SlideShare a Scribd company logo
1 of 107
Hybrid Model
https://in.linkedin.com/in/rakeshmandiya
rakesh.yadav1211@gmail.com
10/21/2015
10/21/2015
 At low frequencies, we analyze transistor
using h-parameter. But for high frequency analysis the
h-parameter model is not suitable, because :-
(1) The value of h-parameters are not constant at high
frequencies.
(2)At high frequency h-parameters becomes very complex
in nature.
• Hybrid-  model is used for high frequency
analysis of the transistor.
• This model gives a reasonable compromise
between accuracy and simplicity to do high
frequency analysis of the transistor.
• So we can summaries the merits of hybrid- 
model as; it is simple and accurate.
• The value of all parameters are constant with high
frequency and all the resistive components of this
model can be obtained from low frequency h-
parameters.
In the derivation of trans conductance gm and diffusion
capacitance Cde (≈Ce), it is assumed that Vbe changes so
slowly with time that in the base region, concentration of
minority carrier holes is along straight line from Je to Jc.
Thus the collector current Ie remains equal to the emitter
current IE and the base current is extremely small
compared with Ic.
VALIDITY OF HYBRID-∏ MODEL
Hence under dynamic condition, the hybrid-π model is
valid only when the rate of change of Vbe with time is so
small that the base current increment Ib is small in
comparison with the collector current increment Ie.
Giacoletto proved that the network elements in the
hybrid model are frequency invariant provided that
Since
2πf W2/6 DB<<1
But from previous sections we have Ce and Cde
Ce = gm/2πfT
Cde = W2gm/2DB
Thus we can reduce the previous equatio
f<<6πfT/2π
Or
f<<3fT
Thus we conclude that the hybrid-π model is valid for
frequency up to about fT/3 .
10/21/2015
10/21/2015
 This model gives reasonable compromise b/w
accuracy and simplicity to do high frewuency
analysis of transistor.
 Figure shows the hybrid-  model for transistor in
CE configuration. For this model, All parameters
(resistances and capacitances) are assumed to be
independent of frequency. But they may vary with
the Q point or operating point.
10/21/2015
10/21/2015
10/21/2015
10/21/2015
10/21/2015
The parameter gm is called trans conductance
(or mutual conductance). The trans conductance represents
the small change in collector current about the operating
point produced by the small changes in base emitter voltage .
This effect of change in collector current due to small change
in base-emitter voltage, accounts for the current generator gm Vb’c
at output and it is called as trans conductance.
gm=ΔIc/ΔVb’e
at a constant Vce.
10/21/2015
Capacitance Cc :-
The collector-junction capacitance :-
Cc = Cbe
(The output capacitance measured at CB junction
with the input open, i.e. Ie = 0 and is specified by the
manufactures as Cob.)
Since in the active region the collector,junction is
reverse biased, then Cc is a transition capacitance,
and hence varies as Vcb where n is 1/2 or 1/3 for an
abrupt or gradual junction, respectively.
10/21/2015
10/21/2015
10/21/2015
Hence the charge stored in the base region (QB) is given by
:-
QB =P'(0) *(A*W*q) / 2
Where
W = base width
A = cross-sectional area of base
AW = volume of base
q = electronic charge
Pʹ(0) = Injected charge concentration
Pʹ(0)/2 = Average concentration of carrier
in base region
QB = p’(0)*(v*q)/2
Thus ,
Aq = 2QB/P'(0)*W ………….(1)
Current density (J) = -qDp(dP/dx)
Where
Dp = diffusion constant
dp / dx = Change in concentration w.r.t. distance
Diffusion current :-
I = J.A
= - AqDp (dP'/dx)
= +AqDBP'(0)/W
(where , DB= diffusion constant for minority carrier)
Thus,
Aq = I*W / DB*P'(0) ……………………(2)
Equating both the equations :-
2QB/P'(0)*W = I*W/DB*P(O)
QB = I*W2/2DB ………………………....(3)
Finally,The static diffusion capacitance
Cde=dQB/dV
From above equation:-
Cde = dI*W2/ 2DB*Dv
= [W2/ re *2DB]
Where
re = emitter junction incremental resistance and is given by :-
re=dV/dl = VT/IE
Thus ,
Cde=[W2/2DB].[IE/VT]
Cde=gm.[W2/2DB] = Ce
This indicates that the Cde is proportional to the IE
and inversely proportional with VT. Cde is almost
independent of temperature.
Experimentally, Ce is determined from a
measurement of the frequency flat which the CE
short-circuit current gain drops to unity ;
Ce =gm/2πft
The equation for the trans conductance can be derived as
follows :
Let us consider a P-N-P transistor in the CE Configuration
with Vee bias in the collector circuit a shown in Fig.
T1 !PNPR5 1V1 5TP5TP6
rb'b
Vbe VE
B
C
B'
E
VCC
The trans conductance is defined as the ratio of change in the
collector current due to small changes in the voltage Vb’e
across the emitter junction.
We know that, the Collector current in active region is given
as
For a pnp transistor
Ic=Ico- IE
Also , Isc = gm Vb’e =Ic
or gm = dIc / dVb’e …….(1)
δIc= αδIE
Substituting values of δIC in eq (1) we get :-
gm= αdIE/ dVb’e
