Any suggestion/request : write to rk01970@gmail.com 
Any comment: on www.facebook.com/eblackboard 
Presentation file : www.slideshare.net/eblackboard 
Contact No. : 8100803074
www.slideshare.net/eblackboard
1. 
Express the following relations in the logarithmic forms: 
Ans. 
HOME 
Solution: 
3 81 
log 81 4 
3 
4 
 
 
Logarithmic form : 
(i)
1. 
Express the following relations in the logarithmic forms: 
Ans. 
HOME 
Solution: 
5 1 
log 1 0 
5 
0 
 
 
Logarithmic form : 
(ii)
1. 
Express the following relations in the logarithmic forms: 
Ans. 
HOME 
Solution: 
1 
5 
32 2 
1 
5 
 
32 2 
log 2 
32 
5 
 
 
Logarithmic form 
: 
(iii)
1. 
Express the following relations in the logarithmic forms: 
Ans. 
HOME 
Solution: 
3 
1 
1 
125 
log 
125 
5 
5 
3 
  
  
Logarithmic form : 
(iv)
1. 
Express the following relations in the logarithmic forms: 
Logarithmic form : 
Ans. 
HOME 
Solution: 
a c 
c b 
a 
b 
 
 
log 
(v)
2. 
Express the following logarithmic forms in the exponential forms: 
log 64 6 
Ans. 
HOME 
Solution: 
6 
2 
2  
64 
 
exponential form : 
(i)
2. 
Express the following logarithmic forms in the exponential forms: 
exponential form : 
Ans. 
HOME 
Solution: 
1 
1 
81 
3 
4 
81 
log 
4 
3 
 
  
 
(ii)
2. 
Express the following logarithmic forms in the exponential forms: 
log 1 0 
Ans. 
HOME 
Solution: 
1 
0  
 
a 
a 
exponential form : 
(iii)
2. 
Express the following logarithmic forms in the exponential forms: 
3 
exponential form : 
Ans. 
HOME 
Solution: 
1 
1 
 
125 
25 
2 
125 
log 
25 
3 
2 
 
 
   
 
 
 
 
(iv)
2. 
Express the following logarithmic forms in the exponential forms: 
P R 
log  
exponential form : 
Ans. 
HOME 
Solution: 
R 
Q 
Q  
P 
(v)
3. 
Find the value of x : 
log 128 
Ans. 
HOME 
Solution: 
log 128 
  
2 128 
, 2  
2 
, 7 
7 
2 
2 
 
 
 
or 
or x 
x 
x 
x 
x 
 
(i)
3. 
Find the value of x : 
log 81 4 
log 81 4 
Ans. 
HOME 
Solution: 
81 
x 
  
4 4 
4 
or x 
,  
3 
,  
3 
 
 
or x 
x 
x 
 
(ii)
3. 
Find the value of x : 
Ans. 
HOME 
Solution: 
log   
3 
x 
log 3 
or x 
1 
 
125 
 5 
 
, 
1 
5 
, 
3 
3 
5 
5 
 
  
 
or x 
x 
x 
 
(iii)
3. 
Find the value of x : 
log 243 10 
log 243 10 
Ans. 
HOME 
Solution: 
10 5 
3 
x 
  
or x 
,  
3 
or x 
, 3 
1 
2 
10 
 
, 3 
1 
5 
 
 
 
 
or x 
x 
x 
 
(iv)
3. 
Ans. 
HOME 
Find the value of x : 
Solution: 
log 49 
7 
 
log 49 
7 
  
  
 
7 49 
1 
 
2 2 
, 7 7 
2 
1 
, 
or 
or x 
2 
 
  
,  2  2  
4 
or x 
x 
x 
x 
x 
 
(v)
3. 
Find the value of x : 
log 7 5 2 
10 
  
x 
log 7 5 2 
2 
10 
   
10 7 5 
or x 
, 100  7  
5 
or , 100  5  
7 
x 
or x 
Ans. 
HOME 
Solution: 
  
  
, 105 7 
105 
, 
or x 
7 
or , 15 
x 
 
 
,  
15 
 
  
or x 
x 
x 
 
(vi)
3. 
Find the value of x : 
log 0.0001 
log 0.0001 
10 
log 10 
4 
 
 
x 
x 
(vii) x 
or x 
, 4log 10 
Ans. 
HOME 
Solution: 
  
  
  
, 4  log 10 1 
10 
10 
10 
10 
   
  
 
 
 
or x
3. 
5 
 
  
Ans. 
HOME 
Find the value of x : 
Solution: 
log 0.25 4 
log 0.25 4 
  
 
1 
2 
 
 
5 
 
 
5 
10 
x 
or x 
or x 
, 
10 
, 
10 
25 
100 
, 
0.25 
2 
1 
2 
2 
4 
2 
4 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
or x 
x 
x 
 
(viii)
4. 
Find the value of logarithms of : 
(i) to the base of 
625 5 
log 625 
5 
log 5 
, 4log 5 
Ans. 
HOME 
Solution: 
, 4  log 5 1 
5 
5 
4 
5 
 
 
 
 
or 
or
4. 
Find the value of logarithms of : 
343 7 
log 343 
7 
log 7 
, log 7 
, log 7 
6 
, 6log 7 log 7 1 
Ans. 
HOME 
Solution: 
  
  
    
, 6 
7 7 
7 
2 3 
7 
3 
7 
or 
or 
or 
or 
to the base of 
 
 
 
 
 
(ii)
4. 
Find the value of logarithms of : 
to the base of 
  
Ans. 
HOME 
Solution: 
0.1 9 3 
  
log 0.1 
1 
let x let 
9 3 
  
1 
 
 
2 2 
4 
5 
1 
1 
2 
 
, 3 3 3 
1 
 
2 2 
2 
 
, 3 3 
5 
 
   
 
 
, 3 3 
2 
5 
5 
, 
  
or 
or 
or 
or 
or x 
, 2 
2 
2 
9 
, 9 3 
9 
log 
1 
9 
0.1 
9 
log 
2 2 
. 
9 3 
. 
9 3 
. 
     
  
 
    
  
 
   
 
  
 
 
 
 
 
 
 
 
 
 
 
or x 
x 
x 
x 
x 
 
 
(iii)
4. 
Find the value of logarithms of : 
to the base of 
1728 2 3 
log 1728 
2 3 
  
log 2 3 
6 3 
let log 2  3 
 
x 
6 3 
x 
, 2 3 2 3 
  
  
x 
, 2 3 2 3 
x 
, 2 3  2  
3 
Ans. HOME 
Solution: 
  
  
  
    
  6 
6 
  
,    6 
2 3 2 3 
 
, 6 
3 
2 
6 
2 3 
6 3 
2 3 
 
 
 
  
or 
or 
or 
or 
or x 
x 
 
(iv)
4. 
Find the value of logarithms of : 
to the base of 
2401 7 
log 2401 
7 
3 
log 7 
let log 7 
x 
x 
3 4 
, 7 7 
1 
 
3 4 
    
 
, 7 7 
Ans. 
HOME 
Solution: 
  
4 
1 
, 
or 
or 
or x 
3 
, 12 
4 
7 
4 
7 
3 
3 
3 
 
 
  
 
 
 
 
or x 
x 
 
(v)
4. 
Find the value of logarithms of : 
to the base of 
2 4 
Ans. 
HOME 
Solution: 
log 2 
let x 
4 
8 
4 
 
 
, 4  
2 
  
4 
8 
8 
 
 
2 8 
, 2  
2 
, 2  
2 
 
or 
or 
or 
or x 
, 2   
8 
8 
2 
, 
log 2 
2 8 
-8 
 
    
or x 
x 
x 
x 
 
(vi)
4. 
Find the value of logarithms of : 
Ans. HOME 
Solution: 
to the base of 
81 9 
log 81 
9 
let log 81 
x 
9 
 3 
 
x 
, 9 81 
1 
 
3 2 
   
 
 
, 9 9 
1 
3 2 
, 9 9 
2 
1 
, 
or 
or 
or 
or x 
3 
 
 
, 2 3 6 
3 
3 
3 
   
  
 
 
 
or x 
x 
x 
 
(vii)
4. 
Find the value of logarithms of : 
to the base of 
5 0.008 
log 5 
0.008 
let x 
x 
, 0.008 5 
1 
 
  
1 
1 
1 
Ans. 
HOME 
Solution: 
    
8 
1 
1 
 
  
 
 
 
  
, 5 5 
, 5 5 
1 
1 
1 
1 
6 
or 
or 
or 
or 
or 
or 
or x 
or x 
, 
6 
1 
 
 
2 3 
, - 
2 
, -3 
5 
5 
, 
5 
125 
, 
5 
1000 
, 
log 5 
2 
-3 
2 
-3 
2 
3 
2 
2 
3 
0.008 
  
 
 
 
 
 
 
  
 
 
  
 
  
 
 
 
 
 
or x 
x 
x 
x 
x 
x 
 
(viii)
5. 
Find the base when: 
is the logarithamof 
3 343 
let base x 
  
log 343 3 
3 
or x 
,  
343 
3 3 
Ans. 
HOME 
Solution: 
or x 
,  
7 
,  
7 
 
or x 
x 
(i)
5. 
Find the base when: 
is the logarithamof 
4 144 
let base  
x 
  
log 144 4 
4 
or x 
,  
144 
4 4 2 
or x 
, 2 3 
  
  
or x 
, 2 3 
or x 
, 2 3 
Ans. 
HOME 
Solution: 
  
  
  
  
or x 
,  
2 3 
, 2 3 
4 
4 
4 
4 4 
2 
2 
4 4 
 
 
  
or x 
x 
(ii)
5. 
Find the base when: 
is the logarithamof 
let base  
x 
   
1 
1 
Ans. 
HOME 
Solution: 
  
1 
3 
1 
1 
 
 
  
1 
or x 
or , 
x 
or x 
,  
3 
, 27 
3 
, 
3 
3 
log 
1 
3 
3 
 
3 
3 
3 
 
 
 
 
 
 
 
 
 
or x 
x 
(iii)
5. 
Find the base when: 
let base  
x 
   
Ans. 
HOME 
Solution: 
 
 
1 
or , 
x a 
or x a 
a 
or x 
a 
a 
is the logarithamof 
x 
 
 
 
  
, 
1 
, 
1 
1 
log 
1 
1 
1 1 
(iv)
6. 
Find the simplest value of : 
log 5 log 27 
log 27 
10 
log 3 
3log 3 
3 25 
log 5 
10 
log 5 
10 
log 5 
 
 
Ans. 
HOME 
Solution: 
3 
2 
or, 
10 
2log 5 
10 
log 3 
or, 
log 5 
log 3 
or, 
log 25 
log 3 
or, 
10 
10 
2 
10 
3 
10 
10 
10 
10 
 
