SlideShare a Scribd company logo
1 of 43
Download to read offline
Evolution of transposons, 
genomes, and organisms 
Kate L Hertweck 
The University of Texas at Tyler 
Department of Biology 
https://www.uttyler.edu/biology/ 
Research https://sites.google.com/site/k8hertweck 
Blog k8hert.blogspot.com 
Twitter @k8hert
Today's goals 
1. Overview: comparatve genomics 
2. Drosophila, aging, and TE populaton genomics 
3. TE proliferaton in Asparagales 
4. Future research and conclusions
What's in a genome? 
Regions between genes: 
Selfish, mystery, or junk DNA; 
dark matter 
Sandwalk.blogspot.com 
Intergenic 
region 
{ 
Gene 
{ 
Wikimedia Commons 
Traditionally, genetics focused on 
genes (functional sequence regions) 
Overview Drosophila Asparagales Conclusions
Sequencing the “junk” 
Intergenic (“non-coding”) regions are full of 
repetitive sequences: difficult to obtain sequence! 
Telomeres, centromeres, ribosomal DNA, satellite 
DNA, pseudogenes, transposable elements 
Hertweck, unpublished data 
ENCODE: “Google Maps for the human genome” 
80% of the human genome is functional! 
We're getting better at identifying portions of the 
genome, reducing “dark matter” 
Encodeproject.org 
Overview Drosophila Asparagales Conclusions
Transposable elements as a model system 
● TEs, mobile genetic elements, or jumping genes 
● Parasitic, self-replicating 
● Similar to or derived from viruses 
● Move independently in a genome 
Class I: Retrotransposons 
(copy and paste) 
LTR 
LINE 
SINE 
ERV 
SVA 
Class II: DNA transposons 
(cut and paste) 
TIR (P elements) 
MITE 
Crypton 
Helitron 
Maverick 
Populations of TE sequences in a genome evolve 
AND 
Surrounding genomic sequences evolve 
Overview Drosophila Asparagales Conclusions
TEs allow for evolutionary innovation 
TEs are a special type of mutation 
Interactions with genes 
Disrupting gene function 
Regulatory changes 
Exaptation 
Genome-wide modifications 
Rates of insertion/deletion 
Chromosomal restructuring 
Changes in genome size 
Effects on the organism 
Disease 
Phenotype 
Adaptation 
Overview Drosophila Asparagales Conclusions
TEs allow for evolutionary innovation 
Exaptaton of TEs into genes: Alu elements contributed to evoluton of 
three color vision (Dulai, 1999) 
Genome size variaton: TEs account for ~70% of variaton in genome size 
between Zea mays and Z. luxurians(Tenaillon et al., 2011) 
TEs and disease: TE insertons in somatc cells are responsible for multple 
cancer pathways, (Lee et al., 2012); retrotranspositon in neurons contributes to 
schizophrenia (Bundo et al., 2014) 
Overview Drosophila Asparagales Conclusions
How do transposable 
elements affect genomic and 
organismal evolution? 
Data 
Research synthesis 
Data integration 
Methods development 
Novel applications 
Next-generation sequencing 
Genome annotations 
Life history traits 
Methods 
Bioinformatics 
Phylogenetics 
Comparative analysis 
Overview Drosophila Asparagales Conclusions
1. Overview: comparatve genomics 
2. Drosophila, aging, and TE populaton genomics 
3. TE proliferaton in Asparagales 
4. Future research and conclusions 
Collaborators: 
Mira Han (UNLV) 
Mark A. Phillips (UC Irvine) 
Lee F. Greer (UC Irvine) 
Michael R. Rose (UC Irvine) 
Joseph L. Graves (NC A&T, UNCG)
How and why to study aging? 
Biological aging (senescence): accumulation of changes that 
disrupt metabolism 
Complex phenotype not easily explained by genetics 
existanew.com 
Medical concerns drive our personal interest in aging 
We study these questions using demographic and disease-related 
data 
Overview Drosophila Asparagales Conclusions
Aging as a phenotype 
Aging as a biological phenomenon: 
what are evolutionary 
implications? 
Model systems with much shorter 
life span, ability to experimentally 
manipulate 
In Drosophila, we study the process 
of aging by examining time to 
development, which is closely 
correlated with lifespan 
Martinez, 1998 
Overview Drosophila Asparagales Conclusions
How do TEs affect aging? 
Theory: accumulation of mutations (Kirkwood 1986, Murrey 1990) 
More TEs lifespan 
Empirical data: it depends on model system, type of TE, and method of 
measuring TE proliferation 
● TIR DNA transposons: decrease or have no effect on lifespan 
(Drosophila: Nikitin and Woodruff 1995; C. elegans: Egilmez and Reis 1994) 
● LTR retrotransposons decrease lifespan (Drosophila: Driver and McKechnie 1992) 
● Alu SINEs reverse senescence (human cell lines: Wang et al. 2011) 
What is the relationship between TE insertions and aging? 
Overview Drosophila Asparagales Conclusions
Rose laboratory Drosophila stocks 
ACO 
CO 
Long term experimental evolution system 
Established 1980 
A 9-day life cycle 
B 14-day life cycle (baseline) 
C 28-day life cycle 
NCO AO 
BO 
B 
O 
Original 
population 
A, B, C derived twice each 
Reversal of selection 
Testing for convergence 
All populations replicated five times 
Overview Drosophila Asparagales Conclusions
Phenotypes associated with selection 
Physiological: 
● Heart function 
● Flight duration 
● Stress resistance (starvation, dessication) 
Developmental: 
● Hatching rate 
● Time to pupation 
● Emergence from pupa 
newswatch.nationalgeographic.com 
Phenotypes respond predictably to selective treatment 
Overview Drosophila Asparagales Conclusions
Experimental data 
● Whole-genome resequencing (Illumina Hi-Seq) 
120 females x six treatments x five replicates 
● How do genomic features respond to selective treatment? 