The emitter diode resistance is given as :-
1/re = dIE/dV
10/21/2015
For P-N-P transistor Ic is negative and for an N-P-N
transistor Ic is positive, but in the foregoing analysis (with
VE = +VBE) we get
Hence, for either type of transistor gm is positive.
gm = α (IC -ICO) / VT
= α IC / VT
Substituting value of VT we get,
gm = 11600IC/T
Substituting/ the value of re in we get,
gm= αIE/VT = α ( Ico-Ic )/VT
Equation shows that trans conductance gm is inversely
proportional to temperature.
At room temperature, 300k
gm=11600Ic/300
= Ic/26*10-3
=Ic /26
This is for,
Ic=1.3mA, gm=0.05m mho
while for,
Ic=2.6mA, gm=0.1m mho
These values are much larger than the trans
conductance
obtained with FET’s
As discussed earlier, the high frequency analysis takes into
account the capacitive effect of PN Junction in transistor.
We can not assume at high frequency that transistor responds
instantly to changes of input voltage or current because the
mechanism of the transport of charge carrier from emitter to
collector is essentially one of diffusion.
The increase of hfe with temperature has been
determined experimentally, where as the increase with
|VCE| is due to the decrease of the base width and the
reduction in recombination which increase the transistor
‘Alpha’.
10/21/2015
10/21/2015
For calculating the resistance we are conidering the Hybrid ∏-
model in terms of low frequency H parameter aiso neglacting
the capacitance effect.
First consider the hybrid-  model for CE Configuration:-
10/21/2015
We know that hie is the input resistance (in h-parameter
model) when the output terminals i.e. collector terminals
are shorted. Under this condition in Hybrid -  model, rb'c
comes in parallel with rb'e. But since rb'c »rb'e
rb’e || rb’c ≈ rb’e
:. With hybrid-  model input resistance with output shorted
is rbb' + rb'e.
hie = rbb’ + rb’e
rbb’ = hie – rb’e
In h-parameter model, hre is defined as reverse voltage gain:
hre = Vb’e/Vce = rb’e /(rb’e + rb’c)
By applying voltage divider formula
hre rb’e + hre.rb’c = rb’e
rb’e(1-hre) = hre.rb’c
Since ;
hre <<1
rb’e = hre.rb’c
rb’c = rb’e / hre
Feedback Conductance
gb’c = hre*gb’e
10/21/2015
Ic= Vce / rce + gm. Vb’e + Vce /(rb’c + rb’e )
Vb’e = hre. Vce
Ic= Vce / rce + gm.hre. Vce + Vce /(rb’c + rb’e )
gb’c = hre.hfe
gm = gb’e.hfe
hoe = gce + gb’c.hfe .gb’c/gb’e +gb’c
hoe = gce + gb’c(1+ hfe)
hfe>>1
gce = hoe – gb’c.hfe
10/21/2015
10/21/2015
10/21/2015
10/21/2015
Looking at the above fig.we can write
IL= -gmVb’e
And
Ii= Vb’e [ gb’e + jw (Cc+ Ce) ]
Current gain under short circuit condition is
AI = IL/ Ii
, = -gmVb’e / Vb’e [gb’e + jw (Cc+Ce) ]
AI = -hfe/[1 + j2f(Cc+Ce)/ gb’e] ………..Eq.(1)
AI =- hfe/[1 + jf/fβ]
Where
fβ =gb’e/ 2Π(Cc+Ce)
As we know
gb’e= gm/hfe
where
fβ = gm/ hfe 2Π(Cc+Ce) …………….. Eq.(2)
β- Cut-Off Frequency(fβ)
fβ is defined as the frequency at which CE short circuit
current gain falls (1/ 2)1/2 (or 0.707 or falls by 3 dB ) of
its low frequency value i.e. hfe.
So te value of hfe can be neglacted
because hfe >>1
The value of fβ can be
found out using expression
fβ= gm/2(Cc+Ce)
The frequency range up to fβ forms the 3 dB band width
or simply the band width of the circuit.
The Parameter(fT) :
Frequency fT is defined as the frequency at which CE
Short circuit current gain becomes unity.
at f= fT ,
AI becomes :
AI = 1= hfe/[1 +( fT/fβ)2 ] … eq.(3)
The ratio fT/ fβ, is quite large as compared to (fT/
fβ>>1)) hence Equation (1) becomes
1= hfe/ fT/fβ
substituting this value of
fβ= gm/ hfe2f(Cc+Ce)
therefore
fT = gm/2f(Cc+Ce) …. Eq.(4)
since Ce>>Cc we can write
So we can neglacted the value of Cc
fT = gm/ 2f Ce ……. Eq.(5)
fT as CE short circuit current gain bandwidth product:-
We know that,
fT = hfe*fβ
That is fT is the product of low frequency gain (hfe) and 3dB
bandwidth of short circuited CE stage (fβ) .
Hence fT represents the CE short circuit current gain-band
width product.
10/21/2015
α-Cut-Off Frequency, fα
We have already seen β-cut-off frequency for transistor
operating in CE configuration. a cut off frequency is a
similar frequency for transistor operating in CB
configuration.
fα can be defined as the frequency at which the transistor's
short circuit CB current gain drops 3 dB or (1/2) times from
its value at low frequency hfb. The expression for fα is given
as:
fα = hfe*gb'e / 2Π*Ce ………….. Eq.(6)
10/21/2015
10/21/2015
10/21/2015
As K = Vce/Vb’e
= ILRL/ Vb’e
= (-gmVb’e)RL/Vb’e
= -gmRL
So ;
1-K=1+ gmRL
Thus, AI = IL/ Ii
AI = -gmVb’e / Vb’e [gb’e + jwCeq ]
As we know
gb’e= gm/hfe
Thus ,
Ai = -gb’ehfe/[gb’e+ jwCeq ]
Ai = -hfe/[1 + j2Πf(Ceq)/ gb’e] ………..Eq.(1)
Ai= - hfe/[1 + jf/fH]
fH= gb’e/ 2 Πceq
=1/ 2Πrb’e[Ce+Cc(1 +gmRL)]
The simplified equivalent circuit is at RL= 0 :-
fH=1/ 2Πrb’e(Ce+Cc)= f
So the current gain = Ai = hfe / [ 1+(f /fh)2]1/2
= hfe / (2)1/2,
= 0.707 hfe
10/21/2015
Rs’=Rs+rbb’=1/Gs’
By applying KCL at B’ & C, we get : -
Gs’Vs=[Gs’+gb’e+s(Ce+Cc)]Vb’e-sCcVo..(1)