(i) 
6. 
Find the simplest value of : 
log 27 if log 3 
8 2 
log 27 
10 
log 8 
10 
log 3 
log 2 
3log 3 
10 
3log 2 
or, 
or, 
or, 
or, log 3 
Ans. 
HOME 
Solution: 
a 
a   
a 
 
or, log 3 
2 
2 
10 
3 
10 
3 
10 
 
(ii)
6. 
log 
log 
log 
1 
2 
1 
x 
x 
log 
Ans. 
HOME 
Find the simplest value of : 
(iii) 
x x a 
log if log 
Solution: 
2 2 2 
 
1 
log 
x 
log 
x 
 
x 
2 1 
2 
3 
2 
2 
1 
1 
2 
1 
log 
log 
log 
log 2 
or, 
log 2 
or, 
log 2 
or, 
log 2 2 
or, 
log 2 2 
or, 
x 
x 
 
 
1 
1 
1 
3 
or, 
3 
or, 
log 
3 
or, 
log 2 
3 
or, 
3log 2 
or, 
3log 2 
or, 
log 2 
or, 
2 
2 
3 
a 
a 
x 
x 
x 
 
 
 

7. 
Prove that log(1 23)  log1 log2  log3 
proved 
HOME 
Solution: 
L H S 
. . . 
log(1  2  
3) 
log(6) 
log(1  2  
3) 
log1  log 2  
log 3 
or, 
or, 
or,
8. 
Express M in term of N 
M N 
log 3log 1 
2 
1 
  
M N 
  
M N 
or, log  log  
1 
 
 
or, log log 3 log 1 
solved HOME 
Solution: 
given : 
  
3 3 
1 
1 
1 
2 3 
M N 
or,   
3 
2 
2 
3 
3 
 
 
3 2 6 
1 
2 
3 
2 3 
3 
3 
3 
2 
3 
3 3 
3 9 
or, 
3 
or, 
3 
or, 
log 3log 1 
2 
1 
 
 
 
 
N N 
M 
N 
M 
N 
M 
M N a 
a 
  
    
 
  
 
 
 
 
(i)
8. 
Express M in term of N 
(ii)   
N M 
log 3 2log 
10 10 
N   
M 
N M 
or, log  log  
3 
N M 
or, log (  )  
3 
N M 
or, log (  )  3  
log 10 
or, log ( ) log 10 
2 3 
or,   
10 
or,   
1000 
1000 
solved 
HOME 
Solution: 
given : 
N M 
N M 
N 
M 
N 
M 
N M 
1000 
or, 
l og 3 log 
2 
2 
3 
10 
2 
10 
10 
2 
10 
2 
10 
2 
10 10 
2 
10 10 
  
 
 
9. 
Prove that : 
log 
log 
x 
a  
x 
let y a 
x 
y a 
  
log log 
. ..(i) 
log 
x 
x a 
a a 
log log 
a a 
x a 
 
   
log 1 [ log 1] 
a a 
y x 
log log 
a a 
y x 
x 
a x 
proved 
HOME 
Solution: 
or, 
log 
or, a 
f rom (i) 
a 
a 
a 
 
 
 
 
 
(i)
9. 
Prove that : 
a 
2log 2 
2log 
x  
a 
let y x 
a 
y x 
  
log log 
. ..(i) 
2log 
a 
a x 
x x 
2log log 
x x 
a x 
 
   
2log 1 [ log 1] 
x x 
y a 
log 2log 
x x 
y a 
or, log log 
x x 
2 
y a 
a 
2log 2 
x a 
proved 
HOME 
Solution: 
or, 
2 
or, x 
f rom (i) 
x 
x 
x 
 
 
 
 
 
 
(ii)
9. 
y x 
log log 
log 
y 
x y 
(iii)  
z x 
  
log log 
. ..(i) 
log 
y 
a a 
a 
y x 
log log 
a a 
log log 
 
 
z y 
log log 
a a 
a a 
log 
x 
a 
z y 
y x 
log log 
proved 
HOME 
Prove that : 
Solution: 
or, 
log 
x 
or, a a 
f rom (i) 
a 
a 
a a 
x y 
x y 
let z x 
 
 
 

9. 
m n n m 
(iv)    
log log log log 
a b a b 
n 
b 
m 
b 
L H S 
m  
n 
a b 
m 
a 
n 
a 
 
 
n m R H S 
proved 
HOME 
Prove that : 
Solution: 
log 
log 
log 
log 
. . . 
log log 
log 
log 
log 
log 
or, 
or, 
or, log  log  
. . . 
a b
9. 
log 3  log 2  
1 
1 
2 3 
. . . 
log 3 log 2 
proved 
HOME 
Prove that : 
Solution: 
2 3 
or, 1 . . . 
] 
1 
log 
[ log 
log 3 
or, log 3 
2 
2 
R H S 
a 
b 
L H S 
b 
a 
 
  
 
 
(v)
9. 
b c a 
log  log  log  
1 
a b c 
. . . 
b c a 
log  log  
log 
log 
c 
proved 
HOME 
Prove that : 
Solution: 
log 
b 
or, 1 . . . 
] 
log 
log 
[ log 
log 
log 
log 
log 
or, 
R H S 
b 
a 
b 
a 
c 
b 
a 
L H S 
a 
a b c 
 
   
 
(vi)
9. 
Prove that : 
    
2 2 
log log log( ) log 
. . . 
x y 
log log 
x 
 
 
x y x y a b a b a b 
or, log  log log  log [   (  )(  
)] 
x 
 
 
proved 
HOME 
Solution: 
    
   
or, log( )log . . . 
2 2 
2 2 
R H S 
y 
xy 
L H S 
y 
x y xy 
   
 
  
 
 
  
 
  
 
  
 
(vii)
10. 
Find the value of : 
(i)  
log 729 9 (27) 
4 3 
log 729 9 (27) 
4 
4 
 
or, log 3 3 (3 ) 
4 6 3  2  
4 
3 
or, log 3 3 3 
or, log 3 3 
4 6 2 
3 
or, log 3 
or, log 3 
or, log 3 
4 
6 
4 
solved HOME 
Solution: 
given : 
    
  
  
or, 1 
3 
4 
3 
4 
3 
6 
3 
4 3 
3 
6 2 1 3 
3 
3 
1 
3 
4 3 
3 
1 
3 
 
 
  
 
 
 
 
 
 

10. 
Find the value of : 
log log log 81 
3 2 3 
log log log 81 
3 2 3 
or, log log log 3 [  
3  
81] 
or, log log 8log 3 [ log 1] 
3 2 3 
or, log log 2 
or, log 3 
solved 
HOME 
Solution: 
given : 
    
  
or, 1 
3 
3 
3 2 
8 8 
3 2 3 
 
a a  
(ii)
10. 
Find the value of : 
log 16  
log 9 
2 3 
log 16 log 9 
2 3 
or, log 2  log 3 [  
2  16 3  
9] 
or, 8log 2 4log 3 [ log 1] 
solved 
HOME 
Solution: 
given : 
        
    
8 
4 
or, 
or, 2 
2 3 
4 8 4 
3 
8 
2 
  
 
a 
and 
a  
(iii)
10. 
Find the value of : 
b c d a 
(iv)    
log log log log 
a b c d 
b c d a 
log  log  log  
log 
a b c d 
log 
b 
solved 
HOME 
Solution: 
given : 
or, 1 
log 
log 
log 
d 
log 
log 
log 
log 
or, 
a 
d 
c 
c 
b 
a 
  
10. 
Find the value of : 
(v)   
log 27 log 8 log 1000 
log1.2 
log 27  log 8  
log 1000 
3 3 3 
log 3  log 2  
log 10 
12 
3 
 
 
 
 
log 3 log 2 log10 
3 
3 
log10 
2 
  
 
log 3 3log 2 
2 
  
  
log 3  2log 2  
log10 
  
log 3  2log 2  
log10 
solved 
HOME 
Solution: 
given : 
  
  
3 
3 
  
  
3 
2 
or, 
log 3 2log 2 log10 
2 
or, 
log 3 2log 2 log10 
2 
or, 
log 3 2 log10 
3 
or, 
log12 log10 
or, 
10 
log 
or, 
log1.2 
2 
2 
2 3 
 
10. 
Find the value of : 
(vi)     
log 4 log 5 log 6 log 7 log 3 
3 4 5 6 7 
log 4  log 5  log 6  log 7  
log 3 
log 4 
solved 
HOME 
Solution: 
given : 
or, 1 
log 3 
log 7 
log 7 
log 6 
log 6 
log 5 
log 5 
log 4 
log 3 
or, 
3 4 5 6 7 
   
10. 
Find the value of : 
log 6 6 6... 
x 
let  6 6 6...  
. ..(i) 
2 
x 
or, 6 6 6 6... 
  
x x 
or,  
6 from (i) 
or, 6 
   
log 6 6 6... log 
6 6 
solved 
HOME 
Solution: 
given : 
or, log 6 1 
6 
2 
6 
 
 
 
x 
x 
(vii)
11. 
25 
    
25 
   
16 12 7 
 
5 
25 
5 
16 
16 
 
16 
2 
2 
25 
16 
. . . 
 
24 
 
 
  
64 
 
 
 
 
 
 
 
 
 
 
or, log 2 5 3 
81 
81 
 
 
3 
3 
 
81 
81 
 
28 7 
 
 
 
 
 
 
 
proved HOME 
Prove that: 
Solution: 
  
  
or, log 2 5 1 
or, log10 
or, 1 . . . 
2 5 
2 3 
3 5 
or, log 2 
2 5 
2 3 
3 5 
or, log 2 
80 
24 
15 
or, log 2 
80 
log 
24 
log 
15 
or, log 2 log 
80 
7 log 
24 
12log 
15 
log 2 16log 
1 
80 
7 log 
24 
12log 
15 
log 2 16log 
1 64 36 28 24 16 7 28 16 12 
28 
36 12 
16 16 
7 
4 
4 
12 
3 
2 
16 
4 
16 12 7 
R H S 
L H S 
 
  
  
  
 
   
 
 
 
 
 
 
 
 
  
 
  
 
 
   
 
  
 
 
    
  
 
 
 
  
 
  
 
 
  
  
 
 
 
 
  
  
 
  
 
 
       
(i)
11. 
   
  
7 2 3 
25 
 
25 
 
 
  
 
  
7 2 
5 
5 
4 
 
6 2 
2 3 
10 
 
10 
 
  
5 2 
 
7 7 
5 2 
7 7 
5 2 
25 
25 
10 
. . . 
10 
 
 
 
12 
12 
 
7 4 3 7 6 12 2 12 14 
 
 
 
 
 
 
 
or, log 5 2 3 
81 
81 
81 
3 
3 
  
proved 
HOME 
Prove that: 
Solution: 
  
 0 1 0 
 
  
or, log 5 2 3 
or, log 1  2  
1 
or, log2 . . . 
81 
 
2 5 
5 
3 
or, log 
2 5 
2 3 
3 
or, log 
3 
 
2 5 
2 3 
3 
or, log 
80 
24 
9 
or, log 
80 
log 
24 
log 
9 
or, log 
80 
3log 
24 
2log 
9 
7 log 
log 2 
80 
3log 
24 
2log 
9 
7 log 
1 
12 3 
4 
14 
12 3 
6 2 
14 
3 
4 
4 
2 
3 
2 
7 2 3 
R H S 
L H S 
 
  
 
 
  
 
   
 
 
 
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
   
 
  
 
 
  
 
   
  
 
 
 
 
 
 
 
 
 
  
 
  
 
      
(ii)
11. 
   
