SlideShare a Scribd company logo
1 of 1
3 個の元よりなる集合 X = {a, b, c} について,以下の問いに答えよ.
(1) X の部分集合族 O = {∅, X, {a, c}, {b, c}, {c}} は開集合系の公理を満たすことを示せ.
証明
公理1 空集合と全体を含む。
公理2 {a, c}U{b, c}=X∈O 以下同様にOの任意の2つの元の和集合はOに入る。
公理3 {a, c}∩{b, c}={c}∈O 以下同様にOの任意の2つの元の共通集合はOに入る。
よって位相の公理を満たす。
(2) X の部分集合 Y = {a, b} は O から定まる位相に関して閉集合であることを示せ.
証明 Xは閉集合かつ開集合であることに注意してY=X\{c}より閉集合。
(3) 関数g : Y → Rをg(a) = 0とg(b) = 1により定めるとき,gは連続であることを 示せ。
ただし,Y の位相は O から定まる X の位相の相対位相とする。
証明 OY={∅, X, {a}, {b}} 任意のRの開集合Uに対して、g−1(𝑈) =開集合である。
よってgは開集合。
(4) 関数 f : X → R を Y に制限すると (3) の関数 g になるものとする.このとき,f は連
続でないことを示せ。
証明 g(c)=0or1にすると、1点集合はR上閉集合であるが、f−1
(g(c))はX上開集合であり
閉集合でない。よって連続でない。g(c)≠0and1のとき、g(c)を含まず、g(a)=0,g(b)=1
を含む開集合Vを選ぶと、f−1(V)={a,b}で閉集合ではあるが、開集合ではない。よって
連続ではない。

More Related Content

What's hot

Rの生成位相の問題
Rの生成位相の問題Rの生成位相の問題
Rの生成位相の問題政孝 鍋島
 
直積位相の問題
直積位相の問題直積位相の問題
直積位相の問題政孝 鍋島
 
基底とハウスドルフ
基底とハウスドルフ基底とハウスドルフ
基底とハウスドルフ政孝 鍋島
 
有限個の点を取り付けた集合の位相
有限個の点を取り付けた集合の位相有限個の点を取り付けた集合の位相
有限個の点を取り付けた集合の位相政孝 鍋島
 
対角線上の位相
対角線上の位相対角線上の位相
対角線上の位相政孝 鍋島
 
コンパクトとハウスドルフの定義
コンパクトとハウスドルフの定義コンパクトとハウスドルフの定義
コンパクトとハウスドルフの定義nabeshimamasataka
 
大きい行列の問題
大きい行列の問題大きい行列の問題
大きい行列の問題政孝 鍋島
 
f(x)=0と極値の問題
f(x)=0と極値の問題f(x)=0と極値の問題
f(x)=0と極値の問題政孝 鍋島
 
2次関数と表現行列と内積
2次関数と表現行列と内積2次関数と表現行列と内積
2次関数と表現行列と内積政孝 鍋島
 
距離空間とconcaveな写像
距離空間とconcaveな写像距離空間とconcaveな写像
距離空間とconcaveな写像政孝 鍋島
 
平面グラフ
平面グラフ平面グラフ
平面グラフyutaka1999
 

What's hot (19)