0=(gm-sCc)Vb’e+({1/RL}+sCc)Vo……(2)
We know that the voltage gain is
By solving the equation 2 and find the value of
And put I in equation 1
Avs=Vo/Vs
Vb’e
Vb’e = ({1/RL}+sCc)Vo /(sCc-gm)
Vo/Vs= -Gs’RL(gm-sCc)/ s2CeCcRL +s[Ce+Cc+CcRL
(gm+gb’e+Gs’)]+Gs’+gb’e……eqn.(3)
By solving the quadratic equation
We get
Avs=Vo/Vs=K1(s-s0)/[(s-s1)(s-s2)…eqn.(4)
Where
K1=Gs’/Ce,
s0=gm/Cc
s1=Complex value
s2 =Complex value
10/21/2015
10/21/2015
fH =1/ 2ΠReqCeq
Req =(Rs+rbb’)||rb’e
Req=Rs rbb’rb’e/Rs+rbb’+rb’e
hie=rbb’+rb’e
Put the value of Req=(Rs+rbb’)rb’e/(Rs+hie)
fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e
Avs= Vo/Vs
=-gmVb’eRL/Is(Rs+rbb’+rb’e)
Avs =-gmVb’eRL/Is(Rs+hie)
Vb’e=Ib’erb’e
Avs =-gm(Ib’erb’e)RL/Is(Rs+hie)
Ib=Is
Avs =-gmrb’eRL/Rs+hie
since fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e
therefore|Avsfh|
={-
gmrb’eRL/Rs+hie}{(Rs+hie)/2ΠC(Rs+rbb’)rb’e}
|Avsfh|=-gmRL/2ΠC(Rs+rbb’)
|Avsfh|=gmRL/2ΠC(Rs+rbb’)
|Avsfh|=gmRL/2ΠCeq(Rs+rbb’)
Ceq=Ce+Cc(1+gmRL)
|Avsfh|=gmRL/2Π{Ce+Cc(1+gmRL) }(Rs+rbb’)
divide both numerator & denominator by
2Π (Ce+Cc)
|Avsfh|={gmRL/2Π(Ce+Cc)}/{[2Π[Ce+Cc(1+gmRL)
](Rs+rbb’)]/2Π(Ce+Cc)}
|Avsfh|={gmRL/2Π(Ce+Cc)}/{[(1+CcgmRL) /(Ce+Cc)
](Rs+rbb’)}
fT = gm/2Π(Ce+Cc)
|Avsfh|= fT RL/{(1+ 2ΠfTCcRL)(Rs+rbb’)}
A
+
Is
Rs1k
rbb' 1k
R11k
C11u
gmVb'e
RL1k
rb'e1k
(b) Applying current dividing rule we get
Vs/(Rs+rbb’+rb’e) =Vb’e/rb’e
IsRsrb’e=(Rs+rbb’+rb’e)Vb’e
Is=(Rs+hie)Vb’e/Rsrb’e
AIS=-gmVb’e/Vb’e (Rs+hie/Rsrb’e)
=-gmrb’eRs/Rs+hie
fH=(Rs+hie)/2ΠC(Rs+rbb’)rb’e
fT=gm/2Π(Ce+Cc)
|AIsfh|=
gmrb’eRs/Rs+hieX(Rs+hie)/2ΠC(Rs+rbb’)rb’e
|AIsfh|=(-gm/2ΠC)X(Rs/Rs+rb’e)
C=Ce+Cc(1+gmRL)
|AIsfh|= -gmRs/2Π(Ce+Cc)
|AIsfh|={gmRs/2Π(Ce+Cc)}/(2ΠCe+Cc(1+gmRL))(Rs+rbb’)/2Π(C
e+Cc)
fT=gm/2Π(Ce+Cc)
|AIsfh|=fTRs /(1+2ΠfTCcRL)(Rs+rbb’)
10/21/2015
10/21/2015
10/21/2015
10/21/2015
10/21/2015
10/21/2015
We know that low freq. gain of emitter follower is almost
unity. Therefore A=1;1-K=0;K-1/K=0, thus we can ignore
Ce(1-K),gb’e(K-1/K)and Ce(K-1/K).
The simplified ckt is: -
Voltage gain
A = Vo/Vi = Ve/Vi….............(1)
Ve=IZ
=I/(1/RL+jwCL)
=gmVb'e/((1+jwCLRL)/RL)
=gmRLVb'e/(1+jwCLRL)
=gmRL(Vi-Ve)/(1+jwCLRL)
Ve = gmRLVi/(1+jwCLRL)– gmRLVe /(1+jwCLRL )
Ve+VegmRL/(1+jwCLRL) =gmRLVi/(1+jwCLRL)
(Ve[(1+jwCLRL +gmRL)]) / (1
+jwCLRL)=gmRLVi/(1+jwCLRL)
Therefore
Av=Vo/Vi
gmRL
1+gmRL+jwCLRL
Upper cut-off frequency fH
Av = gmRL/(1+gmRL)(1/1+[jwCLRL/(1+gmRL)])
gmRL
1+gmRL(1+jf/fH)
Thus ,
Av =AVL/(1+jf/fH)
Where ,
AVL=gmRL/1+gmRL<1
fH=1+gmRL/2ΠCLRL
If f = fH Then
Av = gm RL
√2 (1+gm RL)
Now, since the input impedance between
terminals B' and
C is very large in comparison with (rb'b + Rs).
Hence A,
also represents the over all voltage gain Avs:-
Avs = Ve / Vi
Avs= Ao/1+jf/fH
Numerical
Ques1. The following low frequency parameters are known for given
transistor at Ic =10mA,Vce =10Vand at room temperature,
hie=500Ω,hoe=4*10-5 A/V , hfe=100,hre=10-4 .At same operating
point ft = 50Mhz,Cob=3PF.Compute values of all hybrid parameters.
Ans
Given:-
Ic =10mA,Vce =10V,hie=500Ω, hoe=4*10-5 A/V , hfe=100,
hre=10-4 ft =50Mhz,Cob=3PF
To Find:-
All values of hybrid parameters
Formula Used:-
VT=T/11600,gm =Ic /VT ,rb’e=hfe /gm, rbb’=hie-
rb’e , rb’c = rb’e /hre, gce= hoe-(1+ hfe)gb’c ,rce =1/ gce
,Ce = gm /2ΠfT
gm=Ic /VT
=10x10-3 /0.026
=0.3846A/V
2 rb’e=hfe /gm,
=100/0.3846
=260Ω
3 rb’c = rb’e /hre
=260/10-4
= 260x10+4 Ω
5 gce= hoe-(1+ hfe)gb’c
=4x10-5 –(1+100)/260x104
=0.12x10-5 A/V
6 rce=8.33x105 Ω
7 Ce=gm /2ΠfT
=0.3846/2x3.14x30x106
8 Ce=2.04PF
4 rbb’=hie-rb’e
=500-260
=240 Ω
Solution:-
1 gm =Ic /VT
VT=T/11600
=2.98/11600
VT =0.026V
Ques2.Given following transistor measurements made at
Ic=5mA,Vce =10V & at room temperature hfe =100 Ω,
hie=600Ω,Aie =10 at 10 Mhz, Cc =3PF.Find fß , ft ,Ce ,r b’e &
r b’b.
Ans
Given :-
Ic=5mA,Vce =10V, hfe =100 Ω,
hie=600Ω,Aie =10 at 10 Mhz, Cc =3PF
To Find:-
fß , ft ,Ce ,r b’e & r b’b.
Solution:-
1 ft=Aie xf
=10x10
=100Mhz
2 fß= ft / hfe
= 100/100
= 1Mhz
3 gm=Ic/VT
=5/26
=0.0192A/V
4 rb’e = hfe/gm
=100/0.192
=520Ω
5 rb’b = hie - rb’e
=100-520
=-420 Ω
6 Ce=gm /2Π fT
=0.192/2X3.14X100X106
=30.5PF
Ques3.The hybrid parameters of a transistor used in circuit
as shown in fig. gm=50mA/V, rb’e=1KΩ, rb’c=4MΩ,
rb’c=80KΩ, Cc=3PF, Ce=100PF, rbb’=100Ω.
+Vcc
Find:-
(1)Upper 3dB frequency of current gain.
(2) the magnitude of voltage gain at
Avs=Vo/Vs at frequency of part1.
Given:-
gm=50mA/V, rb’e=1KΩ, rb’c=4MΩ, rce=80KΩ, Cc=3PF,
Ce=100PF, rbb’=100Ω.
Solution:-
First draw its h-equivalent diagram
(1)fh=1/2ΠReq Ceq
Req=(Rs+rbb’)||rb’e
=(900+100)||1000
=500Ω
Ceq=Ce+Cc(1+gmRL)
=100X10-12 +(1+50X10-3X1X103)3X10-12
=253PF
fh=1/2ΠReq Ceq
=1/2X3.14X500X253X10-12
fh=1.26Mhz
(2) Voltage Gain
Avs=-gmRL
=-50X103X10-3
Avs =-50dB
Ques4 . Consider a single stage CE transistor
amplifier with a load resistance shunted by load
capacitance.
Prove that
(a)internal voltage gain
K=Vce/Vb’e = gmRL/1+jw(Cc+CL)RL
(b) 3dB frequency is given as
FH =1/2Π(Cc+CL)RL
