SlideShare a Scribd company logo
1 of 4
Download to read offline
Common Derivatives and Integrals
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
Derivatives
Basic Properties/Formulas/Rules
( )( ) ( )
d
cf x cf x
dx
¢= , c is any constant. ( ) ( )( ) ( ) ( )f x g x f x g x¢ ¢ ¢± = ±
( ) 1n nd
x nx
dx
-
= , n is any number. ( ) 0
d
c
dx
= , c is any constant.
( )f g f g f g¢ ¢ ¢= + – (Product Rule) 2
f f g f g
g g
¢ ¢ ¢æ ö -
=ç ÷
è ø
– (Quotient Rule)
( )( )( ) ( )( ) ( )
d
f g x f g x g x
dx
¢ ¢= (Chain Rule)
( )
( ) ( ) ( )g x g xd
g x
dx
¢=e e ( )( )
( )
( )
ln
g xd
g x
dx g x
¢
=
Common Derivatives
Polynomials
( ) 0
d
c
dx
= ( ) 1
d
x
dx
= ( )
d
cx c
dx
= ( ) 1n nd
x nx
dx
-
= ( ) 1n nd
cx ncx
dx
-
=
Trig Functions
( )sin cos
d
x x
dx
= ( )cos sin
d
x x
dx
= - ( ) 2
tan sec
d
x x
dx
=
( )sec sec tan
d
x x x
dx
= ( )csc csc cot
d
x x x
dx
= - ( ) 2
cot csc
d
x x
dx
= -
Inverse Trig Functions
( )1
2
1
sin
1
d
x
dx x
-
=
-
( )1
2
1
cos
1
d
x
dx x
-
= -
-
( )1
2
1
tan
1
d
x
dx x
-
=
+
( )1
2
1
sec
1
d
x
dx x x
-
=
-
( )1
2
1
csc
1
d
x
dx x x
-
= -
-
( )1
2
1
cot
1
d
x
dx x
-
= -
+
Exponential/Logarithm Functions
( ) ( )lnx xd
a a a
dx
= ( )x xd
dx
=e e
( )( )
1
ln , 0
d
x x
dx x
= > ( ) 1
ln , 0
d
x x
dx x
= ¹ ( )( )
1
log , 0
ln
a
d
x x
dx x a
= >
Hyperbolic Trig Functions
( )sinh cosh
d
x x
dx
= ( )cosh sinh
d
x x
dx
= ( ) 2
tanh sech
d
x x
dx
=
( )sech sech tanh
d
x x x
dx
= - ( )csch csch coth
d
x x x
dx
= - ( ) 2
coth csch
d
x x
dx
= -
Common Derivatives and Integrals
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
Integrals
Basic Properties/Formulas/Rules
( ) ( )cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±ò ò ò
( ) ( ) ( ) ( )
b b
aa
f x dx F x F b F a= = -ò where ( ) ( )F x f x dx= ò
( ) ( )
b b
a a
cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( )
b b b
a a a
f x g x dx f x dx g x dx± = ±ò ò ò
( ) 0
a
a
f x dx =ò ( ) ( )
b a
a b
f x dx f x dx= -ò ò
( ) ( ) ( )
b c b
a a c
f x dx f x dx f x dx= +ò ò ò ( )
b
a
cdx c b a= -ò
If ( ) 0f x ³ on a x b£ £ then ( ) 0
b
a
f x dx ³ò
If ( ) ( )f x g x³ on a x b£ £ then ( ) ( )
b b
a a
f x dx g x dx³ò ò
Common Integrals
Polynomials
dx x c= +ò k dx k x c= +ò
11
, 1
1
n n
x dx x c n
n
+
= + ¹ -
+ò
1
lndx x c
x
= +ó
ô
õ
1
lnx dx x c-
= +ò
11
, 1
1
n n
x dx x c n
n
- - +
= + ¹
- +ò
1 1
lndx ax b c
ax b a
= + +
+
ó
ô
õ
11
1
p p p q
q q q
p
q
q
x dx x c x c
p q
+
+
= + = +
+ +ò
Trig Functions
cos sinu du u c= +ò sin cosu du u c= - +ò
2
sec tanu du u c= +ò
sec tan secu u du u c= +ò csc cot cscu udu u c= - +ò
2
csc cotu du u c= - +ò
tan ln secu du u c= +ò cot ln sinu du u c= +ò
sec ln sec tanu du u u c= + +ò ( )3 1
sec sec tan ln sec tan
2
u du u u u u c= + + +ò
csc ln csc cotu du u u c= - +ò ( )3 1
csc csc cot ln csc cot
2
u du u u u u c= - + - +ò
Exponential/Logarithm Functions
u u
du c= +òe e
ln
u
u a
a du c
a
= +ò ( )ln lnu du u u u c= - +ò
( ) ( ) ( )( )2 2
sin sin cos
au
au
bu du a bu b bu c
a b
= - +
+ò
e
e ( )1u u
u du u c= - +ò e e
( ) ( ) ( )( )2 2
cos cos sin
au
au
bu du a bu b bu c
a b
= + +
+ò
e
e
1
ln ln
ln
du u c
u u
= +ó
ô
õ
Common Derivatives and Integrals
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
Inverse Trig Functions
1
2 2
1
sin
u
du c
aa u
- æ ö
= +ç ÷
è ø-
ó
ô
õ
1 1 2
sin sin 1u du u u u c- -
= + - +ò
1
2 2
1 1
tan
u
du c
a u a a
- æ ö
= +ç ÷
+ è ø
ó
ô
õ
( )1 1 21
tan tan ln 1