(-∞,a)位相
(-∞,a)位相(-∞,a)位相
(-∞,a)位相
 
(-∞,a)位相
(-∞,a)位相 (-∞,a)位相
(-∞,a)位相
 
Rの生成位相の問題
Rの生成位相の問題Rの生成位相の問題
Rの生成位相の問題
 
Rの生成位相の問題
Rの生成位相の問題Rの生成位相の問題
Rの生成位相の問題
 
直積位相の問題
直積位相の問題直積位相の問題
直積位相の問題
 
直積位相の問題
直積位相の問題直積位相の問題
直積位相の問題
 
基底とハウスドルフ
基底とハウスドルフ基底とハウスドルフ
基底とハウスドルフ
 
有限個の点を取り付けた集合の位相
有限個の点を取り付けた集合の位相有限個の点を取り付けた集合の位相
有限個の点を取り付けた集合の位相
 
対角線上の位相
対角線上の位相対角線上の位相
対角線上の位相
 
コンパクトとハウスドルフの定義
コンパクトとハウスドルフの定義コンパクトとハウスドルフの定義
コンパクトとハウスドルフの定義
 
可分の問題
可分の問題可分の問題
可分の問題
 
可分の問題
可分の問題可分の問題
可分の問題
 
大きい行列の問題
大きい行列の問題大きい行列の問題
大きい行列の問題
 
大きい行列の問題
大きい行列の問題大きい行列の問題
大きい行列の問題
 
f(x)=0と極値の問題
f(x)=0と極値の問題f(x)=0と極値の問題
f(x)=0と極値の問題
 
f(x)=0と極値の問題
f(x)=0と極値の問題f(x)=0と極値の問題
f(x)=0と極値の問題
 
2次関数と表現行列と内積
2次関数と表現行列と内積2次関数と表現行列と内積
2次関数と表現行列と内積
 
距離空間とconcaveな写像
距離空間とconcaveな写像距離空間とconcaveな写像
距離空間とconcaveな写像
 
平面グラフ
平面グラフ平面グラフ
平面グラフ
 

More from nabeshimamasataka

曲面の面積の計算と証明
曲面の面積の計算と証明曲面の面積の計算と証明
曲面の面積の計算と証明nabeshimamasataka
 
ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束nabeshimamasataka
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題nabeshimamasataka
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束nabeshimamasataka
 
2次曲面の極値の問題
2次曲面の極値の問題2次曲面の極値の問題
2次曲面の極値の問題nabeshimamasataka
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題nabeshimamasataka
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体nabeshimamasataka
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラスnabeshimamasataka
 
凸角形全体の位相の性質
凸角形全体の位相の性質凸角形全体の位相の性質
凸角形全体の位相の性質nabeshimamasataka
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題nabeshimamasataka
 

More from nabeshimamasataka (20)

双曲幾何学
双曲幾何学双曲幾何学
双曲幾何学
 
曲面の面積の計算と証明
曲面の面積の計算と証明曲面の面積の計算と証明
曲面の面積の計算と証明
 
ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束
 
少し複雑な積分問題
少し複雑な積分問題少し複雑な積分問題
少し複雑な積分問題
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束
 
積分と漸化式
積分と漸化式積分と漸化式
積分と漸化式
 
ガウス積分
ガウス積分ガウス積分
ガウス積分
 
2次曲面の極値の問題
2次曲面の極値の問題2次曲面の極値の問題
2次曲面の極値の問題
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
 
発散と収束の証明
発散と収束の証明発散と収束の証明
発散と収束の証明
 
面積と長さの問題
面積と長さの問題面積と長さの問題
面積と長さの問題
 
ラプシアン作用素
ラプシアン作用素ラプシアン作用素
ラプシアン作用素
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラス
 
3つの球体の合体
3つの球体の合体3つの球体の合体
3つの球体の合体
 
凸角形全体の位相の性質
凸角形全体の位相の性質凸角形全体の位相の性質
凸角形全体の位相の性質
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題
 
円の位相
円の位相円の位相
円の位相
 
積位相とコンパクト
積位相とコンパクト積位相とコンパクト
積位相とコンパクト
 

Recently uploaded

リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドリアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドKen Fukui
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ssusere0a682
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptyuitoakatsukijp
 
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドリアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドKen Fukui
 
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドリアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドKen Fukui
 
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドリアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドKen Fukui
 
TEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfTEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfyukisuga3
 
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドリアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドKen Fukui
 

Recently uploaded (8)

リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドリアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScript
 
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドリアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
 
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドリアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
 
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドリアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
 
TEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfTEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdf
 
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドリアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
 

位相の定義

  • 1. 3 個の元よりなる集合 X = {a, b, c} について,以下の問いに答えよ. (1) X の部分集合族 O = {∅, X, {a, c}, {b, c}, {c}} は開集合系の公理を満たすことを示せ. 証明 公理1 空集合と全体を含む。 公理2 {a, c}U{b, c}=X∈O 以下同様にOの任意の2つの元の和集合はOに入る。 公理3 {a, c}∩{b, c}={c}∈O 以下同様にOの任意の2つの元の共通集合はOに入る。 よって位相の公理を満たす。 (2) X の部分集合 Y = {a, b} は O から定まる位相に関して閉集合であることを示せ. 証明 Xは閉集合かつ開集合であることに注意してY=X\{c}より閉集合。 (3) 関数g : Y → Rをg(a) = 0とg(b) = 1により定めるとき,gは連続であることを 示せ。 ただし,Y の位相は O から定まる X の位相の相対位相とする。 証明 OY={∅, X, {a}, {b}} 任意のRの開集合Uに対して、g−1(𝑈) =開集合である。 よってgは開集合。 (4) 関数 f : X → R を Y に制限すると (3) の関数 g になるものとする.このとき,f は連 続でないことを示せ。 証明 g(c)=0or1にすると、1点集合はR上閉集合であるが、f−1 (g(c))はX上開集合であり 閉集合でない。よって連続でない。g(c)≠0and1のとき、g(c)を含まず、g(a)=0,g(b)=1 を含む開集合Vを選ぶと、f−1(V)={a,b}で閉集合ではあるが、開集合ではない。よって 連続ではない。