Ans:-
Proof:-
(a) K=Vce/Vb’e
Vce=I/G
I=gm Vb’e
G=1/RL+jw(CL+CC)
=>Vce= -gm Vb’e/ 1/RL+jw(CL+CC)
= -gm Vb’eRL /1+jw(CL+CC)
K=Vce/Vb’e
=>K= -gm Vb’eRL /(1+jw(CL+CC)) Vb’e
K= -gm RL /1+jw(CL+CC)
Hence Prooved
(b) C=Ce+Cc(1-K)
K= -gm RL /1+jw(CL+CC)
=>C=Ce+Cc(1+gm RL /1+jw(CL+CC))
K= -gm RL /1+j(w/fh)
w=1/ RL(CL+CC)
fh=w/2Π
fh=1/2Π RL(CL+CC)
Hence Prooved
Ques5.(a) From circut diagram assume |K|>>1
Prove that K= -gm Rc +jwCC RL/1+jwRLCC Why may be
the term jwCC RL be neglected in the numerator but not in
the denominator?
(b) the Miller’s admittance in the output circuit is given by
Yo=jwCc(1-1/K)
Prove that this represents a capacitance Co in parallel with a
resistance Ro given by Co= Cc (1+gm RL)/gm RL, Ro= -gm
/w2Cc
circuit diagram
Vce=I/G
I=gm Vb’e
G=1/RL+jwCC (K-1/K)
=>Vce=-gm Vb’e/ 1/RL+jwCC (K-1/K)
Vce = KVb’e (since K= Vce/Vb’e )
=>K= -gmVb’e / {1/RL+jwCC (K-1/K) } Vb’e
-gm =K{1/RL+jwCC (K-1/K)}
-gm ={K/RL+jwCC (K-1)}
-gm =K(1/RL+jwCC)-jwCC
K=(-gm+jwCC)/(1/RL+jwCC)
K=(-gmRL+jwCCRL)/(1+jwCCRL)
Hence prooved
w=gm/Cc
=50X10-3/3X10-12
=16.7X108 radians
wT=gm/Ce
= 50X10-3/100X10-12
=0.5X108 radians
gmRL= 50X10-3 X2X103
=100
in numerator(gmRL+jwCCRL)
jwCCRL=j(16.7X108 X3X10-12X2X103)
=10.02 which is <<100 & can be neglected
But In denominator(1+jwCCRL)
The value of jwCCRL(10.02)>>1 hence it can’t be
Neglected.
(b) Yo=jwCc(1-1/K)
K=(-gmRL)/(1+jwCCRL)(since jwCCRL is
neglected in num.)
Yo=jwCc(1-1+jwCCRL/-gmRL)
=jwCc(-gmRL-1-jwCCRL/-gmRL)
=jwCc(1+gmRL/gmRL)+(jwCCRL)(jwCC)/(gmRL)
Yo =jwCc (1+gmRL/gmRL)-w2Cc
2/gm - (1)
General Equation Yo=jwC0-1/R0
By comparing equation (1) with gen eqn
C0= Ce(1+gmRL/gmRL), R0 =-gm/w2Cc
2 H.P
Ques6. Verify
(a)|Avsfh|=gm /2ΠC{RL /Rs +rbb’}
=(fT/1+ 2ΠfTCcRL)( RL/Rs +rbb’)
(b)|AIsfh|=(fT/1+ 2ΠfTCcRL)( RS/Rs +rbb’)
PROOF:-
(a) fH =1/ 2ΠReqCeq
Req =(Rs+rbb’)||rb’e
Req=Rs rbb’rb’e/Rs+rbb’+rb’e
hie=rbb’+rb’e
Put the value of Req=(Rs+rbb’)rb’e/(Rs+hie)
fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e
Avs= Vo/Vs
=-gmVb’eRL/Is(Rs+rbb’+rb’e)
Avs =-gmVb’eRL/Is(Rs+hie)
Vb’e=Ib’erb’e
Avs =-gm(Ib’erb’e)RL/Is(Rs+hie)
Ib=Is
Avs =-gmrb’eRL/Rs+hie
since fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e
therefore|Avsfh|
={-gmrb’eRL/Rs+hie}{(Rs+hie)/2ΠC(Rs+rbb’)rb’e}
|Avsfh|=-gmRL/2ΠC(Rs+rbb’)
|Avsfh|=gmRL/2ΠC(Rs+rbb’)
Hence Prooved
|Avsfh|=gmRL/2ΠCeq(Rs+rbb’)
Ceq=
Ce+Cc(1+gmRL) |Avsfh|=gmRL/2Π{Ce+Cc(1+gmRL) }(Rs+rbb’)
divide both numerator & denominator by
2Π (Ce+Cc)
|Avsfh|={gmRL/2Π(Ce+Cc)}/{[2Π[Ce+Cc(1+gmRL)
](Rs+rbb’)]/2Π(Ce+Cc)}
|Avsfh|={gmRL/2Π(Ce+Cc)}/{[(1+CcgmRL) /(Ce+Cc) ](Rs+rbb’)}
fT = gm/2Π(Ce+Cc)
|Avsfh|= fT RL/{(1+ 2ΠfTCcRL)(Rs+rbb’)}
Hence Prooved
(b) Applying current dividing rule we get
Vs/(Rs+rbb’+rb’e) =Vb’e/rb’e
IsRsrb’e=(Rs+rbb’+rb’e)Vb’e
Is=(Rs+hie)Vb’e/Rsrb’e
AIS=-gmVb’e/Vb’e (Rs+hie/Rsrb’e)
=-gmrb’eRs/Rs+hie
fH=(Rs+hie)/2ΠC(Rs+rbb’)rb’e
fT=gm/2Π(Ce+Cc)
|AIsfh|=
gmrb’eRs/Rs+hieX(Rs+hie)/2ΠC(Rs+rbb’)rb’e
|AIsfh|=(-gm/2ΠC)X(Rs/Rs+rb’e)
C=Ce+Cc(1+gmRL)
|AIsfh|= -gmRs/2Π(Ce+Cc)
|AIsfh|={gmRs/2Π(Ce+Cc)}/(2ΠCe+
Cc(1+gmRL))(Rs+rbb’)/2Π(Ce+Cc)
fT=gm/2Π(Ce+Cc)
|AIsfh|=fTRs /(1+2ΠfTCcRL)(Rs+rbb’)
Hence prooved
Ques7.Consider hybrid –Π circuit at low frequency so
that Ce &Cc may be neglected .omit none of other
elements in circuit. If RL=1/gL.
Prove that
(a) K=Vce/Vb’e =-gm+gb’c/ gce+gb’c +gL
(b)Using Miller’s theorm draw the equivalent circuit
between C& E. Applying KCL to this network , show
that above value of K is Obtained.
(c) Using Miller’s theorm draw the equivalent circuit
between B& E.prove that AI under RL is
AI=gL/ (gb’e+gb’c /K)-gb’c
(d)Using results of part (a) & (c) & relationship between
hybrid h&Π parameters prove that AI=-hfe/(1+hoeRL)
Proof:-
(a)K=Vce/Vb’e
Vce=IscZce
IL=Isc=Vb’egb’c -gmVb’e =Vb’e(gb’c -gm)
Zce=(rb’c||rce||RL)(Z seen between C&E)
=1/ gb’c+gce+gL
Vce= Vb’e(gb’c -gm)/(gb’c+gce+gL)
K=Vce/Vb’e
=>K=(gb’c -gm)/(gb’c+gce+gL)
Hence proved
(b)Applying Miller’s theorm b/w C&E we get
Vce= -gmVb’e/{gce+gL+(K-1/K)gb’c}
Vce= {-gmVb’e K}/{K(gce+gL+gb’c)- gb’c}
Vce/Vb’e= (-gmK)/{K(gce+gL+gb’c)- gb’c}
K = (-gmK)/{K(gce+gL+gb’c)- gb’c}
10/21/2015
K = (-gmK)/{K(gce+gL+gb’c)- gb’c}
Taking common K both sides we get
K(gce+gL+gb’c)- gb’c =-gm
K(gce+gL+gb’c)=-gm + gb’c
K= (-gm + gb’c) /(gce+gL+gb’c)
Hence proved
(c) Applying Miller’s theorm b/w B &E we get
AI=IL/Ii=gmVb’e/Ii
rbb' 1k
rb'e1k
(rb'c/1-K)1k
B
E
IL=VcegL
Vce=Vb’eK (since K=Vce/Vb’e)
=>IL=gLVb’eK
Also IL=K gLIi/(gb’e+(1-K)gb’c)
IL/Ii=K gL/(gb’e+gb’c-Kgb’c)
Dividing by K throughout we get
IL/Ii =gL/{(gb’e+gb’c /K)-gb’c}
Hence proved.
(d)As gm>>gb’c & gb’e>>gb’c
Thus K=-gm/(gce+gL+gb’c) (1)
AI=gLK/gb’e-Kgb’c (2)
from (1)& (2)
AI={gmgL/(gce+gL+gb’c)}/{gb’e+gb’c
gm/(gce+gL+gb’c)}
AI={-gmgL/[gb’e (gce+gL+gb’c) +gb’c gm]}
dividing both num.&denom. by gb’e gL we get
AI={-gm/gb’e}/{[(gce+gL+gb’c)/gL]+[gb’c gm /gL]}
hfe=-gm/gb’e
gL= gm gb’c
AI=-hfe/{1+(gce+gb’c+gmgb’c)/gL}
AI = -hfe/(1+RLhoe )
Hence proved