  
7 5 3 
25 
 
25 
 
 
  
10 
5 
16 
 
16 
2 
2 
5 
81 
81 
81 
25 
25 
16 
. . . 
16 
 
 
 
 
12 
 
  
28 
 
 
 
 
 
28 15 12 10 7 3 12 7 5 
 
 
 
 
 
 
or, log 2 5 3 
proved 
HOME 
Prove that: 
Solution: 
3 
81 
  
  
  
or, log 2  5  
3 
or, log 2  1  
1 
or, log2 . . . 
3 
2 5 
2 3 
3 5 
or, log 
2 5 
2 3 
3 5 
or, log 
80 
24 
15 
or, log 
80 
log 
24 
log 
15 
or, log 
80 
3log 
24 
5log 
15 
7log 
log 2 
80 
3log 
24 
5log 
15 
7log 
1 0 0 
12 3 
15 5 
7 7 
3 
4 
4 
5 
3 
2 
7 
4 
7 5 3 
R H S 
L H S 
 
  
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
   
 
  
 
 
    
  
 
 
  
 
  
 
 
 
 
 
 
 
  
 
  
 
  
 
      
(iii)
11. 
32 
   
32 
 
5 
2 
2 
2 
 
  
 
   
 
5 
3 
75 
5 
5 
 
  
3 5 
3 5 
3 5 
5 
75 
. . . 
75 
 
  
5 
5 
2 
4 
 
2 5 
2 
 
 
1 4 5 2 2 5 4 
 
 
 
 
or, log 3 5 2 
2 
32 
 
 
 
proved HOME 
Prove that: 
Solution: 
  
  
  
or, log 3  5  
2 
or, log 1  1  
2 
or, log2 . . . 
3 
5 
2 
or, log 
3 
3 
2 
or, log 
3 
3 
2 
or, log 
243 
log 
9 
log 
16 
or, log 
243 
log 
9 
2log 
16 
log 
log 2 
243 
log 
9 
2log 
16 
log 
0 0 1 
5 
2 
4 
2 
5 
4 
4 
2 
5 
4 2 
R H S 
L H S 
 
  
  
 
   
  
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
 
 
 
  
 
 
 
  
 
  
 
    
(iv)
11. 
(v) x y z 
y z z x x y 
log  log log  log log  
log 
   
y z z x x y 
log  log log  log log  
log 
let k  x  y  
z 
k x y z 
or, log log 
1 
y z z x x y 
log  log log  log log  
log 
   
y z z x x y 
log  log log  log log  
log 
k x y z 
or, log  log  log  
log 
k y z x z x y x y z 
or, log  log  log log  log  log log  log  
log log 
k y x z x z y x y x z y z 
or, log  log log  log log  log log  log log  log log  
log log 
proved 
HOME 
Prove that: 
Solution: 
  
      
k 
or, log  
0 
k 
or, log log1 
k 
or, 1 
y z z x x y 
log log log log log log 
or,    
1 
 
 
   
x y z
11. 
Prove that: 
1 
   
xy yz zx 
1 
1 
. . . 
1 
xyz xyz xyz 
xy yz zx 
   
xy yz zx 
or, log ( ) 
xyz 
xyz 
or, log ( ) 
1 
log ( ) 
xyz 
or, 2log log 1 
proved 
HOME 
Solution: 
  
or, 2 
log 
1 
log 
or, log log log 
1 
log ( ) 
log ( ) 
2 
log ( ) 
log ( ) 
log ( ) 
2 
 
  
 
 
 
 
 
 
  
xyz a 
a 
b 
xy yz zx 
L H S 
xyz xyz xyz 
xyz a 
b 
a 
xyz xyz xyz 
 
 
(vi)
11. 
a b c 
   
3 3 3 
b c a 
. . . 
a b c 
log log log 
3 3 3 
c 
b 
   
1 
log 
log 
b 
proved 
HOME 
Prove that: 
Solution: 
log 
a 
log 
1 
1 
27 
or, 
3 
a 
1 
3 
3 
or, 
log 
log 
c 
3log 
3log 
3log 
or, 
log 
log 
log 
log 
log 
log 
or, 
1 
27 
log log log 
3 3 3 
  
  
 
 
 
 
 
 
  
a 
c 
b 
a 
b 
a 
a 
c 
b 
L H S 
b 
b c a 
 
(vii)
11. 
. . . 
2 3 
a a a a 
log  log  log  ...  
log 
n 
a a a n a 
or, log  2log  3log  ...  
log 
or, 1  2  3  ...  
log 
proved 
HOME 
Prove that: 
Solution: 
  
  
 
 
 
  
 
 
 
(  
1) 
 
     
( 1) 
2 
log 
2 
or, 
log 
2 
1 
log log log ... log 
2 3 
n n 
a sum of natural number 
n n 
n a 
L H S 
a 
n n 
a a a a 
n 
 
(viii)
11. 
x y z x y z 
(ix)      
log log log log log log 
a b c b c a 
proved 
HOME 
Prove that: 
Solution: 
z 
c 
z 
a 
. . . 
x y z 
log  log  
log 
a b c 
y 
  
b 
y 
  
c 
x 
a 
x 
b 
log 
log 
log 
log 
log 
log 
x y z 
L H S 
log 
log 
log 
or, log log log 
b c a 
or, 
log 
log 
log 
or, 
 
11. 
Prove that: 
x y z 
log  log  log   
1 
1 1 1 
y z x 
. . . 
x y z 
log  log  
log 
1 1 1 
log 
y 
  
log 
y 
log 
1 
x 
x 
1 
log 
log 
log 
proved 
HOME 
Solution: 
1 
or, 1 
1 
1 
1 
or, 
z 
log 
z 
log 
1log 
log 
1log 
1log 
or, 
log 
log 
log 
or, 
1 
log 
1 
log 
1 
log 
or, 
1 1 1 
 
 
 
 
 
 
 
 
 
 
 
  
   
x 
z 
z 
y 
y 
x 
x 
z 
y 
x 
z 
y 
L H S 
y z x 
(x)
11. 
Prove that: 
x y z 
   
2 2 2 
x y z 
. . . 
x y z 
log log log 
2 2 2 
x y z 
   
1 
1 
1 
1 
  
proved 
HOME 
Solution: 
 
  
1 
1 
8 
or, 
log 1 
2 
2 
2 
or, 
1 
1 
1 
2log 
1 
1 
2log 
2log 
or, 
1 
log 
log 
log 
log 
log 
or, 
8 
log log log 
2 2 2 
   
 
 
 
 
 
  
a 
x y z 
b 
a 
x y z 
L H S 
a 
x y z 
a 
b 
x y z 
 
 
(xi)
12 (a) 
log 25 
8 
log 25 
log 8 
log 5 
2 
log 2 
3 
2log 5 
3log 2 
10 
2 
2log 
 
3log 2 
 
2 log10 log 2 
3log 2 
2 1  
0.3010 
2 0.6990 
solved 
HOME 
log 2 0.3010 , log 25. 8 If  find the valueof 
  
  
  
0.9030 
1.3980 
0.9030 
1.548 
log 2 0.3010 given 
3 0.3010 
Solution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12 (b) 
log 3 , log 5 , log 8. 30 30 30 If  a and  b find the valueof 
 
30  
log 8 
log 2 
3log 2 
 
30 
30 
  
   
   
  
 
 
  
3 log 30 log 15 
30 30 
   
3 log 30 log 3 5 
30 30 
   
31 log 3 log 5 
30 30 
   
31 log 3 log 5 
   a  b 
 
 
 
3 1 
15 
3log 
30 30 
30 
3 
30 
solved 
HOME 
 log 3 and log 5 given 30 30   a  b 
Solution:
13. (i) 
1 
1 
 
 
If a 2  b  
2  7 ab , show that, log a  
b  log a  log b 
a  b  
ab 
2 2 
a b ab ab ab 
or,   2  7  
2 
2 
  
  
a b ab 
or,   
9 
  
  
  
ab 
ab 
 
a b 
1 
1 
1 
 
 
  
  
  
a b ab 
1 
 
a b  a b 
a b 
ab 
a b 
ab 
a b 
log log 
2 
1 
1 
( ) 
3 
3 
or, 
or, log 
log 
2 
( ) 
3 
or, log 
log 
3 
or, log 
3 
or, 
9 
or, 
7 
2 
2 
2 
2 
2 2 
   
 
 
 
 
  
 
 
 
 
 
  
 
 
 
2 
proved HOME 
3 
 
 
 
Solution: 
given : 
[ Adding 2ab on both sides ] 
[ a2+b2+2ab=(a+b)2 ] 
[ taking log on both sides]
13. (ii) 
1 
y 
x 
log log  , 23 
2 
 
log     
  
  
  
  
1 
  
2 2 
25 
 
2 
or, 
2 2 
x y xy xy 
or,   2  
25 
2 2 
x y xy xy 
or,   25  
2 
2 2 
x y xy 
or,   
23 
y 
x 
or,   
23 
y 
x 
or, 23 
log 
5 
or, log 
log log 
5 
or, 2log 
log log 
2 
5 
log 
2 2 
2 
  
 
  
  
 
  
 
 
x 
y 
xy 
xy 
xy 
x y xy 
xy 
x y 
x y 
x y 
x y 
x y 
proved HOME 
5 
x 
y 
x y showthat 
x y 
If 
Solution: 
given :
13. (iii) 
 
 
If a b a b showthat x x x x x , log log 3 5 5 3   
x x x x 
3  5 5  
3 
   
x 
x 
5 
3 
5 
3 
 
 
x x x x 
5  3 5   (3  
) 
 
x x x x 
a 
a b a b 
a 
b 
b a 
5 3 5 3 
    
b a 
x x 
2 2 2 
b a 
or, 
or, 
or, 
or, 
or, 
or, 
or, 
2 
 
2 
2 
2 
2 
 
 
  
 
 
 
 
or, log log 
b 
a 
b 
x 
a 
b 
a 
a 
x 
b 
b 
a 
a 
a 
a 
a 
a 
b 
x 
x 
x 
x 
x 
x 
 
 
or, log log 
  
 
  
 
 
  
 
 
 
 
 
a 
b 
a 
 
 
 
proved HOME 
     
Solution: 
given :
13. (iv) 
4 4 2 2 
a  b  
14 
a b 
4 4 2 2 2 2 2 2 
a b a b a b a b 
or,   2  14  
2 
  
    
2 2 2 2 2 
a b a b 
or,   
16 
2 2 2 2 
a b ab 
or,   
4 
2 2 
a b ab 
or,   
4 
 a 2 b 2 
  ab 
 
