mathcity.org
Merging man and maths
Some Important Derivative
For Bachelor Level
Available online @ http://www.mathcity.org, Version: 1.1.2
0
d
c
dx
· = where c is constant 1n nd
x nx
dx
-
· =
sin cos
cos sin
d
x x
dx
d
x x
dx
ì
ïï
í
ï
ïî
· =
· =-
2
2
tan sec
cot csc
d
x x
dx
d
x x
dx
· =
· =-
csc csc cot
sec sec tan
d
x x x
dx
d
x x x
dx
· =-
· =
1
2
1
2
1
1
1
1
d
Sin x
dx x
d
Cos x
dx x
-
-
ì
ï
ï
í
ï
ï
î
· =
-
-
· =
-
1
2
1
2
1
1
1
1
d
Tan x
dx x
d
Cot x
dx x
-
-
· =
+
-
· =
+
1
2
1
2
1
1
1
1
d
Sec x
dx x x
d
Csc x
dx x x
-
-
· =
-
-
· =
-
lnx x
x x
d
a a a
dx
d
e e
dx
ì
ïï
í
ï
ïî
· =
· =
1
log
ln
1
ln
a
d
x
dx x a
d
x
dx x
· =
· =
sinh cosh
cosh sinh
d
x x
dx
d
x x
dx
ì
ïï
í
ï
ïî
· =
· =
2
2
tanh sech
coth csch
d
x x
dx
d
x x
dx
· =
· = -
sech sech tanh
csch csch coth
d
x x x
dx
d
x x x
dx
· =-
· =-
1
2
1
2
1
1
1
1
d
Sinh x
dx x
d
Cosh x
dx x
-
-
ì
ï
ï
í
ï
ï
î
· =
+
· =
-
1
2
1
2
1
1
1
1
d
Tanh x
dx x
d
Coth x
dx x
-
-
· =
-
· =
-
1
2
1
2
1
1
1
1
d
Sech x
dx x x
d
Csch x
dx x x
-
-
-
· =
-
-
· =
+
Some Standard nth Derivative
·
( )
( )!
( )
!
n m nm n
n
d m
ax b a ax b if m n
dx m n
-
+ = + ³
-
·
( )
1
1 !1
( )
n nn
n n
n ad
dx ax b ax b +
æ ö
ç ÷
è ø
-
=
+ +
·
( )1
( 1) 1 !
ln( )
( )
n nn
n n
n ad
ax b
dx ax b
-
é ùë û
- -
+ =
+
·
n
ax n ax
n
d
e a e
dx
=
· sin( ) sin .
2
n
n
n
d
ax b a ax b n
dx
pæ ö
ç ÷
è ø
+ = + + · cos( ) cos .
2
n
n
n
d
ax b a ax b n
dx
pæ ö
ç ÷
è ø
+ = + +
· 2 2 12sin( ) ( ) sin tan
nn
ax ax
n
d b
e bx c a b e bx c n
dx a
-æ ö
ç ÷
è ø
+ = + + +
· 2 2 12cos( ) ( ) cos tan
nn
ax ax
n
d b
e bx c a b e bx c n
dx a
-æ ö
ç ÷
è ø
+ = + + +
Leibniz’s Theorem
( ) ( 1) ( 2) 1
0 1 2 1( )
n
n n n n n n n n n n
nnn
d
uv C u v C u v C u v C u v C uv
dx
- - -
-¢ ¢¢ ¢= + + +××××××××××××××+ +
Made by Atiq ur Rehman ( atiq@mathcity.org )
http://www.mathcity.org
Submit errors at http://www.mathcity.org/error

Bsc maths derivative_formula

  • 1.
    mathcity.org Merging man andmaths Some Important Derivative For Bachelor Level Available online @ http://www.mathcity.org, Version: 1.1.2 0 d c dx · = where c is constant 1n nd x nx dx - · = sin cos cos sin d x x dx d x x dx ì ïï í ï ïî · = · =- 2 2 tan sec cot csc d x x dx d x x dx · = · =- csc csc cot sec sec tan d x x x dx d x x x dx · =- · = 1 2 1 2 1 1 1 1 d Sin x dx x d Cos x dx x - - ì ï ï í ï ï î · = - - · = - 1 2 1 2 1 1 1 1 d Tan x dx x d Cot x dx x - - · = + - · = + 1 2 1 2 1 1 1 1 d Sec x dx x x d Csc x dx x x - - · = - - · = - lnx x x x d a a a dx d e e dx ì ïï í ï ïî · = · = 1 log ln 1 ln a d x dx x a d x dx x · = · = sinh cosh cosh sinh d x x dx d x x dx ì ïï í ï ïî · = · = 2 2 tanh sech coth csch d x x dx d x x dx · = · = - sech sech tanh csch csch coth d x x x dx d x x x dx · =- · =- 1 2 1 2 1 1 1 1 d Sinh x dx x d Cosh x dx x - - ì ï ï í ï ï î · = + · = - 1 2 1 2 1 1 1 1 d Tanh x dx x d Coth x dx x - - · = - · = - 1 2 1 2 1 1 1 1 d Sech x dx x x d Csch x dx x x - - - · = - - · = + Some Standard nth Derivative · ( ) ( )! ( ) ! n m nm n n d m ax b a ax b if m n dx m n - + = + ³ - · ( ) 1 1 !1 ( ) n nn n n n ad dx ax b ax b + æ ö ç ÷ è ø - = + + · ( )1 ( 1) 1 ! ln( ) ( ) n nn n n n ad ax b dx ax b - é ùë û - - + = + · n ax n ax n d e a e dx = · sin( ) sin . 2 n n n d ax b a ax b n dx pæ ö ç ÷ è ø + = + + · cos( ) cos . 2 n n n d ax b a ax b n dx pæ ö ç ÷ è ø + = + + · 2 2 12sin( ) ( ) sin tan nn ax ax n d b e bx c a b e bx c n dx a -æ ö ç ÷ è ø + = + + + · 2 2 12cos( ) ( ) cos tan nn ax ax n d b e bx c a b e bx c n dx a -æ ö ç ÷ è ø + = + + + Leibniz’s Theorem ( ) ( 1) ( 2) 1 0 1 2 1( ) n n n n n n n n n n n nnn d uv C u v C u v C u v C u v C uv dx - - - -¢ ¢¢ ¢= + + +××××××××××××××+ + Made by Atiq ur Rehman ( atiq@mathcity.org ) http://www.mathcity.org Submit errors at http://www.mathcity.org/error