More Related Content

What's hot (20)

Lab - 03
Lab - 03Lab - 03
Lab - 03
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
FET (Field Effect Transistors)
FET (Field Effect Transistors)FET (Field Effect Transistors)
FET (Field Effect Transistors)
 
BJT & ITS BIASING
BJT & ITS BIASINGBJT & ITS BIASING
BJT & ITS BIASING
 
MOSFET....complete PPT
MOSFET....complete PPTMOSFET....complete PPT
MOSFET....complete PPT
 
Scr basics
Scr   basicsScr   basics
Scr basics
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
 
Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
MOS-Nonideal charecteristics
MOS-Nonideal charecteristicsMOS-Nonideal charecteristics
MOS-Nonideal charecteristics
 
Second order effects
Second order effectsSecond order effects
Second order effects
 
Field Effect Transistor ppt
Field Effect Transistor pptField Effect Transistor ppt
Field Effect Transistor ppt
 
Power BJT
Power BJTPower BJT
Power BJT
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
Transistor configurations
Transistor configurationsTransistor configurations
Transistor configurations
 
Digital Communication: Channel Coding
Digital Communication: Channel CodingDigital Communication: Channel Coding
Digital Communication: Channel Coding
 

Viewers also liked

h parameter conversion formulas
h parameter conversion formulash parameter conversion formulas
h parameter conversion formulasSadeesh Kalhara
 
Lecture 07 transistor re model
Lecture 07 transistor re modelLecture 07 transistor re model
Lecture 07 transistor re modelIsmael Cayo Apaza
 
Lecture 08 hibridequivalentmodel
Lecture 08 hibridequivalentmodelLecture 08 hibridequivalentmodel
Lecture 08 hibridequivalentmodelIsmael Cayo Apaza
 
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrum
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrumTelekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrum
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrumBeny Nugraha
 

Viewers also liked (6)

h parameter conversion formulas
h parameter conversion formulash parameter conversion formulas
h parameter conversion formulas
 
Lecture 07 transistor re model
Lecture 07 transistor re modelLecture 07 transistor re model
Lecture 07 transistor re model
 
Lecture 08 hibridequivalentmodel
Lecture 08 hibridequivalentmodelLecture 08 hibridequivalentmodel
Lecture 08 hibridequivalentmodel
 
Chap7part4 (2)
Chap7part4 (2)Chap7part4 (2)
Chap7part4 (2)
 
Two port network
Two port networkTwo port network
Two port network
 
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrum
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrumTelekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrum
Telekounikasi Analog & Digital - Slide week 2 - lanjutan sinyal & spektrum
 

Similar to Hybrid model analog electronics

Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxwencove9
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterRamaraochowdary Kantipudi
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifierssherifhanafy4
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...VLSICS Design
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...VLSICS Design
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsIJRES Journal
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)Claudia Sin
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...IJERA Editor
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション Tsuyoshi Horigome
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 

Similar to Hybrid model analog electronics (20)

Bjt session 6
Bjt session 6Bjt session 6
Bjt session 6
 
Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptx
 
finalreport
finalreportfinalreport
finalreport
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifiers
 
Frequency Response.pptx
Frequency Response.pptxFrequency Response.pptx
Frequency Response.pptx
 
Bjt session 7
Bjt session 7Bjt session 7
Bjt session 7
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
Capacitor Voltage Control Strategy for Half-Bridge Three-Level DC/DC Converter
Capacitor Voltage Control Strategy for Half-Bridge Three-Level DC/DC ConverterCapacitor Voltage Control Strategy for Half-Bridge Three-Level DC/DC Converter
Capacitor Voltage Control Strategy for Half-Bridge Three-Level DC/DC Converter
 
A novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistorsA novel voltage reference without the operational amplifier and resistors
A novel voltage reference without the operational amplifier and resistors
 
Linear Integrated Circuit
Linear Integrated Circuit Linear Integrated Circuit
Linear Integrated Circuit
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)
 
Audio amplifier
Audio amplifier Audio amplifier
Audio amplifier
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Lec-8.pdf
Lec-8.pdfLec-8.pdf
Lec-8.pdf
 
J3602072079
J3602072079J3602072079
J3602072079
 
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...
Implementation of Full-Bridge Single-Stage Converter with Reduced Auxiliary C...
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

More from rakesh mandiya

Power amplifire analog electronics
Power amplifire analog electronicsPower amplifire analog electronics
Power amplifire analog electronicsrakesh mandiya
 
30092013115728 agricultural-robotics
30092013115728 agricultural-robotics30092013115728 agricultural-robotics
30092013115728 agricultural-roboticsrakesh mandiya
 
Oscillator multivibrotor
Oscillator multivibrotorOscillator multivibrotor
Oscillator multivibrotorrakesh mandiya
 

More from rakesh mandiya (7)

Rf light sources
Rf light sourcesRf light sources
Rf light sources
 
Power amplifire analog electronics
Power amplifire analog electronicsPower amplifire analog electronics
Power amplifire analog electronics
 
Tuned amplifire
Tuned amplifireTuned amplifire
Tuned amplifire
 
Accident prevention
Accident preventionAccident prevention
Accident prevention
 
Accident prevention
Accident preventionAccident prevention
Accident prevention
 
30092013115728 agricultural-robotics
30092013115728 agricultural-robotics30092013115728 agricultural-robotics
30092013115728 agricultural-robotics
 
Oscillator multivibrotor
Oscillator multivibrotorOscillator multivibrotor
Oscillator multivibrotor
 

Recently uploaded

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 

Recently uploaded (20)