  
  
  
or, log   
log 4 
e e 
2 2 
a b a b 
or, log   log 4  log  
log 
e e e e 
2 2 2 
a b a b 
or, log   log 2  log  
log 
e e e e 
2 2 
a b a b 
or, log   2log 2  log  
log 
e e e e 
or, log  a 2  b 2 
  log a  log b 
 
2log 2 
e e e e 
proved 
HOME 
14 , log   log log 2log 2 4 4 2 2 2 2 
e e e e If a  b  a b showthat a  b  a  b  
Solution: 
given : 
[ Adding 2a2b2 on both sides ] 
[ a4+b4+2a2b2 =(a2+b2)2 ] 
[ taking log on both sides]
14. (a) 
y 
y 
x 
x 
log log log 
  
  
  
x k y z 
   
z 
z 
log . ... .(i) 
y k z x 
log   
. ... .(ii) 
z k x y 
log . ... .(iii) 
      
  
from (i), (ii) and (iii) : 
x y z k y z k z x k x y 
l og log log 
        
  
or, log 
x  y  z  ky  kz  kz  kx  kx  
ky 
xyz 
or, log( )  
0 
or, log( ) log1 
or,  
1 
 
 
 
 
 
 
 
xyz 
xyz 
k 
x y 
z x 
y z 
let 
HOME 
, 1 
log log log 
 
 
 
 
 
 
prove that xyz 
x y 
z x 
y z 
If 
Solution: 
proved 
[ log1=0]
14. (b) (i) 
x 
y 
x 
log log log 
y 
z 
z 
    
    
    
x k b c a x ak b c 
log log . ... .(i) 
      
y k c a b y bk c a 
log    log   
. ... .(ii) 
z k a b c z ck a b 
log    log   
. ... .(iii) 
      
from (i), (ii) and (iii) : 
a log x  b log y  c log 
z  ak b  c  bk c  a  ck a  
b 
a b c 
x  y  z  akb  akc  bkc  bka  cka  
ckb 
or, log log log 
a b c 
x y z 
or, log(   )  
0 
a b c 
x y z 
or, log( ) log1 
or,  
1 
 
 
 
 
 
 
 
a b c 
x y z 
k 
a b 
c a 
b c 
let 
HOME 
, 1 
log log log 
 
 
 
 
 
 
a b c provethat x y z 
a b 
c a 
b c 
If 
Solution: 
proved 
[ log1=0]
14. (b) (ii) 
y 
x 
y 
x 
log log log 
 
z 
z 
         2 2 
 
          
          
x k b c b c x b c k b c k b c 
          
log log . ... .(i) 
2 2 
y k c a c a y c a k c a k c a 
log     log      
. ... .(ii) 
2 2 
z k a b a b z a b k a b k a b 
log     log      
. ... .(iii) 
from (i), (ii) and (iii) : 
 b  c  log x   c  a  log y   a  b  log 
z  k  b  c   k  c  a   k  a  
b 
 
 b  c   c  a   a  
b 
 
        
        
x y z kb kc kc ka ka kb 
or, log log log 
        
b  c c  a a  
b 
x y z 
or, log    
0 
b  c c  a a  
b 
x y z 
or, log log1 
      or, 1 
2 2 2 2 2 2 
2 2 2 2 2 2 
 
 
 
 
 
 
 
b  c c  a a  
b 
x y z 
k 
a b 
c a 
b c 
let 
HOME 
, 1 
log log log 
 
 
 
 
 
 
bc ca ab provethat x y z 
a b 
c a 
b c 
If 
Solution: 
[ log1 = 0] 
proved
14. (b) (iii) 
y 
x 
y 
x 
log log log 
z 
z 
    
    
    
x k ry qz p x pk ry qz 
      
log log . ... .(i) 
y k pz rx q y qk pz rx 
log    log   
. ... .(ii) 
z k qx py r z rk qx py 
log    log   
. ... .(iii) 
      
from (i), (ii) and (iii) : 
p log x  q log y  r log 
z  pk ry  qz  qk pz  rx  rk qx  
py 
p q r 
x y z kpry kpqz kqpz kqrx krqx krpy 
or, log log log 
        
 x p y q z 
r 
 
  
or, log    
0 
p q r 
x y z 
or, log log1 
or,  
1 
 
 
 
 
 
 
 
p q r 
x y z 
k 
qx py 
pz rx 
ry qz 
let 
HOME 
, 1 
log log log 
 
 
 
 
 
 
p q r prove that x y z 
qx py 
pz rx 
ry qz 
If 
Solution: 
[ log1 = 0] 
proved
15. 
log 45 
2 
  
log(3 5) 
2 
  
log 3 log 5 
  
2log 3 log 5 
10 
 
 
   
2log 3 log10 log 2 
    
2 0.4771 1 0.3010 
  
0.9542 0.6990 
1.6532 
2 
2log 3 log 
 
 
 
 
 
  
HOME 
If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : 
Solution: 
(i) 
solved 
[ log10 = 1]
15. 
log108 
2 3 
  
log(2 3 ) 
2 3 
  
log 2 log 3 
  
2log 2 3log 3 
    
2 0.3010 3 0.4771 
  
0.6020 1.4313 
2.0333 
 
HOME 
If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : 
Solution: 
(ii) 
solved
15. 
log 84 
2 
   
log(2 3 7) 
2 
   
log 2 log 3 log 7 
   
2log 2 log 3 log 7 
    
2 0.3010 0.4771 0.8451 
    
0.6020 0.4771 0.8451 
1.9242 
 
HOME 
If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : 
Solution: 
(iii) 
solved
15. 
log 294 
   
log(2 3 7 ) 
   
log 2 log 3 log 7 
   
log 2 log 3 2log 7 
    
0.3010 0.4771 2 0.8451 
    
0.3010 0.4771 1.6902 
2.4683 
2 
2 
 
HOME 
If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : 
Solution: 
(iv) 
solved
15. 
log 21.6 
216 
10 
log 
 
 
  
log 216 log10 
 3 3 
 
   
log 2 3 log10 
3 3 
   
log 2 log 3 log10 
   
3log 2 3log 3 log10 
     
3 0.3010 3 0.4771 1 
    
0.9030 1.4313 1 
1.3343 
 
 
 
 
 
 
HOME 
If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : 
Solution: 
(v) 
solved 
[ log10 = 1]
16 (i) 
given 
If three positive real numbers a b and c are inG P 
, . ., 
solved 
showthat a b and c are in A P 
a, b and c are in G.P. 
c 
b 
  
b 
c 
 
 
log log 
 
 
 
 
 
 
  
 
 
 
b a c b 
log  log  log  
log 
a b c A P. 
a 
b 
b 
a 
hence, log , log and log are in . 
HOME 
log , log log . . 
Solution:
16 (ii) 
log 
log 
x k 
log 
  
log 
log 
log 
   
log . ... .(i) 
y k 
log  
2 . ... .(ii) 
z k 
log  
3 . ... .(iii) 
from (i), (ii) and (iii) : 
y x k k k 
log  log  2   
. ... .(iv) 
z y k k k 
log log 3 2 . ... .(v) 
from (iv) and (v) : 
y x z y 
    
log log log log 
y 
z 
z 
 
 
 
Hence, x, y and z are in G.P. y 
y 
x 
y 
x 
k 
x y z 
let 
 
 
  
 
  
 
  
 
 
    
log log 
3 
2 
1 
HOME 
, , , . . 
3 
2 
1 
provethat x y z are inG P 
x y z 
If   
Solution:
17. 
The f irst and the last terms of aG P are a and k respectively 
If the number of termbe n provethat 
k a 
log log 
given First term = a 
Last term = k 
No. of term = n 
Common ration = r 
. . . 
 
Last terminG P ar 
1 k ar 
log  
log 
k a r 
log  log  
log 
k a n r 
log  log   
1 log 
k a n r 
log log 1 log 
proved HOME 
. 
log 
1 
, , 
where r is the commonratio 
r 
n 
 
  
Solution: 
  
  
  
   
n 
k a 
log log 
k a 
log log 
r 
n 
r 
k ar 
n 
n 
n 
n 
  
 
  
 
 
 
 
 
 
 
1 
log 
1 
log 
. . 
1 
1 
1
18. 
If the p q and r terms of aG P are a b and c respectively showthat th th th 
given 
, . . , , 
q  r a  r  p b  p  q c  
pth term = a 
qth term = b 
rth term = c 
let the first term = b 
and common ratio = R 
pth term = a = b Rp-1 
qth term = b = b Rq-1 
rth term = c = b Rr-1 
Press 
( ) log ( ) log ( ) log 0 
Solution:
since a, b and c are in G.P. 
- - - (ii) 
- - - (iii) 
- - - (i) 
b 
q p 
 
 
 
  
R 
1 
1 1 
R 
 
1 
q 
1 
1 
1 1 
1 
1 
R 
b 
c 
b 
b 
 
 
and 
b 
c 
b 
R R 
R 
c 
b 
R 
a 
R R 
R 
a 
b 
a 
r 
r q 
r q r q 
q 
q p q p 
p 
 
  
 
 
 
   
 
   
 
 
    
 
    
 
b 
b 
 
Press
from (i), (ii) and (iii) : 
1 1 
b q p c 
r q 
   
c 
 
  
 
  
q  
p 
q p 
b 
r q 
c 
b 
 
b 
 
 
 
 
r  q q  p r  q q  
p 
b  b  a  
c 
r  q  q  p r  q q  
p 
b  a  
c 
r  p r  q q  
p 
b  a  
c 
r p r q q p 
r q 
r q q p 
b a c 
a 
b 
a 
b 
a 
   
 
  
  
 
 
 
 
 
 
 
 
 
 
log log log 
Press
r p b r q a q p c 
(  ) log  (  ) log  (  
) log 
r p b q r a p q c 
(  ) log   (  ) log  (  
) log 
q r a p q c r p b 
(  ) log  (  ) log  (  ) log  
0 
q r a r p b p q c 
(  ) log  (  ) log  (  ) log  
0 solved 
HOME
19. (i) 
If x  bc y  ca and z  
ab showthat a b c 
1 
x y 1 
z 
1 
x y z 
1 
1 
bc ca ab 
a b c 
bc a ca b ab c 
a a b b c c 
1 
1 
1 
1 
1 
. . 
   
abc abc abc 
a b c 
a b c 
   
log log log 
log 
1 
1 
1 
1 
log ( ) 
log ( ) 
log ( ) 
1 
log ( ) log 
log ( ) log 
log ( ) log 
log ( ) 1 
log ( ) 1 
log ( ) 1 
1 
1 
1 
1 
1 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc abc abc 
abc 
L H S 
abc 
proved HOME 
1 
1 
( ) 
log ( ), log ( ) log , 
 
 
 