2
u du u u u c- -
= - + +ò
1
2 2
1 1
sec
u
du c
a au u a
- æ ö
= +ç ÷
è ø-
ó
ô
õ
1 1 2
cos cos 1u du u u u c- -
= - - +ò
Hyperbolic Trig Functions
sinh coshu du u c= +ò cosh sinhu du u c= +ò
2
sech tanhu du u c= +ò
sech tanh sechu du u c= - +ò cschcoth cschu du u c= - +ò
2
csch cothu du u c= - +ò
( )tanh ln coshu du u c= +ò
1
sech tan sinhu du u c-
= +ò
Miscellaneous
2 2
1 1
ln
2
u a
du c
a u a u a
+
= +
- -
ó
ô
õ 2 2
1 1
ln
2
u a
du c
u a a u a
-
= +
- +
ó
ô
õ
2
2 2 2 2 2 2
ln
2 2
u a
a u du a u u a u c+ = + + + + +ò
2
2 2 2 2 2 2
ln
2 2
u a
u a du u a u u a c- = - - + - +ò
2
2 2 2 2 1
sin
2 2
u a u
a u du a u c
a
- æ ö
- = - + +ç ÷
è ø
ò
2
2 2 1
2 2 cos
2 2
u a a a u
au u du au u c
a
-- -æ ö
- = - + +ç ÷
è ø
ò
Standard Integration Techniques
Note that all but the first one of these tend to be taught in a Calculus II class.
u Substitution
Given ( )( ) ( )
b
a
f g x g x dx¢ò then the substitution ( )u g x= will convert this into the
integral, ( )( ) ( ) ( )( )
( )b g b
a g a
f g x g x dx f u du¢ =ò ò .
Integration by Parts
The standard formulas for integration by parts are,
b bb
aa a
udv uv vdu udv uv vdu= - = -ò ò ò ò
Choose u and dv and then compute du by differentiating u and compute v by using the
fact that v dv= ò .
Common Derivatives and Integrals
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
Trig Substitutions
If the integral contains the following root use the given substitution and formula.
2 2 2 2 2
sin and cos 1 sin
a
a b x x
b
q q q- Þ = = -
2 2 2 2 2
sec and tan sec 1
a
b x a x
b
q q q- Þ = = -
2 2 2 2 2
tan and sec 1 tan
a
a b x x
b
q q q+ Þ = = +
Partial Fractions
If integrating
( )
( )
P x
dx
Q x
ó
ô
õ
where the degree (largest exponent) of ( )P x is smaller than the
degree of ( )Q x then factor the denominator as completely as possible and find the partial
fraction decomposition of the rational expression. Integrate the partial fraction
decomposition (P.F.D.). For each factor in the denominator we get term(s) in the
decomposition according to the following table.
Factor in ( )Q x Term in P.F.D Factor in ( )Q x Term in P.F.D
ax b+
A
ax b+
( )
k
ax b+
( ) ( )
1 2
2
k
k
AA A
ax b ax b ax b
+ + +
+ + +
L
2
ax bx c+ + 2
Ax B
ax bx c
+
+ +
( )2 k
ax bx c+ +
( )
1 1
2 2
k k
k
A x BA x B
ax bx c ax bx c
++
+ +
+ + + +
L
Products and (some) Quotients of Trig Functions
sin cosn m
x xdxò
1. If n is odd. Strip one sine out and convert the remaining sines to cosines using
2 2
sin 1 cosx x= - , then use the substitution cosu x=
2. If m is odd. Strip one cosine out and convert the remaining cosines to sines
using 2 2
cos 1 sinx x= - , then use the substitution sinu x=
3. If n and m are both odd. Use either 1. or 2.
4. If n and m are both even. Use double angle formula for sine and/or half angle
formulas to reduce the integral into a form that can be integrated.
tan secn m
x x dxò
1. If n is odd. Strip one tangent and one secant out and convert the remaining
tangents to secants using 2 2
tan sec 1x x= - , then use the substitution secu x=
2. If m is even. Strip two secants out and convert the remaining secants to tangents
using 2 2
sec 1 tanx x= + , then use the substitution tanu x=
3. If n is odd and m is even. Use either 1. or 2.
4. If n is even and m is odd. Each integral will be dealt with differently.
Convert Example : ( ) ( )
3 36 2 2
cos cos 1 sinx x x= = -