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 

Hybrid model analog electronics

  • 4.  At low frequencies, we analyze transistor using h-parameter. But for high frequency analysis the h-parameter model is not suitable, because :- (1) The value of h-parameters are not constant at high frequencies. (2)At high frequency h-parameters becomes very complex in nature.
  • 5. • Hybrid-  model is used for high frequency analysis of the transistor. • This model gives a reasonable compromise between accuracy and simplicity to do high frequency analysis of the transistor. • So we can summaries the merits of hybrid-  model as; it is simple and accurate. • The value of all parameters are constant with high frequency and all the resistive components of this model can be obtained from low frequency h- parameters.
  • 6. In the derivation of trans conductance gm and diffusion capacitance Cde (≈Ce), it is assumed that Vbe changes so slowly with time that in the base region, concentration of minority carrier holes is along straight line from Je to Jc. Thus the collector current Ie remains equal to the emitter current IE and the base current is extremely small compared with Ic. VALIDITY OF HYBRID-∏ MODEL
  • 7. Hence under dynamic condition, the hybrid-π model is valid only when the rate of change of Vbe with time is so small that the base current increment Ib is small in comparison with the collector current increment Ie. Giacoletto proved that the network elements in the hybrid model are frequency invariant provided that Since 2πf W2/6 DB<<1 But from previous sections we have Ce and Cde Ce = gm/2πfT Cde = W2gm/2DB
  • 8. Thus we can reduce the previous equatio f<<6πfT/2π Or f<<3fT Thus we conclude that the hybrid-π model is valid for frequency up to about fT/3 .
  • 11.  This model gives reasonable compromise b/w accuracy and simplicity to do high frewuency analysis of transistor.  Figure shows the hybrid-  model for transistor in CE configuration. For this model, All parameters (resistances and capacitances) are assumed to be independent of frequency. But they may vary with the Q point or operating point.
  • 14.
  • 18. The parameter gm is called trans conductance (or mutual conductance). The trans conductance represents the small change in collector current about the operating point produced by the small changes in base emitter voltage . This effect of change in collector current due to small change in base-emitter voltage, accounts for the current generator gm Vb’c at output and it is called as trans conductance. gm=ΔIc/ΔVb’e at a constant Vce.
  • 20. Capacitance Cc :- The collector-junction capacitance :- Cc = Cbe (The output capacitance measured at CB junction with the input open, i.e. Ie = 0 and is specified by the manufactures as Cob.) Since in the active region the collector,junction is reverse biased, then Cc is a transition capacitance, and hence varies as Vcb where n is 1/2 or 1/3 for an abrupt or gradual junction, respectively.
  • 24. Hence the charge stored in the base region (QB) is given by :- QB =P'(0) *(A*W*q) / 2 Where W = base width A = cross-sectional area of base AW = volume of base q = electronic charge Pʹ(0) = Injected charge concentration Pʹ(0)/2 = Average concentration of carrier in base region QB = p’(0)*(v*q)/2
  • 25. Thus , Aq = 2QB/P'(0)*W ………….(1) Current density (J) = -qDp(dP/dx) Where Dp = diffusion constant dp / dx = Change in concentration w.r.t. distance Diffusion current :- I = J.A = - AqDp (dP'/dx) = +AqDBP'(0)/W (where , DB= diffusion constant for minority carrier)
  • 26. Thus, Aq = I*W / DB*P'(0) ……………………(2) Equating both the equations :- 2QB/P'(0)*W = I*W/DB*P(O) QB = I*W2/2DB ………………………....(3) Finally,The static diffusion capacitance Cde=dQB/dV From above equation:- Cde = dI*W2/ 2DB*Dv = [W2/ re *2DB] Where re = emitter junction incremental resistance and is given by :- re=dV/dl = VT/IE
  • 27. Thus , Cde=[W2/2DB].[IE/VT] Cde=gm.[W2/2DB] = Ce This indicates that the Cde is proportional to the IE and inversely proportional with VT. Cde is almost independent of temperature. Experimentally, Ce is determined from a measurement of the frequency flat which the CE short-circuit current gain drops to unity ; Ce =gm/2πft
  • 28. The equation for the trans conductance can be derived as follows : Let us consider a P-N-P transistor in the CE Configuration with Vee bias in the collector circuit a shown in Fig. T1 !PNPR5 1V1 5TP5TP6 rb'b Vbe VE B C B' E VCC
  • 29. The trans conductance is defined as the ratio of change in the collector current due to small changes in the voltage Vb’e across the emitter junction. We know that, the Collector current in active region is given as For a pnp transistor Ic=Ico- IE Also , Isc = gm Vb’e =Ic or gm = dIc / dVb’e …….(1) δIc= αδIE Substituting values of δIC in eq (1) we get :- gm= αdIE/ dVb’e The emitter diode resistance is given as :- 1/re = dIE/dV
  • 31. For P-N-P transistor Ic is negative and for an N-P-N transistor Ic is positive, but in the foregoing analysis (with VE = +VBE) we get Hence, for either type of transistor gm is positive. gm = α (IC -ICO) / VT = α IC / VT Substituting value of VT we get, gm = 11600IC/T Substituting/ the value of re in we get, gm= αIE/VT = α ( Ico-Ic )/VT
  • 32. Equation shows that trans conductance gm is inversely proportional to temperature. At room temperature, 300k gm=11600Ic/300 = Ic/26*10-3 =Ic /26 This is for, Ic=1.3mA, gm=0.05m mho while for, Ic=2.6mA, gm=0.1m mho These values are much larger than the trans conductance obtained with FET’s
  • 33. As discussed earlier, the high frequency analysis takes into account the capacitive effect of PN Junction in transistor. We can not assume at high frequency that transistor responds instantly to changes of input voltage or current because the mechanism of the transport of charge carrier from emitter to collector is essentially one of diffusion. The increase of hfe with temperature has been determined experimentally, where as the increase with |VCE| is due to the decrease of the base width and the reduction in recombination which increase the transistor ‘Alpha’.
  • 36. For calculating the resistance we are conidering the Hybrid ∏- model in terms of low frequency H parameter aiso neglacting the capacitance effect. First consider the hybrid-  model for CE Configuration:-