 
 
 
i 
Solution:
19. (ii) 
given 
If x  log ( bc ), y  log ( ca ) and z  
log ab , 
showthat a b c 
( ) 2 
x bc 
log ( ) 
a 
 
y ca 
log ( ) 
b 
 
z ab 
log ( ) 
c 
 
hence 
1 
1 
1 
bc ca ab 
a b c 
x y z 
x y z 
y x 
   
1 1 
x y 
  
  
1 1 
( 1) ( 1) 
x y z z xy x y 
(   2)(  1)  (    
1) 
xz  x  yz  y  z   xyz  xz  yz  
z 
x  y  2 z  2 
 xyz  
z 
x  y  2 z  z  2 
 
xyz 
x y z xyz 
z 
z 
xy x y 
z 
z 
x y 
    
 
 
   
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 
2 2 
2 
( 1) 
( 1)( 1) 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
log 1 
log 1 
log 1 
proved 
HOME 
ii x  y  z   
xyz
20. 
given 
a a a 
. . . 
1 
    
log log 2 log 3 1 
a a a 
2 3 4 
a 
    
a 
L H S 
log 
log 
log 2 
  
a a 
log log 4 
a 
log 4 
a a 
log( 4 ) 
log 4 
a 
log(2 ) 
a 
a 
a 
2log 2 
log 4 
log 2 
a 
 
 
    
a 
a 
log 3 
log 2 
log 3 
log 4 
3 
   
2 log 2 log 3 
proved 
x a 
a 
2 
 
y log 2 
a 
a 
3 
 
z log 3 
a 
a 
log 
4 
 
yz 
a 
a a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
xyz 
a a 
a 
2 
log 4 
2 
log 3 
2 
log 4 
1 
log 4 
1 
log 4 
log 3 
log 2 
3 4 
3 
2 
 
 
 
 
 
 
HOME 
If x a y a and z a showthat xyz yz a a a log , log 2 log 3 , 1 2 2 3 4     
21. 
log  , log  , prove log  
p q p  
given 
p 
q 
1 
p q 
. . . 
1 
x 
log 
log log 
x x 
1 
ab 
proved 
x  
a 
x b 
p 
q 
 
log 
log 
L H S 
p 
1 
1 
1 1 
a b 
b a 
ab 
ab 
b a 
x x 
x 
p q 
q 
 
 
 
 
 
 
 
 
 
 
 
1 
log 
log 
1 
log 
HOME 
b a 
If x a and x b that x 
q
 
 
If log x y a, and log , log log 2 3    
22. 
Solution: 
given: 
x 
log( x 2 y 3 
) a 
- - - (i) b 
x 
 
 
log - - - (ii) 
y 
   
 
  
 
 
solved 
(i) 
from 
2 3 
x y a 
log log 
  
x y a 
2log  3log  
- - - (iii) 
x y b 
log log 
  
log x  log y  
b 
- - - (iv) 
from (iii) and (iv) 
  
y b y a 
2 log 3log 
   
y b y a 
2log 2 3log 
   
y a b 
5log 2 
2 
5 
log 
(ii) 
  
a b 
y 
from 
 
  
and from 
a 2 
b 
b 
2 5 
3 
a b 
2 
3 
5 
log 
5 
 
log 
 
5 
5 
5 
log 
(iv) 
a b 
y 
a b 
x 
a b b 
x 
 
 
 
  
  
 
 
 
 
HOME 
  b prove that x and y in terms of a and b 
y 
 
  
 

23. 
e 
y 
2 
 2 
 
solved 
y y 
e  
e 
1 
If x  y  
y e 
y y 
e e 
 
 
y y 
y y 
e e 
 
 
y y 
e e 
e e 
y  y y  
y 
 
e  e  e  
e 
e e 
y 
y y 
e 
y y 
y y 
e e 
 
 
y y 
e e 
y y y y 
 
likewise 
  
e  e  e  
e 
y y 
1 
- - - (ii) 
e 
2 
1 1 
- - - (i) 
2 
1 1 
e e 
y 
y y 
e e 
x 
e e 
x 
x 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
   
y 
y y 
y 
  
 
 
1 
1 
e e 
x 
x 
from and 
x 
y 
y 
e 
e e 
e 
x 
x 
y e y 
x 
x 
x 
e 
x 
e e 
e 
e e 
x 
e 
e 
y 
e e 
y y y 
y 
y y 
 
 
1 
1 
  
 
 
 
  
 
 
 
   
 
 
 
 
 
 
1 
1 
1 
1 
1 
log 
2 
log 
2 
2 log 2 
1 
log 
log 
1 
log 
2 
2 
1 
(i) (ii) 
2 
2 
HOME 
x 
x 
show that y 
e e 
 
 
 
 
 
1 
log 
2 
log , 
Solution: 
given:
24. 
log 3 10 Showthat the valueof lies between and 
Solution: 
HOME 
2 
. 
5 
1 
2 
9 10 
log 9 log 10 
10 10 
- - - (i) 
log 3  
1 
2log 3 1 
1 
2 
log 3 
10 
10 
2 
10 
 
 
 
  
and 
243 100 
log 243 log 100 
10 10 
log 3  
log 10 
5log 3  
2log 10 
10 10 
- - - (ii) 
5log 3  
2 
2 
5 
10 
log 3 
10 
2 
10 
5 
10 
 
 
  
from i and ii 
2 
5 
log 3 
1 
2 
( ) ( ) 
10   
proved
25. 
Solution: 
HOME 
log 10 log (32 ) 5, . 6 If b and b find the value of a a a   
a  
log 10 (given) 
10 
a b 
log (32 ) 5 (given) 
5 
6 
a b 
(6 )  
32 - - - (ii) 
from (i) and (ii) 
5 
10 
 
b 
a 
(6 ) 32 
 
6 
2 
5 
6 
2 
 
 
3 
1 
1 
2 
10 
5 5 
10 5 
a 
6 
32 
6 
- - - (i) 
5 
5 
5 
5 
5 5 
a 
  
 
 
 
 
 
 
  
 
 
a 
a 
a 
a 
b 
a 
b 
and 
b 
a 
found
26. 
Solution: 
HOME 
found
27. (i) Solve 
Solution: 
HOME 
4 
solved 
x 
x x 
2 
10 
log  log  
10 10 log 
2 
x 
 
x 
 
 
10 1 
x 
x 
x 
x 
x 
x 
 
x x 
x 
x x 
2 
2 
2 
10 
1 
2 
10 
10 
 
 
1 
2 
1 
10 
2 10 
10 
10 
2 
10 
10 10 
log 
log 
log 
log 
log 
log 
log 
log 
log 
log log 
 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
  
 
  
 
  
 
 
 
 
  
 
 
2 
2 2 
1 
x x 
log  log  
4 
10 10 
x 
(log ) 4 
x 
log  4   
2 
1 
 
or , 10 
x 
2 
hence 
x or 
10 10 
100 
100 
log 
log 
log 
log 
log 
2 
2 2 
10 
2 
10 
10 10 
10 
10 
10 
 
x or 
x x 
x 
x 
x 
  
 
 
 
 
 
 
 
27. (ii) Solve 
Solution: 
log log log 1 2 2 2 x  
 x 
log log log 1 
2 2 2 
  
log log log log 2 
2 2 2 2 
log log 2 
2 2 
 
x 
log log  2  
log 2 
2 2 2 
x 
log log  
log 2 
log log log 4 
2 2 2 
HOME solved 
log 4 
 2 
 
2 
4 
, 16 
2 
2 2 2 
 
 
 
 
or x 
x 
x 
x 
again 
x 
x
27. (iii) Solve 
Solution: 
HOME 
log log log 11 8 4 2 x  x  x  
log  log  log  
11 
8 4 2 
1 
    
x x x 
1 
   
x x x 
   
1 
1 
1 
 
   
2 3 6 
6 
1 
1 
 
solved 
1 
1 
1 
1 
x 
1 
x 
1 
x 
1 
  
 
x 
log 6 
, 64 
2 
6 
log 2 
11 
11 
log 2 
11 
6 
log 2 
1 11 
2 
3 
log 2 
11 
1 
log 2 
2log 2 
3log 2 
11 
log 2 
log 2 
log 2 
11 
log 2 
log 4 
log 8 
6 
2 
3 2 
 
 
 
   
 
  
 
  
or x 
x 
x x x 
x 
x x x 

28. 
If a b and c are three consecutive positive integers showthat 
log(1 ) 2log 
Solution: 
HOME 
, , 
  
a b and c are three consecutive positiveintegers 
proved 
ac b 
b ac 
  1 
 
, 
2 
2 
b ac 
log  log(1  
) 
b ac 
2log  log(1  
) 