More Related Content

What's hot

The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 
6.3 Equivalences versus partitions
6.3 Equivalences versus partitions6.3 Equivalences versus partitions
6.3 Equivalences versus partitionsJan Plaza
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
PPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRALPPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRALHanuwantSingh Dewal
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinityJames Tagara
 
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitutionLesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitutionLawrence De Vera
 
Matrix Representation Of Graph
Matrix Representation Of GraphMatrix Representation Of Graph
Matrix Representation Of GraphAbhishek Pachisia
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfmekkimekki5
 
Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLawrence De Vera
 
Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...iosrjce
 

What's hot (20)

Bisection
BisectionBisection
Bisection
 
1541 infinite limits
1541 infinite limits1541 infinite limits
1541 infinite limits
 
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZEAPPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
 
Chapter 4 Integration
Chapter 4  IntegrationChapter 4  Integration
Chapter 4 Integration
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
6.3 Equivalences versus partitions
6.3 Equivalences versus partitions6.3 Equivalences versus partitions
6.3 Equivalences versus partitions
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
PPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRALPPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRAL
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
Limits
LimitsLimits
Limits
 
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitutionLesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitution
 
Matrix Representation Of Graph
Matrix Representation Of GraphMatrix Representation Of Graph
Matrix Representation Of Graph
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdf
 
Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functions
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Es272 ch3a
Es272 ch3aEs272 ch3a
Es272 ch3a
 
Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...
 
Integration
IntegrationIntegration
Integration
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 

Similar to Common derivatives integrals

Similar to Common derivatives integrals (20)

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formula
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Calculo i
Calculo iCalculo i
Calculo i
 
Calculo i
Calculo iCalculo i
Calculo i
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Calculo
CalculoCalculo
Calculo
 
Calculo
CalculoCalculo
Calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario
FormularioFormulario
Formulario
 

Recently uploaded

Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of PlayPooky Knightsmith
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111GangaMaiya1
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonhttgc7rh9c
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 

Recently uploaded (20)

Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 

Common derivatives integrals

  • 1. Common Derivatives and Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Derivatives Basic Properties/Formulas/Rules ( )( ) ( ) d cf x cf x dx ¢= , c is any constant. ( ) ( )( ) ( ) ( )f x g x f x g x¢ ¢ ¢± = ± ( ) 1n nd x nx dx - = , n is any number. ( ) 0 d c dx = , c is any constant. ( )f g f g f g¢ ¢ ¢= + – (Product Rule) 2 f f g f g g g ¢ ¢ ¢æ ö - =ç ÷ è ø – (Quotient Rule) ( )( )( ) ( )( ) ( ) d f g x f g x g x dx ¢ ¢= (Chain Rule) ( ) ( ) ( ) ( )g x g xd g x dx ¢=e e ( )( ) ( ) ( ) ln g xd g x dx g x ¢ = Common Derivatives Polynomials ( ) 0 d c dx = ( ) 1 d x dx = ( ) d cx c dx = ( ) 1n nd x nx dx - = ( ) 1n nd cx ncx dx - = Trig Functions ( )sin cos d x x dx = ( )cos sin d x x dx = - ( ) 2 tan sec d x x dx = ( )sec sec tan d x x x dx = ( )csc csc cot d x x x dx = - ( ) 2 cot csc d x x dx = - Inverse Trig Functions ( )1 2 1 sin 1 d x dx x - = - ( )1 2 1 cos 1 d x dx x - = - - ( )1 2 1 tan 1 d x dx x - = + ( )1 2 1 sec 1 d x dx x x - = - ( )1 2 1 csc 1 d x dx x x - = - - ( )1 2 1 cot 1 d x dx x - = - + Exponential/Logarithm Functions ( ) ( )lnx xd a a a dx = ( )x xd dx =e e ( )( ) 1 ln , 0 d x x dx x = > ( ) 1 ln , 0 d x x dx x = ¹ ( )( ) 1 log , 0 ln a d x x dx x a = > Hyperbolic Trig Functions ( )sinh cosh d x x dx = ( )cosh sinh d x x dx = ( ) 2 tanh sech d x x dx = ( )sech sech tanh d x x x dx = - ( )csch csch coth d x x x dx = - ( ) 2 coth csch d x x dx = -
  • 2. Common Derivatives and Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Integrals Basic Properties/Formulas/Rules ( ) ( )cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±ò ò ò ( ) ( ) ( ) ( ) b b aa f x dx F x F b F a= = -ò where ( ) ( )F x f x dx= ò ( ) ( ) b b a a cf x dx c f x dx=ò ò , c is a constant. ( ) ( ) ( ) ( ) b b b a a a f x g x dx f x dx g x dx± = ±ò ò ò ( ) 0 a a f x dx =ò ( ) ( ) b a a b f x dx f x dx= -ò ò ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx= +ò ò ò ( ) b a cdx c b a= -ò If ( ) 0f x ³ on a x b£ £ then ( ) 0 b a f x dx ³ò If ( ) ( )f x g x³ on a x b£ £ then ( ) ( ) b b a a f x dx g x dx³ò ò Common Integrals Polynomials dx x c= +ò k dx k x c= +ò 11 , 1 1 n n x dx x c n n + = + ¹ - +ò 1 lndx x c x = +ó ô õ 1 lnx dx x c- = +ò 11 , 1 1 n n x dx x c n n - - + = + ¹ - +ò 1 1 lndx ax b c ax b a = + + + ó ô õ 11 1 p p p q q q q p q q x dx x c x c p q + + = + = + + +ò Trig Functions cos sinu du u c= +ò sin cosu du u c= - +ò 2 sec tanu du u c= +ò sec tan secu u du u c= +ò csc cot cscu udu u c= - +ò 2 csc cotu du u c= - +ò tan ln secu du u c= +ò cot ln sinu du u c= +ò sec ln sec tanu du u u c= + +ò ( )3 1 sec sec tan ln sec tan 2 u du u u u u c= + + +ò csc ln csc cotu du u u c= - +ò ( )3 1 csc csc cot ln csc cot 2 u du u u u u c= - + - +ò Exponential/Logarithm Functions u u du c= +òe e ln u u a a du c a = +ò ( )ln lnu du u u u c= - +ò ( ) ( ) ( )( )2 2 sin sin cos au au bu du a bu b bu c a b = - + +ò e e ( )1u u u du u c= - +ò e e ( ) ( ) ( )( )2 2 cos cos sin au au bu du a bu b bu c a b = + + +ò e e 1 ln ln ln du u c u u = +ó ô õ