  • 38. We know that hie is the input resistance (in h-parameter model) when the output terminals i.e. collector terminals are shorted. Under this condition in Hybrid -  model, rb'c comes in parallel with rb'e. But since rb'c »rb'e rb’e || rb’c ≈ rb’e :. With hybrid-  model input resistance with output shorted is rbb' + rb'e. hie = rbb’ + rb’e rbb’ = hie – rb’e
  • 39. In h-parameter model, hre is defined as reverse voltage gain: hre = Vb’e/Vce = rb’e /(rb’e + rb’c) By applying voltage divider formula hre rb’e + hre.rb’c = rb’e rb’e(1-hre) = hre.rb’c Since ; hre <<1 rb’e = hre.rb’c rb’c = rb’e / hre Feedback Conductance gb’c = hre*gb’e
  • 41. Ic= Vce / rce + gm. Vb’e + Vce /(rb’c + rb’e ) Vb’e = hre. Vce Ic= Vce / rce + gm.hre. Vce + Vce /(rb’c + rb’e ) gb’c = hre.hfe gm = gb’e.hfe hoe = gce + gb’c.hfe .gb’c/gb’e +gb’c hoe = gce + gb’c(1+ hfe) hfe>>1 gce = hoe – gb’c.hfe
  • 46. Looking at the above fig.we can write IL= -gmVb’e And Ii= Vb’e [ gb’e + jw (Cc+ Ce) ] Current gain under short circuit condition is AI = IL/ Ii , = -gmVb’e / Vb’e [gb’e + jw (Cc+Ce) ] AI = -hfe/[1 + j2f(Cc+Ce)/ gb’e] ………..Eq.(1) AI =- hfe/[1 + jf/fβ]
  • 47. Where fβ =gb’e/ 2Π(Cc+Ce) As we know gb’e= gm/hfe where fβ = gm/ hfe 2Π(Cc+Ce) …………….. Eq.(2) β- Cut-Off Frequency(fβ) fβ is defined as the frequency at which CE short circuit current gain falls (1/ 2)1/2 (or 0.707 or falls by 3 dB ) of its low frequency value i.e. hfe.
  • 48. So te value of hfe can be neglacted because hfe >>1 The value of fβ can be found out using expression fβ= gm/2(Cc+Ce) The frequency range up to fβ forms the 3 dB band width or simply the band width of the circuit. The Parameter(fT) : Frequency fT is defined as the frequency at which CE Short circuit current gain becomes unity. at f= fT ,
  • 49. AI becomes : AI = 1= hfe/[1 +( fT/fβ)2 ] … eq.(3) The ratio fT/ fβ, is quite large as compared to (fT/ fβ>>1)) hence Equation (1) becomes 1= hfe/ fT/fβ substituting this value of fβ= gm/ hfe2f(Cc+Ce) therefore fT = gm/2f(Cc+Ce) …. Eq.(4)
  • 50. since Ce>>Cc we can write So we can neglacted the value of Cc fT = gm/ 2f Ce ……. Eq.(5) fT as CE short circuit current gain bandwidth product:- We know that, fT = hfe*fβ That is fT is the product of low frequency gain (hfe) and 3dB bandwidth of short circuited CE stage (fβ) . Hence fT represents the CE short circuit current gain-band width product.
  • 52. α-Cut-Off Frequency, fα We have already seen β-cut-off frequency for transistor operating in CE configuration. a cut off frequency is a similar frequency for transistor operating in CB configuration. fα can be defined as the frequency at which the transistor's short circuit CB current gain drops 3 dB or (1/2) times from its value at low frequency hfb. The expression for fα is given as: fα = hfe*gb'e / 2Π*Ce ………….. Eq.(6)
  • 56. As K = Vce/Vb’e = ILRL/ Vb’e = (-gmVb’e)RL/Vb’e = -gmRL So ; 1-K=1+ gmRL Thus, AI = IL/ Ii AI = -gmVb’e / Vb’e [gb’e + jwCeq ]
  • 57. As we know gb’e= gm/hfe Thus , Ai = -gb’ehfe/[gb’e+ jwCeq ] Ai = -hfe/[1 + j2Πf(Ceq)/ gb’e] ………..Eq.(1) Ai= - hfe/[1 + jf/fH] fH= gb’e/ 2 Πceq =1/ 2Πrb’e[Ce+Cc(1 +gmRL)] The simplified equivalent circuit is at RL= 0 :- fH=1/ 2Πrb’e(Ce+Cc)= f So the current gain = Ai = hfe / [ 1+(f /fh)2]1/2 = hfe / (2)1/2, = 0.707 hfe
  • 59. Rs’=Rs+rbb’=1/Gs’ By applying KCL at B’ & C, we get : - Gs’Vs=[Gs’+gb’e+s(Ce+Cc)]Vb’e-sCcVo..(1) 0=(gm-sCc)Vb’e+({1/RL}+sCc)Vo……(2) We know that the voltage gain is By solving the equation 2 and find the value of And put I in equation 1 Avs=Vo/Vs Vb’e Vb’e = ({1/RL}+sCc)Vo /(sCc-gm)
  • 60. Vo/Vs= -Gs’RL(gm-sCc)/ s2CeCcRL +s[Ce+Cc+CcRL (gm+gb’e+Gs’)]+Gs’+gb’e……eqn.(3) By solving the quadratic equation We get Avs=Vo/Vs=K1(s-s0)/[(s-s1)(s-s2)…eqn.(4) Where K1=Gs’/Ce, s0=gm/Cc s1=Complex value s2 =Complex value
  • 63. fH =1/ 2ΠReqCeq Req =(Rs+rbb’)||rb’e Req=Rs rbb’rb’e/Rs+rbb’+rb’e hie=rbb’+rb’e Put the value of Req=(Rs+rbb’)rb’e/(Rs+hie) fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e Avs= Vo/Vs =-gmVb’eRL/Is(Rs+rbb’+rb’e)
  • 64. Avs =-gmVb’eRL/Is(Rs+hie) Vb’e=Ib’erb’e Avs =-gm(Ib’erb’e)RL/Is(Rs+hie) Ib=Is Avs =-gmrb’eRL/Rs+hie since fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e therefore|Avsfh| ={- gmrb’eRL/Rs+hie}{(Rs+hie)/2ΠC(Rs+rbb’)rb’e} |Avsfh|=-gmRL/2ΠC(Rs+rbb’) |Avsfh|=gmRL/2ΠC(Rs+rbb’)
  • 65. |Avsfh|=gmRL/2ΠCeq(Rs+rbb’) Ceq=Ce+Cc(1+gmRL) |Avsfh|=gmRL/2Π{Ce+Cc(1+gmRL) }(Rs+rbb’) divide both numerator & denominator by 2Π (Ce+Cc) |Avsfh|={gmRL/2Π(Ce+Cc)}/{[2Π[Ce+Cc(1+gmRL) ](Rs+rbb’)]/2Π(Ce+Cc)} |Avsfh|={gmRL/2Π(Ce+Cc)}/{[(1+CcgmRL) /(Ce+Cc) ](Rs+rbb’)} fT = gm/2Π(Ce+Cc) |Avsfh|= fT RL/{(1+ 2ΠfTCcRL)(Rs+rbb’)}
  • 66. A + Is Rs1k rbb' 1k R11k C11u gmVb'e RL1k rb'e1k (b) Applying current dividing rule we get Vs/(Rs+rbb’+rb’e) =Vb’e/rb’e IsRsrb’e=(Rs+rbb’+rb’e)Vb’e Is=(Rs+hie)Vb’e/Rsrb’e
  • 74. We know that low freq. gain of emitter follower is almost unity. Therefore A=1;1-K=0;K-1/K=0, thus we can ignore Ce(1-K),gb’e(K-1/K)and Ce(K-1/K). The simplified ckt is: -
  • 75. Voltage gain A = Vo/Vi = Ve/Vi….............(1) Ve=IZ =I/(1/RL+jwCL) =gmVb'e/((1+jwCLRL)/RL) =gmRLVb'e/(1+jwCLRL) =gmRL(Vi-Ve)/(1+jwCLRL) Ve = gmRLVi/(1+jwCLRL)– gmRLVe /(1+jwCLRL ) Ve+VegmRL/(1+jwCLRL) =gmRLVi/(1+jwCLRL) (Ve[(1+jwCLRL +gmRL)]) / (1 +jwCLRL)=gmRLVi/(1+jwCLRL)
  • 76. Therefore Av=Vo/Vi gmRL 1+gmRL+jwCLRL Upper cut-off frequency fH Av = gmRL/(1+gmRL)(1/1+[jwCLRL/(1+gmRL)]) gmRL 1+gmRL(1+jf/fH) Thus , Av =AVL/(1+jf/fH) Where , AVL=gmRL/1+gmRL<1 fH=1+gmRL/2ΠCLRL
  • 77. If f = fH Then Av = gm RL √2 (1+gm RL) Now, since the input impedance between terminals B' and C is very large in comparison with (rb'b + Rs). Hence A, also represents the over all voltage gain Avs:- Avs = Ve / Vi Avs= Ao/1+jf/fH
  • 79. Ques1. The following low frequency parameters are known for given transistor at Ic =10mA,Vce =10Vand at room temperature, hie=500Ω,hoe=4*10-5 A/V , hfe=100,hre=10-4 .At same operating point ft = 50Mhz,Cob=3PF.Compute values of all hybrid parameters. Ans Given:- Ic =10mA,Vce =10V,hie=500Ω, hoe=4*10-5 A/V , hfe=100, hre=10-4 ft =50Mhz,Cob=3PF To Find:- All values of hybrid parameters Formula Used:- VT=T/11600,gm =Ic /VT ,rb’e=hfe /gm, rbb’=hie- rb’e , rb’c = rb’e /hre, gce= hoe-(1+ hfe)gb’c ,rce =1/ gce ,Ce = gm /2ΠfT