Logarithm

  • 1.
    Any suggestion/request :write to rk01970@gmail.com Any comment: on www.facebook.com/eblackboard Presentation file : www.slideshare.net/eblackboard Contact No. : 8100803074
  • 2.
  • 3.
    1. Express thefollowing relations in the logarithmic forms: Ans. HOME Solution: 3 81 log 81 4 3 4   Logarithmic form : (i)
  • 4.
    1. Express thefollowing relations in the logarithmic forms: Ans. HOME Solution: 5 1 log 1 0 5 0   Logarithmic form : (ii)
  • 5.
    1. Express thefollowing relations in the logarithmic forms: Ans. HOME Solution: 1 5 32 2 1 5  32 2 log 2 32 5   Logarithmic form : (iii)
  • 6.
    1. Express thefollowing relations in the logarithmic forms: Ans. HOME Solution: 3 1 1 125 log 125 5 5 3     Logarithmic form : (iv)
  • 7.
    1. Express thefollowing relations in the logarithmic forms: Logarithmic form : Ans. HOME Solution: a c c b a b   log (v)
  • 8.
    2. Express thefollowing logarithmic forms in the exponential forms: log 64 6 Ans. HOME Solution: 6 2 2  64  exponential form : (i)
  • 9.
    2. Express thefollowing logarithmic forms in the exponential forms: exponential form : Ans. HOME Solution: 1 1 81 3 4 81 log 4 3     (ii)
  • 10.
    2. Express thefollowing logarithmic forms in the exponential forms: log 1 0 Ans. HOME Solution: 1 0   a a exponential form : (iii)
  • 11.
    2. Express thefollowing logarithmic forms in the exponential forms: 3 exponential form : Ans. HOME Solution: 1 1  125 25 2 125 log 25 3 2          (iv)
  • 12.
    2. Express thefollowing logarithmic forms in the exponential forms: P R log  exponential form : Ans. HOME Solution: R Q Q  P (v)
  • 13.
    3. Find thevalue of x : log 128 Ans. HOME Solution: log 128   2 128 , 2  2 , 7 7 2 2    or or x x x x x  (i)
  • 14.
    3. Find thevalue of x : log 81 4 log 81 4 Ans. HOME Solution: 81 x   4 4 4 or x ,  3 ,  3   or x x x  (ii)
  • 15.
    3. Find thevalue of x : Ans. HOME Solution: log   3 x log 3 or x 1  125  5  , 1 5 , 3 3 5 5     or x x x  (iii)
  • 16.
    3. Find thevalue of x : log 243 10 log 243 10 Ans. HOME Solution: 10 5 3 x   or x ,  3 or x , 3 1 2 10  , 3 1 5     or x x x  (iv)
  • 17.
    3. Ans. HOME Find the value of x : Solution: log 49 7  log 49 7      7 49 1  2 2 , 7 7 2 1 , or or x 2    ,  2  2  4 or x x x x x  (v)
  • 18.
    3. Find thevalue of x : log 7 5 2 10   x log 7 5 2 2 10    10 7 5 or x , 100  7  5 or , 100  5  7 x or x Ans. HOME Solution:     , 105 7 105 , or x 7 or , 15 x   ,  15    or x x x  (vi)
  • 19.
    3. Find thevalue of x : log 0.0001 log 0.0001 10 log 10 4   x x (vii) x or x , 4log 10 Ans. HOME Solution:       , 4  log 10 1 10 10 10 10         or x
  • 20.
    3. 5    Ans. HOME Find the value of x : Solution: log 0.25 4 log 0.25 4    1 2   5   5 10 x or x or x , 10 , 10 25 100 , 0.25 2 1 2 2 4 2 4                           or x x x  (viii)
  • 21.
    4. Find thevalue of logarithms of : (i) to the base of 625 5 log 625 5 log 5 , 4log 5 Ans. HOME Solution: , 4  log 5 1 5 5 4 5     or or
  • 22.
    4. Find thevalue of logarithms of : 343 7 log 343 7 log 7 , log 7 , log 7 6 , 6log 7 log 7 1 Ans. HOME Solution:         , 6 7 7 7 2 3 7 3 7 or or or or to the base of      (ii)
  • 23.
    4. Find thevalue of logarithms of : to the base of   Ans. HOME Solution: 0.1 9 3   log 0.1 1 let x let 9 3   1   2 2 4 5 1 1 2  , 3 3 3 1  2 2 2  , 3 3 5       , 3 3 2 5 5 ,   or or or or or x , 2 2 2 9 , 9 3 9 log 1 9 0.1 9 log 2 2 . 9 3 . 9 3 .                                 or x x x x x   (iii)
  • 24.
    4. Find thevalue of logarithms of : to the base of 1728 2 3 log 1728 2 3   log 2 3 6 3 let log 2  3  x 6 3 x , 2 3 2 3     x , 2 3 2 3 x , 2 3  2  3 Ans. HOME Solution:             6 6   ,    6 2 3 2 3  , 6 3 2 6 2 3 6 3 2 3      or or or or or x x  (iv)
  • 25.
    4. Find thevalue of logarithms of : to the base of 2401 7 log 2401 7 3 log 7 let log 7 x x 3 4 , 7 7 1  3 4      , 7 7 Ans. HOME Solution:   4 1 , or or or x 3 , 12 4 7 4 7 3 3 3         or x x  (v)
  • 26.
    4. Find thevalue of logarithms of : to the base of 2 4 Ans. HOME Solution: log 2 let x 4 8 4   , 4  2   4 8 8   2 8 , 2  2 , 2  2  or or or or x , 2   8 8 2 , log 2 2 8 -8      or x x x x  (vi)
  • 27.
    4. Find thevalue of logarithms of : Ans. HOME Solution: to the base of 81 9 log 81 9 let log 81 x 9  3  x , 9 81 1  3 2      , 9 9 1 3 2 , 9 9 2 1 , or or or or x 3   , 2 3 6 3 3 3         or x x x  (vii)
  • 28.
    4. Find thevalue of logarithms of : to the base of 5 0.008 log 5 0.008 let x x , 0.008 5 1    1 1 1 Ans. HOME Solution:     8 1 1         , 5 5 , 5 5 1 1 1 1 6 or or or or or or or x or x , 6 1   2 3 , - 2 , -3 5 5 , 5 125 , 5 1000 , log 5 2 -3 2 -3 2 3 2 2 3 0.008                       or x x x x x x  (viii)
  • 29.
    5. Find thebase when: is the logarithamof 3 343 let base x   log 343 3 3 or x ,  343 3 3 Ans. HOME Solution: or x ,  7 ,  7  or x x (i)
  • 30.
    5. Find thebase when: is the logarithamof 4 144 let base  x   log 144 4 4 or x ,  144 4 4 2 or x , 2 3     or x , 2 3 or x , 2 3 Ans. HOME Solution:         or x ,  2 3 , 2 3 4 4 4 4 4 2 2 4 4     or x x (ii)
  • 31.
    5. Find thebase when: is the logarithamof let base  x    1 1 Ans. HOME Solution:   1 3 1 1     1 or x or , x or x ,  3 , 27 3 , 3 3 log 1 3 3  3 3 3          or x x (iii)
  • 32.
    5. Find thebase when: let base  x    Ans. HOME Solution:   1 or , x a or x a a or x a a is the logarithamof x      , 1 , 1 1 log 1 1 1 1 (iv)
  • 33.
    6. Find thesimplest value of : log 5 log 27 log 27 10 log 3 3log 3 3 25 log 5 10 log 5 10 log 5   Ans. HOME Solution: 3 2 or, 10 2log 5 10 log 3 or, log 5 log 3 or, log 25 log 3 or, 10 10 2 10 3 10 10 10 10  (i) 
  • 34.
    6. Find thesimplest value of : log 27 if log 3 8 2 log 27 10 log 8 10 log 3 log 2 3log 3 10 3log 2 or, or, or, or, log 3 Ans. HOME Solution: a a   a  or, log 3 2 2 10 3 10 3 10  (ii)
  • 35.
    6. log log log 1 2 1 x x log Ans. HOME Find the simplest value of : (iii) x x a log if log Solution: 2 2 2  1 log x log x  x 2 1 2 3 2 2 1 1 2 1 log log log log 2 or, log 2 or, log 2 or, log 2 2 or, log 2 2 or, x x   1 1 1 3 or, 3 or, log 3 or, log 2 3 or, 3log 2 or, 3log 2 or, log 2 or, 2 2 3 a a x x x    
  • 36.
    7. Prove thatlog(1 23)  log1 log2  log3 proved HOME Solution: L H S . . . log(1  2  3) log(6) log(1  2  3) log1  log 2  log 3 or, or, or,
  • 37.
    8. Express Min term of N M N log 3log 1 2 1   M N   M N or, log  log  1   or, log log 3 log 1 solved HOME Solution: given :   3 3 1 1 1 2 3 M N or,   3 2 2 3 3   3 2 6 1 2 3 2 3 3 3 3 2 3 3 3 3 9 or, 3 or, 3 or, log 3log 1 2 1     N N M N M N M M N a a              (i)
  • 38.
    8. Express Min term of N (ii)   N M log 3 2log 10 10 N   M N M or, log  log  3 N M or, log (  )  3 N M or, log (  )  3  log 10 or, log ( ) log 10 2 3 or,   10 or,   1000 1000 solved HOME Solution: given : N M N M N M N M N M 1000 or, l og 3 log 2 2 3 10 2 10 10 2 10 2 10 2 10 10 2 10 10     
  • 39.
    9. Prove that: log log x a  x let y a x y a   log log . ..(i) log x x a a a log log a a x a     log 1 [ log 1] a a y x log log a a y x x a x proved HOME Solution: or, log or, a f rom (i) a a a      (i)
  • 40.
    9. Prove that: a 2log 2 2log x  a let y x a y x   log log . ..(i) 2log a a x x x 2log log x x a x     2log 1 [ log 1] x x y a log 2log x x y a or, log log x x 2 y a a 2log 2 x a proved HOME Solution: or, 2 or, x f rom (i) x x x       (ii)
  • 41.
    9. y x log log log y x y (iii)  z x   log log . ..(i) log y a a a y x log log a a log log   z y log log a a a a log x a z y y x log log proved HOME Prove that : Solution: or, log x or, a a f rom (i) a a a a x y x y let z x    
  • 42.
    9. m nn m (iv)    log log log log a b a b n b m b L H S m  n a b m a n a   n m R H S proved HOME Prove that : Solution: log log log log . . . log log log log log log or, or, or, log  log  . . . a b
  • 43.
    9. log 3 log 2  1 1 2 3 . . . log 3 log 2 proved HOME Prove that : Solution: 2 3 or, 1 . . . ] 1 log [ log log 3 or, log 3 2 2 R H S a b L H S b a      (v)
  • 44.
    9. b ca log  log  log  1 a b c . . . b c a log  log  log log c proved HOME Prove that : Solution: log b or, 1 . . . ] log log [ log log log log log or, R H S b a b a c b a L H S a a b c      (vi)
  • 45.
    9. Prove that:     2 2 log log log( ) log . . . x y log log x   x y x y a b a b a b or, log  log log  log [   (  )(  )] x   proved HOME Solution:        or, log( )log . . . 2 2 2 2 R H S y xy L H S y x y xy                  (vii)
  • 46.
    10. Find thevalue of : (i)  log 729 9 (27) 4 3 log 729 9 (27) 4 4  or, log 3 3 (3 ) 4 6 3  2  4 3 or, log 3 3 3 or, log 3 3 4 6 2 3 or, log 3 or, log 3 or, log 3 4 6 4 solved HOME Solution: given :         or, 1 3 4 3 4 3 6 3 4 3 3 6 2 1 3 3 3 1 3 4 3 3 1 3           
  • 47.
    10. Find thevalue of : log log log 81 3 2 3 log log log 81 3 2 3 or, log log log 3 [  3  81] or, log log 8log 3 [ log 1] 3 2 3 or, log log 2 or, log 3 solved HOME Solution: given :       or, 1 3 3 3 2 8 8 3 2 3  a a  (ii)
  • 48.
