว่า มีรัศมีเท่ากับ 15 เซนติเมตร แล ะได้มุมคือ 30 , m=30 คนที่ 1 ได้ 1 ครั้งที่ , คนที่ 2 ได้ 2 ครั้งที่ คนที่ 3 ได้ 3 ครั้งที่ , คนที่ 4 ได้ 4 ครั้งที่ , คนที่ 5 ได้ 5 ครั้งที่ , คนที่ 6 ได้ 6 ครั้งที่ , คนที่ 7 ได้ 7 ครั้งที่ , คนที่ 8 ได้ 8 ครั้งที่ , คนที่ 9 ได้ 9 ครั้งที่ , คนที่ 10 ได้ 10 ครั้งที่ , คนที่ 11 ได้ 11 ครั้งที่ , คนที่ 12 ได้ 12 ครั้งที่ จากการแบ่งอาหารที่มีลักษณะเป็นทรงกลม สามารถหาได้โดยการทราบเส้นผ่าน ศูนย์กลางของอาหารนั้น ๆ โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจากจุด สัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง แล้วหารัศมี ( r ) จาก r = ̅̅̅̅ ต่อจากนั้นจะเป็นการหมุน หมุนโดยการหาจาก เมื่อ n คือ จานวนคน จะได้คนละ = m มื่อ m คือ มุม หมุนไปเลื่อย ๆ จนครบจานวนคน ( n ) คือ ครบ 360 องศา โคยตัดทีละ โดยต้องเริ่มจากจุดสัมผัสกับไม้ บรรทัดเสมอ
  • 13. 13 บทที่ 5 สรุป อภิปรายผล และข้อเสนอแนะ สรุปผล จากการดาเนินการหารูปแบบความสัมพันธ์การแบ่งอาหารทรงกลมด้วยตรีโกณมิติ นาเสนอรูปแบบความสัมพันธ์ได้ดังนี้ 1. หาเส้นผ่านศูนย์กลาง โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้ว ลากจากจุดสัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง 2. แบ่งเส้นผ่านศูนย์กลาง โดยหา รัศมี ( r ) จาก r = ̅̅̅̅ โดย ความยาวเส้นผ่านศูนย์กลาง 3. การผ่าในแต่ละครั้ง สามารถหาได้จาก = คนที่ 1 ได้ 1 ครั้งที่ คนที่ 2 ได้ 2 ครั้งที่ คนที่ 3 ได้ 3 ครั้งที่ คนที่ ได้ ครั้งที่ เมื่อ คือ จานวนคน คือ มุม
  • 14. 14 อภิปรายผล จากการแบ่งอาหารที่มีลักษณะเป็นทรงกลม สามารถหาได้โดยการทราบเส้นผ่าน ศูนย์กลางของอาหารนั้น ๆ โดยการทาบไม้บรรทัดสัมผัสกับขอบของอาหาร แล้วลากจากจุด สัมผัสให้ตั้งฉากกับอาหารที่เราจะใช้แบ่ง จากนั้นให้ ̅̅̅̅ แทนเส้นผ่านศูนย์กลาง แล้วหารัศมี ( r ) จาก r = ̅̅̅̅ ต่อจากนั้นจะเป็นการหมุน หมุนโดยการหาจาก เมื่อ n คือ จานวนคน จะได้คนละ = m มื่อ m คือ มุม หมุนไปเลื่อย ๆ จนครบจานวนคน ( n ) คือ ครบ 360 องศา โคยตัดทีละ โดยต้องเริ่มจากจุดสัมผัสกับไม้ บรรทัดเสมอ สามารถสร้างความสัมพันธ์ในการแบ่งอาหารให้ได้ในปริมาณที่เท่ากัน เพื่อช่วยในการ คานวณในการแบ่งอาหาร สร้างความเข้าใจในการสรุปความเข้าใจทางคณิตศาสตร์อย่างเป็น รูปธรรม ข้อเสนอแนะ 1. ควรที่จะมีการจัดแบ่งอาหารในลักษะรูปทรงเรขาคณิตแบบอื่น ๆ 2. ควรที่จะมีการวัดปริมาตรอาหารที่แบ่งให้ได้ในปริมาตรที่เท่ากันด้วย 3. ควรที่จะมีการแบ่งในรูปแบบอื่น ๆ ที่ไม่ให้เท่ากันแล้วแต่ความต้องการ