  • 80. gm=Ic /VT =10x10-3 /0.026 =0.3846A/V 2 rb’e=hfe /gm, =100/0.3846 =260Ω 3 rb’c = rb’e /hre =260/10-4 = 260x10+4 Ω 5 gce= hoe-(1+ hfe)gb’c =4x10-5 –(1+100)/260x104 =0.12x10-5 A/V 6 rce=8.33x105 Ω 7 Ce=gm /2ΠfT =0.3846/2x3.14x30x106 8 Ce=2.04PF 4 rbb’=hie-rb’e =500-260 =240 Ω Solution:- 1 gm =Ic /VT VT=T/11600 =2.98/11600 VT =0.026V
  • 81. Ques2.Given following transistor measurements made at Ic=5mA,Vce =10V & at room temperature hfe =100 Ω, hie=600Ω,Aie =10 at 10 Mhz, Cc =3PF.Find fß , ft ,Ce ,r b’e & r b’b. Ans Given :- Ic=5mA,Vce =10V, hfe =100 Ω, hie=600Ω,Aie =10 at 10 Mhz, Cc =3PF
  • 82. To Find:- fß , ft ,Ce ,r b’e & r b’b. Solution:- 1 ft=Aie xf =10x10 =100Mhz 2 fß= ft / hfe = 100/100 = 1Mhz 3 gm=Ic/VT =5/26 =0.0192A/V 4 rb’e = hfe/gm =100/0.192 =520Ω 5 rb’b = hie - rb’e =100-520 =-420 Ω 6 Ce=gm /2Π fT =0.192/2X3.14X100X106 =30.5PF
  • 83. Ques3.The hybrid parameters of a transistor used in circuit as shown in fig. gm=50mA/V, rb’e=1KΩ, rb’c=4MΩ, rb’c=80KΩ, Cc=3PF, Ce=100PF, rbb’=100Ω. +Vcc
  • 84. Find:- (1)Upper 3dB frequency of current gain. (2) the magnitude of voltage gain at Avs=Vo/Vs at frequency of part1. Given:- gm=50mA/V, rb’e=1KΩ, rb’c=4MΩ, rce=80KΩ, Cc=3PF, Ce=100PF, rbb’=100Ω.
  • 85. Solution:- First draw its h-equivalent diagram
  • 86. (1)fh=1/2ΠReq Ceq Req=(Rs+rbb’)||rb’e =(900+100)||1000 =500Ω Ceq=Ce+Cc(1+gmRL) =100X10-12 +(1+50X10-3X1X103)3X10-12 =253PF fh=1/2ΠReq Ceq =1/2X3.14X500X253X10-12 fh=1.26Mhz (2) Voltage Gain Avs=-gmRL =-50X103X10-3 Avs =-50dB
  • 87. Ques4 . Consider a single stage CE transistor amplifier with a load resistance shunted by load capacitance. Prove that (a)internal voltage gain K=Vce/Vb’e = gmRL/1+jw(Cc+CL)RL (b) 3dB frequency is given as FH =1/2Π(Cc+CL)RL Ans:-
  • 88. Proof:- (a) K=Vce/Vb’e Vce=I/G I=gm Vb’e G=1/RL+jw(CL+CC) =>Vce= -gm Vb’e/ 1/RL+jw(CL+CC) = -gm Vb’eRL /1+jw(CL+CC) K=Vce/Vb’e =>K= -gm Vb’eRL /(1+jw(CL+CC)) Vb’e K= -gm RL /1+jw(CL+CC) Hence Prooved
  • 89. (b) C=Ce+Cc(1-K) K= -gm RL /1+jw(CL+CC) =>C=Ce+Cc(1+gm RL /1+jw(CL+CC)) K= -gm RL /1+j(w/fh) w=1/ RL(CL+CC) fh=w/2Π fh=1/2Π RL(CL+CC) Hence Prooved
  • 90. Ques5.(a) From circut diagram assume |K|>>1 Prove that K= -gm Rc +jwCC RL/1+jwRLCC Why may be the term jwCC RL be neglected in the numerator but not in the denominator? (b) the Miller’s admittance in the output circuit is given by Yo=jwCc(1-1/K) Prove that this represents a capacitance Co in parallel with a resistance Ro given by Co= Cc (1+gm RL)/gm RL, Ro= -gm /w2Cc
  • 92. Vce=I/G I=gm Vb’e G=1/RL+jwCC (K-1/K) =>Vce=-gm Vb’e/ 1/RL+jwCC (K-1/K) Vce = KVb’e (since K= Vce/Vb’e ) =>K= -gmVb’e / {1/RL+jwCC (K-1/K) } Vb’e -gm =K{1/RL+jwCC (K-1/K)} -gm ={K/RL+jwCC (K-1)} -gm =K(1/RL+jwCC)-jwCC K=(-gm+jwCC)/(1/RL+jwCC) K=(-gmRL+jwCCRL)/(1+jwCCRL) Hence prooved
  • 93. w=gm/Cc =50X10-3/3X10-12 =16.7X108 radians wT=gm/Ce = 50X10-3/100X10-12 =0.5X108 radians gmRL= 50X10-3 X2X103 =100 in numerator(gmRL+jwCCRL) jwCCRL=j(16.7X108 X3X10-12X2X103) =10.02 which is <<100 & can be neglected But In denominator(1+jwCCRL) The value of jwCCRL(10.02)>>1 hence it can’t be
  • 94. Neglected. (b) Yo=jwCc(1-1/K) K=(-gmRL)/(1+jwCCRL)(since jwCCRL is neglected in num.) Yo=jwCc(1-1+jwCCRL/-gmRL) =jwCc(-gmRL-1-jwCCRL/-gmRL) =jwCc(1+gmRL/gmRL)+(jwCCRL)(jwCC)/(gmRL) Yo =jwCc (1+gmRL/gmRL)-w2Cc 2/gm - (1) General Equation Yo=jwC0-1/R0 By comparing equation (1) with gen eqn C0= Ce(1+gmRL/gmRL), R0 =-gm/w2Cc 2 H.P
  • 95. Ques6. Verify (a)|Avsfh|=gm /2ΠC{RL /Rs +rbb’} =(fT/1+ 2ΠfTCcRL)( RL/Rs +rbb’) (b)|AIsfh|=(fT/1+ 2ΠfTCcRL)( RS/Rs +rbb’)
  • 96. PROOF:- (a) fH =1/ 2ΠReqCeq Req =(Rs+rbb’)||rb’e Req=Rs rbb’rb’e/Rs+rbb’+rb’e hie=rbb’+rb’e Put the value of Req=(Rs+rbb’)rb’e/(Rs+hie) fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e Avs= Vo/Vs =-gmVb’eRL/Is(Rs+rbb’+rb’e)
  • 97. Avs =-gmVb’eRL/Is(Rs+hie) Vb’e=Ib’erb’e Avs =-gm(Ib’erb’e)RL/Is(Rs+hie) Ib=Is Avs =-gmrb’eRL/Rs+hie since fH = (Rs+hie)/2ΠC(Rs+rbb’)rb’e therefore|Avsfh| ={-gmrb’eRL/Rs+hie}{(Rs+hie)/2ΠC(Rs+rbb’)rb’e} |Avsfh|=-gmRL/2ΠC(Rs+rbb’) |Avsfh|=gmRL/2ΠC(Rs+rbb’) Hence Prooved
  • 98. |Avsfh|=gmRL/2ΠCeq(Rs+rbb’) Ceq= Ce+Cc(1+gmRL) |Avsfh|=gmRL/2Π{Ce+Cc(1+gmRL) }(Rs+rbb’) divide both numerator & denominator by 2Π (Ce+Cc) |Avsfh|={gmRL/2Π(Ce+Cc)}/{[2Π[Ce+Cc(1+gmRL) ](Rs+rbb’)]/2Π(Ce+Cc)} |Avsfh|={gmRL/2Π(Ce+Cc)}/{[(1+CcgmRL) /(Ce+Cc) ](Rs+rbb’)} fT = gm/2Π(Ce+Cc) |Avsfh|= fT RL/{(1+ 2ΠfTCcRL)(Rs+rbb’)} Hence Prooved
  • 99. (b) Applying current dividing rule we get Vs/(Rs+rbb’+rb’e) =Vb’e/rb’e IsRsrb’e=(Rs+rbb’+rb’e)Vb’e Is=(Rs+hie)Vb’e/Rsrb’e
  • 101. Ques7.Consider hybrid –Π circuit at low frequency so that Ce &Cc may be neglected .omit none of other elements in circuit. If RL=1/gL. Prove that (a) K=Vce/Vb’e =-gm+gb’c/ gce+gb’c +gL (b)Using Miller’s theorm draw the equivalent circuit between C& E. Applying KCL to this network , show that above value of K is Obtained. (c) Using Miller’s theorm draw the equivalent circuit between B& E.prove that AI under RL is AI=gL/ (gb’e+gb’c /K)-gb’c (d)Using results of part (a) & (c) & relationship between hybrid h&Π parameters prove that AI=-hfe/(1+hoeRL)
  • 103. Zce=(rb’c||rce||RL)(Z seen between C&E) =1/ gb’c+gce+gL Vce= Vb’e(gb’c -gm)/(gb’c+gce+gL) K=Vce/Vb’e =>K=(gb’c -gm)/(gb’c+gce+gL) Hence proved (b)Applying Miller’s theorm b/w C&E we get Vce= -gmVb’e/{gce+gL+(K-1/K)gb’c} Vce= {-gmVb’e K}/{K(gce+gL+gb’c)- gb’c} Vce/Vb’e= (-gmK)/{K(gce+gL+gb’c)- gb’c} K = (-gmK)/{K(gce+gL+gb’c)- gb’c}
  • 105. K = (-gmK)/{K(gce+gL+gb’c)- gb’c} Taking common K both sides we get K(gce+gL+gb’c)- gb’c =-gm K(gce+gL+gb’c)=-gm + gb’c K= (-gm + gb’c) /(gce+gL+gb’c) Hence proved (c) Applying Miller’s theorm b/w B &E we get AI=IL/Ii=gmVb’e/Ii rbb' 1k rb'e1k (rb'c/1-K)1k B E
  • 106. IL=VcegL Vce=Vb’eK (since K=Vce/Vb’e) =>IL=gLVb’eK Also IL=K gLIi/(gb’e+(1-K)gb’c) IL/Ii=K gL/(gb’e+gb’c-Kgb’c) Dividing by K throughout we get IL/Ii =gL/{(gb’e+gb’c /K)-gb’c} Hence proved. (d)As gm>>gb’c & gb’e>>gb’c Thus K=-gm/(gce+gL+gb’c) (1) AI=gLK/gb’e-Kgb’c (2) from (1)& (2) AI={gmgL/(gce+gL+gb’c)}/{gb’e+gb’c gm/(gce+gL+gb’c)}
  • 107. AI={-gmgL/[gb’e (gce+gL+gb’c) +gb’c gm]} dividing both num.&denom. by gb’e gL we get AI={-gm/gb’e}/{[(gce+gL+gb’c)/gL]+[gb’c gm /gL]} hfe=-gm/gb’e gL= gm gb’c AI=-hfe/{1+(gce+gb’c+gmgb’c)/gL} AI = -hfe/(1+RLhoe ) Hence proved