    10. Find thevalue of : log 16  log 9 2 3 log 16 log 9 2 3 or, log 2  log 3 [  2  16 3  9] or, 8log 2 4log 3 [ log 1] solved HOME Solution: given :             8 4 or, or, 2 2 3 4 8 4 3 8 2    a and a  (iii)
  • 49.
    10. Find thevalue of : b c d a (iv)    log log log log a b c d b c d a log  log  log  log a b c d log b solved HOME Solution: given : or, 1 log log log d log log log log or, a d c c b a   
  • 50.
    10. Find thevalue of : (v)   log 27 log 8 log 1000 log1.2 log 27  log 8  log 1000 3 3 3 log 3  log 2  log 10 12 3     log 3 log 2 log10 3 3 log10 2    log 3 3log 2 2     log 3  2log 2  log10   log 3  2log 2  log10 solved HOME Solution: given :     3 3     3 2 or, log 3 2log 2 log10 2 or, log 3 2log 2 log10 2 or, log 3 2 log10 3 or, log12 log10 or, 10 log or, log1.2 2 2 2 3  
  • 51.
    10. Find thevalue of : (vi)     log 4 log 5 log 6 log 7 log 3 3 4 5 6 7 log 4  log 5  log 6  log 7  log 3 log 4 solved HOME Solution: given : or, 1 log 3 log 7 log 7 log 6 log 6 log 5 log 5 log 4 log 3 or, 3 4 5 6 7    
  • 52.
    10. Find thevalue of : log 6 6 6... x let  6 6 6...  . ..(i) 2 x or, 6 6 6 6...   x x or,  6 from (i) or, 6    log 6 6 6... log 6 6 solved HOME Solution: given : or, log 6 1 6 2 6    x x (vii)
  • 53.
    11. 25    25    16 12 7  5 25 5 16 16  16 2 2 25 16 . . .  24     64           or, log 2 5 3 81 81   3 3  81 81  28 7        proved HOME Prove that: Solution:     or, log 2 5 1 or, log10 or, 1 . . . 2 5 2 3 3 5 or, log 2 2 5 2 3 3 5 or, log 2 80 24 15 or, log 2 80 log 24 log 15 or, log 2 log 80 7 log 24 12log 15 log 2 16log 1 80 7 log 24 12log 15 log 2 16log 1 64 36 28 24 16 7 28 16 12 28 36 12 16 16 7 4 4 12 3 2 16 4 16 12 7 R H S L H S                                                                           (i)
  • 54.
    11.     7 2 3 25  25        7 2 5 5 4  6 2 2 3 10  10    5 2  7 7 5 2 7 7 5 2 25 25 10 . . . 10    12 12  7 4 3 7 6 12 2 12 14        or, log 5 2 3 81 81 81 3 3   proved HOME Prove that: Solution:    0 1 0    or, log 5 2 3 or, log 1  2  1 or, log2 . . . 81  2 5 5 3 or, log 2 5 2 3 3 or, log 3  2 5 2 3 3 or, log 80 24 9 or, log 80 log 24 log 9 or, log 80 3log 24 2log 9 7 log log 2 80 3log 24 2log 9 7 log 1 12 3 4 14 12 3 6 2 14 3 4 4 2 3 2 7 2 3 R H S L H S                                                                              (ii)
  • 55.
    11.     7 5 3 25  25     10 5 16  16 2 2 5 81 81 81 25 25 16 . . . 16     12    28      28 15 12 10 7 3 12 7 5       or, log 2 5 3 proved HOME Prove that: Solution: 3 81       or, log 2  5  3 or, log 2  1  1 or, log2 . . . 3 2 5 2 3 3 5 or, log 2 5 2 3 3 5 or, log 80 24 15 or, log 80 log 24 log 15 or, log 80 3log 24 5log 15 7log log 2 80 3log 24 5log 15 7log 1 0 0 12 3 15 5 7 7 3 4 4 5 3 2 7 4 7 5 3 R H S L H S                                                                        (iii)
  • 56.
    11. 32   32  5 2 2 2         5 3 75 5 5    3 5 3 5 3 5 5 75 . . . 75    5 5 2 4  2 5 2   1 4 5 2 2 5 4     or, log 3 5 2 2 32    proved HOME Prove that: Solution:       or, log 3  5  2 or, log 1  1  2 or, log2 . . . 3 5 2 or, log 3 3 2 or, log 3 3 2 or, log 243 log 9 log 16 or, log 243 log 9 2log 16 log log 2 243 log 9 2log 16 log 0 0 1 5 2 4 2 5 4 4 2 5 4 2 R H S L H S                                                    (iv)
  • 57.
    11. (v) xy z y z z x x y log  log log  log log  log    y z z x x y log  log log  log log  log let k  x  y  z k x y z or, log log 1 y z z x x y log  log log  log log  log    y z z x x y log  log log  log log  log k x y z or, log  log  log  log k y z x z x y x y z or, log  log  log log  log  log log  log  log log k y x z x z y x y x z y z or, log  log log  log log  log log  log log  log log  log log proved HOME Prove that: Solution:         k or, log  0 k or, log log1 k or, 1 y z z x x y log log log log log log or,    1      x y z
  • 58.
    11. Prove that: 1    xy yz zx 1 1 . . . 1 xyz xyz xyz xy yz zx    xy yz zx or, log ( ) xyz xyz or, log ( ) 1 log ( ) xyz or, 2log log 1 proved HOME Solution:   or, 2 log 1 log or, log log log 1 log ( ) log ( ) 2 log ( ) log ( ) log ( ) 2            xyz a a b xy yz zx L H S xyz xyz xyz xyz a b a xyz xyz xyz   (vi)
  • 59.
    11. a bc    3 3 3 b c a . . . a b c log log log 3 3 3 c b    1 log log b proved HOME Prove that: Solution: log a log 1 1 27 or, 3 a 1 3 3 or, log log c 3log 3log 3log or, log log log log log log or, 1 27 log log log 3 3 3             a c b a b a a c b L H S b b c a  (vii)
  • 60.
    11. . .. 2 3 a a a a log  log  log  ...  log n a a a n a or, log  2log  3log  ...  log or, 1  2  3  ...  log proved HOME Prove that: Solution:             (  1)       ( 1) 2 log 2 or, log 2 1 log log log ... log 2 3 n n a sum of natural number n n n a L H S a n n a a a a n  (viii)
  • 61.
    11. x yz x y z (ix)      log log log log log log a b c b c a proved HOME Prove that: Solution: z c z a . . . x y z log  log  log a b c y   b y   c x a x b log log log log log log x y z L H S log log log or, log log log b c a or, log log log or,  
  • 62.
    11. Prove that: x y z log  log  log   1 1 1 1 y z x . . . x y z log  log  log 1 1 1 log y   log y log 1 x x 1 log log log proved HOME Solution: 1 or, 1 1 1 1 or, z log z log 1log log 1log 1log or, log log log or, 1 log 1 log 1 log or, 1 1 1                 x z z y y x x z y x z y L H S y z x (x)
  • 63.
    11. Prove that: x y z    2 2 2 x y z . . . x y z log log log 2 2 2 x y z    1 1 1 1   proved HOME Solution:    1 1 8 or, log 1 2 2 2 or, 1 1 1 2log 1 1 2log 2log or, 1 log log log log log or, 8 log log log 2 2 2           a x y z b a x y z L H S a x y z a b x y z   (xi)
  • 64.
    12 (a) log25 8 log 25 log 8 log 5 2 log 2 3 2log 5 3log 2 10 2 2log  3log 2  2 log10 log 2 3log 2 2 1  0.3010 2 0.6990 solved HOME log 2 0.3010 , log 25. 8 If  find the valueof       0.9030 1.3980 0.9030 1.548 log 2 0.3010 given 3 0.3010 Solution:                
  • 65.
    12 (b) log3 , log 5 , log 8. 30 30 30 If  a and  b find the valueof  30  log 8 log 2 3log 2  30 30               3 log 30 log 15 30 30    3 log 30 log 3 5 30 30    31 log 3 log 5 30 30    31 log 3 log 5    a  b    3 1 15 3log 30 30 30 3 30 solved HOME  log 3 and log 5 given 30 30   a  b Solution:
  • 66.
    13. (i) 1 1   If a 2  b  2  7 ab , show that, log a  b  log a  log b a  b  ab 2 2 a b ab ab ab or,   2  7  2 2     a b ab or,   9       ab ab  a b 1 1 1         a b ab 1  a b  a b a b ab a b ab a b log log 2 1 1 ( ) 3 3 or, or, log log 2 ( ) 3 or, log log 3 or, log 3 or, 9 or, 7 2 2 2 2 2 2                    2 proved HOME 3    Solution: given : [ Adding 2ab on both sides ] [ a2+b2+2ab=(a+b)2 ] [ taking log on both sides]
  • 67.
    13. (ii) 1 y x log log  , 23 2  log             1   2 2 25  2 or, 2 2 x y xy xy or,   2  25 2 2 x y xy xy or,   25  2 2 2 x y xy or,   23 y x or,   23 y x or, 23 log 5 or, log log log 5 or, 2log log log 2 5 log 2 2 2             x y xy xy xy x y xy xy x y x y x y x y x y proved HOME 5 x y x y showthat x y If Solution: given :
  • 68.
    13. (iii)   If a b a b showthat x x x x x , log log 3 5 5 3   x x x x 3  5 5  3    x x 5 3 5 3   x x x x 5  3 5   (3  )  x x x x a a b a b a b b a 5 3 5 3     b a x x 2 2 2 b a or, or, or, or, or, or, or, 2  2 2 2 2         or, log log b a b x a b a a x b b a a a a a a b x x x x x x   or, log log               a b a    proved HOME      Solution: given :
  • 69.
    13. (iv) 44 2 2 a  b  14 a b 4 4 2 2 2 2 2 2 a b a b a b a b or,   2  14  2       2 2 2 2 2 a b a b or,   16 2 2 2 2 a b ab or,   4 2 2 a b ab or,   4  a 2 b 2   ab        or, log   log 4 e e 2 2 a b a b or, log   log 4  log  log e e e e 2 2 2 a b a b or, log   log 2  log  log e e e e 2 2 a b a b or, log   2log 2  log  log e e e e or, log  a 2  b 2   log a  log b  2log 2 e e e e proved HOME 14 , log   log log 2log 2 4 4 2 2 2 2 e e e e If a  b  a b showthat a  b  a  b  Solution: given : [ Adding 2a2b2 on both sides ] [ a4+b4+2a2b2 =(a2+b2)2 ] [ taking log on both sides]
  • 70.
    14. (a) y y x x log log log       x k y z    z z log . ... .(i) y k z x log   . ... .(ii) z k x y log . ... .(iii)         from (i), (ii) and (iii) : x y z k y z k z x k x y l og log log           or, log x  y  z  ky  kz  kz  kx  kx  ky xyz or, log( )  0 or, log( ) log1 or,  1        xyz xyz k x y z x y z let HOME , 1 log log log       prove that xyz x y z x y z If Solution: proved [ log1=0]
  • 71.
    14. (b) (i) x y x log log log y z z             x k b c a x ak b c log log . ... .(i)       y k c a b y bk c a log    log   . ... .(ii) z k a b c z ck a b log    log   . ... .(iii)       from (i), (ii) and (iii) : a log x  b log y  c log z  ak b  c  bk c  a  ck a  b a b c x  y  z  akb  akc  bkc  bka  cka  ckb or, log log log a b c x y z or, log(   )  0 a b c x y z or, log( ) log1 or,  1        a b c x y z k a b c a b c let HOME , 1 log log log       a b c provethat x y z a b c a b c If Solution: proved [ log1=0]
  • 72.