  • 3. Common Derivatives and Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Inverse Trig Functions 1 2 2 1 sin u du c aa u - æ ö = +ç ÷ è ø- ó ô õ 1 1 2 sin sin 1u du u u u c- - = + - +ò 1 2 2 1 1 tan u du c a u a a - æ ö = +ç ÷ + è ø ó ô õ ( )1 1 21 tan tan ln 1 2 u du u u u c- - = - + +ò 1 2 2 1 1 sec u du c a au u a - æ ö = +ç ÷ è ø- ó ô õ 1 1 2 cos cos 1u du u u u c- - = - - +ò Hyperbolic Trig Functions sinh coshu du u c= +ò cosh sinhu du u c= +ò 2 sech tanhu du u c= +ò sech tanh sechu du u c= - +ò cschcoth cschu du u c= - +ò 2 csch cothu du u c= - +ò ( )tanh ln coshu du u c= +ò 1 sech tan sinhu du u c- = +ò Miscellaneous 2 2 1 1 ln 2 u a du c a u a u a + = + - - ó ô õ 2 2 1 1 ln 2 u a du c u a a u a - = + - + ó ô õ 2 2 2 2 2 2 2 ln 2 2 u a a u du a u u a u c+ = + + + + +ò 2 2 2 2 2 2 2 ln 2 2 u a u a du u a u u a c- = - - + - +ò 2 2 2 2 2 1 sin 2 2 u a u a u du a u c a - æ ö - = - + +ç ÷ è ø ò 2 2 2 1 2 2 cos 2 2 u a a a u au u du au u c a -- -æ ö - = - + +ç ÷ è ø ò Standard Integration Techniques Note that all but the first one of these tend to be taught in a Calculus II class. u Substitution Given ( )( ) ( ) b a f g x g x dx¢ò then the substitution ( )u g x= will convert this into the integral, ( )( ) ( ) ( )( ) ( )b g b a g a f g x g x dx f u du¢ =ò ò . Integration by Parts The standard formulas for integration by parts are, b bb aa a udv uv vdu udv uv vdu= - = -ò ò ò ò Choose u and dv and then compute du by differentiating u and compute v by using the fact that v dv= ò .
  • 4. Common Derivatives and Integrals Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Trig Substitutions If the integral contains the following root use the given substitution and formula. 2 2 2 2 2 sin and cos 1 sin a a b x x b q q q- Þ = = - 2 2 2 2 2 sec and tan sec 1 a b x a x b q q q- Þ = = - 2 2 2 2 2 tan and sec 1 tan a a b x x b q q q+ Þ = = + Partial Fractions If integrating ( ) ( ) P x dx Q x ó ô õ where the degree (largest exponent) of ( )P x is smaller than the degree of ( )Q x then factor the denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table. Factor in ( )Q x Term in P.F.D Factor in ( )Q x Term in P.F.D ax b+ A ax b+ ( ) k ax b+ ( ) ( ) 1 2 2 k k AA A ax b ax b ax b + + + + + + L 2 ax bx c+ + 2 Ax B ax bx c + + + ( )2 k ax bx c+ + ( ) 1 1 2 2 k k k A x BA x B ax bx c ax bx c ++ + + + + + + L Products and (some) Quotients of Trig Functions sin cosn m x xdxò 1. If n is odd. Strip one sine out and convert the remaining sines to cosines using 2 2 sin 1 cosx x= - , then use the substitution cosu x= 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using 2 2 cos 1 sinx x= - , then use the substitution sinu x= 3. If n and m are both odd. Use either 1. or 2. 4. If n and m are both even. Use double angle formula for sine and/or half angle formulas to reduce the integral into a form that can be integrated. tan secn m x x dxò 1. If n is odd. Strip one tangent and one secant out and convert the remaining tangents to secants using 2 2 tan sec 1x x= - , then use the substitution secu x= 2. If m is even. Strip two secants out and convert the remaining secants to tangents using 2 2 sec 1 tanx x= + , then use the substitution tanu x= 3. If n is odd and m is even. Use either 1. or 2. 4. If n is even and m is odd. Each integral will be dealt with differently. Convert Example : ( ) ( ) 3 36 2 2 cos cos 1 sinx x x= = -