    14. (b) (ii) y x y x log log log  z z          2 2                      x k b c b c x b c k b c k b c           log log . ... .(i) 2 2 y k c a c a y c a k c a k c a log     log      . ... .(ii) 2 2 z k a b a b z a b k a b k a b log     log      . ... .(iii) from (i), (ii) and (iii) :  b  c  log x   c  a  log y   a  b  log z  k  b  c   k  c  a   k  a  b   b  c   c  a   a  b                  x y z kb kc kc ka ka kb or, log log log         b  c c  a a  b x y z or, log    0 b  c c  a a  b x y z or, log log1       or, 1 2 2 2 2 2 2 2 2 2 2 2 2        b  c c  a a  b x y z k a b c a b c let HOME , 1 log log log       bc ca ab provethat x y z a b c a b c If Solution: [ log1 = 0] proved
  • 73.
    14. (b) (iii) y x y x log log log z z             x k ry qz p x pk ry qz       log log . ... .(i) y k pz rx q y qk pz rx log    log   . ... .(ii) z k qx py r z rk qx py log    log   . ... .(iii)       from (i), (ii) and (iii) : p log x  q log y  r log z  pk ry  qz  qk pz  rx  rk qx  py p q r x y z kpry kpqz kqpz kqrx krqx krpy or, log log log          x p y q z r    or, log    0 p q r x y z or, log log1 or,  1        p q r x y z k qx py pz rx ry qz let HOME , 1 log log log       p q r prove that x y z qx py pz rx ry qz If Solution: [ log1 = 0] proved
  • 74.
    15. log 45 2   log(3 5) 2   log 3 log 5   2log 3 log 5 10      2log 3 log10 log 2     2 0.4771 1 0.3010   0.9542 0.6990 1.6532 2 2log 3 log        HOME If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : Solution: (i) solved [ log10 = 1]
  • 75.
    15. log108 23   log(2 3 ) 2 3   log 2 log 3   2log 2 3log 3     2 0.3010 3 0.4771   0.6020 1.4313 2.0333  HOME If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : Solution: (ii) solved
  • 76.
    15. log 84 2    log(2 3 7) 2    log 2 log 3 log 7    2log 2 log 3 log 7     2 0.3010 0.4771 0.8451     0.6020 0.4771 0.8451 1.9242  HOME If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : Solution: (iii) solved
  • 77.
    15. log 294    log(2 3 7 )    log 2 log 3 log 7    log 2 log 3 2log 7     0.3010 0.4771 2 0.8451     0.3010 0.4771 1.6902 2.4683 2 2  HOME If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : Solution: (iv) solved
  • 78.
    15. log 21.6 216 10 log     log 216 log10  3 3     log 2 3 log10 3 3    log 2 log 3 log10    3log 2 3log 3 log10      3 0.3010 3 0.4771 1     0.9030 1.4313 1 1.3343       HOME If log 2  0.3010, log3  0.4771, log 7  0.8451, f ind the value of : Solution: (v) solved [ log10 = 1]
  • 79.
    16 (i) given If three positive real numbers a b and c are inG P , . ., solved showthat a b and c are in A P a, b and c are in G.P. c b   b c   log log            b a c b log  log  log  log a b c A P. a b b a hence, log , log and log are in . HOME log , log log . . Solution:
  • 80.
    16 (ii) log log x k log   log log log    log . ... .(i) y k log  2 . ... .(ii) z k log  3 . ... .(iii) from (i), (ii) and (iii) : y x k k k log  log  2   . ... .(iv) z y k k k log log 3 2 . ... .(v) from (iv) and (v) : y x z y     log log log log y z z    Hence, x, y and z are in G.P. y y x y x k x y z let                 log log 3 2 1 HOME , , , . . 3 2 1 provethat x y z are inG P x y z If   Solution:
  • 81.
    17. The first and the last terms of aG P are a and k respectively If the number of termbe n provethat k a log log given First term = a Last term = k No. of term = n Common ration = r . . .  Last terminG P ar 1 k ar log  log k a r log  log  log k a n r log  log   1 log k a n r log log 1 log proved HOME . log 1 , , where r is the commonratio r n    Solution:          n k a log log k a log log r n r k ar n n n n             1 log 1 log . . 1 1 1
  • 82.
    18. If thep q and r terms of aG P are a b and c respectively showthat th th th given , . . , , q  r a  r  p b  p  q c  pth term = a qth term = b rth term = c let the first term = b and common ratio = R pth term = a = b Rp-1 qth term = b = b Rq-1 rth term = c = b Rr-1 Press ( ) log ( ) log ( ) log 0 Solution:
  • 83.
    since a, band c are in G.P. - - - (ii) - - - (iii) - - - (i) b q p      R 1 1 1 R  1 q 1 1 1 1 1 1 R b c b b   and b c b R R R c b R a R R R a b a r r q r q r q q q p q p p                          b b  Press
  • 84.
    from (i), (ii)and (iii) : 1 1 b q p c r q    c       q  p q p b r q c b  b     r  q q  p r  q q  p b  b  a  c r  q  q  p r  q q  p b  a  c r  p r  q q  p b  a  c r p r q q p r q r q q p b a c a b a b a                   log log log Press
  • 85.
    r p br q a q p c (  ) log  (  ) log  (  ) log r p b q r a p q c (  ) log   (  ) log  (  ) log q r a p q c r p b (  ) log  (  ) log  (  ) log  0 q r a r p b p q c (  ) log  (  ) log  (  ) log  0 solved HOME
  • 86.
    19. (i) Ifx  bc y  ca and z  ab showthat a b c 1 x y 1 z 1 x y z 1 1 bc ca ab a b c bc a ca b ab c a a b b c c 1 1 1 1 1 . .    abc abc abc a b c a b c    log log log log 1 1 1 1 log ( ) log ( ) log ( ) 1 log ( ) log log ( ) log log ( ) log log ( ) 1 log ( ) 1 log ( ) 1 1 1 1 1 1 1                    abc abc abc abc L H S abc proved HOME 1 1 ( ) log ( ), log ( ) log ,       i Solution:
  • 87.
    19. (ii) given If x  log ( bc ), y  log ( ca ) and z  log ab , showthat a b c ( ) 2 x bc log ( ) a  y ca log ( ) b  z ab log ( ) c  hence 1 1 1 bc ca ab a b c x y z x y z y x    1 1 x y     1 1 ( 1) ( 1) x y z z xy x y (   2)(  1)  (    1) xz  x  yz  y  z   xyz  xz  yz  z x  y  2 z  2  xyz  z x  y  2 z  z  2  xyz x y z xyz z z xy x y z z x y                                2 2 2 2 ( 1) ( 1)( 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 log 1 log 1 log 1 proved HOME ii x  y  z   xyz
  • 88.
    20. given aa a . . . 1     log log 2 log 3 1 a a a 2 3 4 a     a L H S log log log 2   a a log log 4 a log 4 a a log( 4 ) log 4 a log(2 ) a a a 2log 2 log 4 log 2 a       a a log 3 log 2 log 3 log 4 3    2 log 2 log 3 proved x a a 2  y log 2 a a 3  z log 3 a a log 4  yz a a a a a a a a a a a a a xyz a a a 2 log 4 2 log 3 2 log 4 1 log 4 1 log 4 log 3 log 2 3 4 3 2       HOME If x a y a and z a showthat xyz yz a a a log , log 2 log 3 , 1 2 2 3 4     
  • 89.
    21. log , log  , prove log  p q p  given p q 1 p q . . . 1 x log log log x x 1 ab proved x  a x b p q  log log L H S p 1 1 1 1 a b b a ab ab b a x x x p q q            1 log log 1 log HOME b a If x a and x b that x q
  • 90.
      Iflog x y a, and log , log log 2 3    22. Solution: given: x log( x 2 y 3 ) a - - - (i) b x   log - - - (ii) y         solved (i) from 2 3 x y a log log   x y a 2log  3log  - - - (iii) x y b log log   log x  log y  b - - - (iv) from (iii) and (iv)   y b y a 2 log 3log    y b y a 2log 2 3log    y a b 5log 2 2 5 log (ii)   a b y from    and from a 2 b b 2 5 3 a b 2 3 5 log 5  log  5 5 5 log (iv) a b y a b x a b b x            HOME   b prove that x and y in terms of a and b y     
  • 91.
    23. e y 2  2  solved y y e  e 1 If x  y  y e y y e e   y y y y e e   y y e e e e y  y y  y  e  e  e  e e e y y y e y y y y e e   y y e e y y y y  likewise   e  e  e  e y y 1 - - - (ii) e 2 1 1 - - - (i) 2 1 1 e e y y y e e x e e x x                         y y y y     1 1 e e x x from and x y y e e e e x x y e y x x x e x e e e e e x e e y e e y y y y y y   1 1                    1 1 1 1 1 log 2 log 2 2 log 2 1 log log 1 log 2 2 1 (i) (ii) 2 2 HOME x x show that y e e      1 log 2 log , Solution: given:
  • 92.
    24. log 310 Showthat the valueof lies between and Solution: HOME 2 . 5 1 2 9 10 log 9 log 10 10 10 - - - (i) log 3  1 2log 3 1 1 2 log 3 10 10 2 10      and 243 100 log 243 log 100 10 10 log 3  log 10 5log 3  2log 10 10 10 - - - (ii) 5log 3  2 2 5 10 log 3 10 2 10 5 10     from i and ii 2 5 log 3 1 2 ( ) ( ) 10   proved
  • 93.
    25. Solution: HOME log 10 log (32 ) 5, . 6 If b and b find the value of a a a   a  log 10 (given) 10 a b log (32 ) 5 (given) 5 6 a b (6 )  32 - - - (ii) from (i) and (ii) 5 10  b a (6 ) 32  6 2 5 6 2   3 1 1 2 10 5 5 10 5 a 6 32 6 - - - (i) 5 5 5 5 5 5 a             a a a a b a b and b a found
  • 94.
  • 95.
    27. (i) Solve Solution: HOME 4 solved x x x 2 10 log  log  10 10 log 2 x  x   10 1 x x x x x x  x x x x x 2 2 2 10 1 2 10 10   1 2 1 10 2 10 10 10 2 10 10 10 log log log log log log log log log log log                                    2 2 2 1 x x log  log  4 10 10 x (log ) 4 x log  4   2 1  or , 10 x 2 hence x or 10 10 100 100 log log log log log 2 2 2 10 2 10 10 10 10 10 10  x or x x x x x          
  • 96.
    27. (ii) Solve Solution: log log log 1 2 2 2 x   x log log log 1 2 2 2   log log log log 2 2 2 2 2 log log 2 2 2  x log log  2  log 2 2 2 2 x log log  log 2 log log log 4 2 2 2 HOME solved log 4  2  2 4 , 16 2 2 2 2     or x x x x again x x
  • 97.
    27. (iii) Solve Solution: HOME log log log 11 8 4 2 x  x  x  log  log  log  11 8 4 2 1     x x x 1    x x x    1 1 1     2 3 6 6 1 1  solved 1 1 1 1 x 1 x 1 x 1    x log 6 , 64 2 6 log 2 11 11 log 2 11 6 log 2 1 11 2 3 log 2 11 1 log 2 2log 2 3log 2 11 log 2 log 2 log 2 11 log 2 log 4 log 8 6 2 3 2             or x x x x x x x x x 
  • 98.
    28. If ab and c are three consecutive positive integers showthat log(1 ) 2log Solution: HOME , ,   a b and c are three consecutive positiveintegers proved ac b b ac   1  , 2 2 b ac log  log(1  ) b ac 2log  log(1  ) 