Pilot study (Burke et al., 2010) 
● Our analysis: 
● SNPs: Popoolation2 (Kofler et al., 2011) 
● Structural variants: Delly (Rausch et al., 2012) 
● How do frequencies of TE insertions respond to selective 
pressures? 
● Magnitude of variation? 
● Which TEs? 
● Where in the genome? 
Overview Drosophila Asparagales Conclusions
Analysis of known TE insertions 
● T-lex (Fiston-Lavier et al. 2010): pipeline 
with four modules 
● 2947 known TE insertions annotated in 
Drosophila (Release 5) 
● Resulting data: genome-wide 
frequencies (presence/absence) of 
TE insertions from each population 
● Comparing all populations: 
no data, fixed, absent, variable 
total 
1400 
1200 
1000 
800 
600 
400 
200 
0 
FB 
TIR 
LINE 
LTR 
INE-1 
number of TE insertions 
Overview Drosophila Asparagales Conclusions
Analysis of known TE insertions 
● 177 TE insertions vary in frequency 
● Does variation matter? 
total variable 
1400 
1200 
1000 
800 
600 
400 
200 
0 
FB 
TIR 
LINE 
LTR 
INE-1 
number of TE insertions 
Overview Drosophila Asparagales Conclusions
Analysis of known TE insertions 
● Fisher's Exact test 
● Cochran-Mantel-Haenszel (CMH) test 
● 95 TE insertions vary significantly 
● Does frequency of insertion 
significantly vary with selective 
treatment? 
total variable significant 
1400 
1200 
1000 
800 
600 
400 
200 
0 
FB 
TIR 
LINE 
LTR 
INE-1 
number of TE insertions 
Overview Drosophila Asparagales Conclusions
Which populations do we compare? 
ACO 
CO 
NCO AO 
BO 
B 
O 
Original 
population 
● Phenotype: time to development 
● Is there genomic convergence? 
● Compare different treatments: 
short vs long 
expect more more significant 
differentiation 
Overview Drosophila Asparagales Conclusions
Which populations do we compare? 
ACO 
CO 
NCO AO 
BO 
B 
O 
Original 
population 
● Phenotype: time to development 
● Is there genomic convergence? 
● Compare same treatments: 
short vs short 
long vs long 
baseline vs baseline 
expect little significant differentiation 
Overview Drosophila Asparagales Conclusions
60 
50 
40 
30 
20 
10 
0 
# of significant TE insertions 
Is there convergence? 
Compare 
different 
treatments 
Compare 
same 
treatments 
ACO CO 
AO NCO 
ACO AO 
CO NCO 
B BO 
● Much less differentiation 
within treatment than among 
treatment types 
● Significant TEs are 
distributed across the 
genome 
TEs which are known to exist 
in the Drosophila genome 
show genomic convergence, 
similar to consistency of 
measured phenotypes. 
Overview Drosophila Asparagales Conclusions
What about de novo TE insertions? 
Hertweck, unpublished data 
● TEs interact with a genome by moving 
independently 
● RelocaTE 1.0.4 (Robb et al. 2013): uses reference 
genome and known TE sequences/motifs to 
identify all TEs in genome 
● Resulting data: total number and location of 
TEs (LTR and IR) in genome 
● Compare number of TEs 
Overview Drosophila Asparagales Conclusions
DWe hnaotv aob ToEuts daels noo svhoo TwE c ionnsveertrigoennsc?e 
* 
* 
CO ACO NCO AO BO B 
Comparisons between 
some treatment types 
show significant 
differentiation 
Short-lived populations 
have more LTR-retrotransposons 
than 
long lived populations! 
Overview Drosophila Asparagales Conclusions
Continuing population genomics in Drosophila 
● Continuing analysis of TEs: 
Searching for unannotated (novel) insertions 
Applying null models (Blumensteil et al., 2014) 
● Integration of data types 
Rearrangements and inversions? 
Phenotypes with genotypes 
Statistical testing to combine genotypic data 
Overview Drosophila Asparagales Conclusions
Conclusions: Drosophila 
How do frequencies of TE insertions in experimental 
populations respond to selective pressures? 
TEs (both known and de novo) exhibit convergent patterns similar 
to phenotypes and other genomic data 
All TE types change frequency in response to selection 
Significant changes are seen across the genome 
existanew.com 
What does this mean across an 
evolutionary timescale? 
Overview Drosophila Asparagales Conclusions
Today's goals 
1. Overview: comparatve genomics 
2. Drosophila, aging, and TE populaton genomics 
3. TE proliferaton in Asparagales 
4. Future research and conclusions 
Wikimedia Commons
Asparagales as a model system 
● ca. 26000 species, many edible and ornamental 
● Variation in life history traits: growth habit, habitat 
● Patterns of genomic evolution: size and chromosomes 
● Few genomic resources 
Can we characterize TEs in huge genomes with very litle a priori 
informaton? 
ag.arizona.edu Naturehills.com 
Overview Drosophila Asparagales Conclusions
Next-gen sequencing in Asparagales 
● Anonymous, low coverage, 
genome wide sequence data 
(genomic survey sequences, 
or GSS) 
● Mined for phylogenetc markers 
● Used less than 90% of the data 
collected! 
Steele, Hertweck, Mayfield, McKain, 
Leebens-Mack, and Pires, 2012 AJB 
Xeronemataceae 
Asphodeloideae 
Hemerocallidoideae 
Xanthorrhoeoideae 
Agapanthoideae 
Allioideae 
Amaryllidoideae 
Lomandroideae 
Asparagoideae 
Nolinoideae 
Aphyllanthoideae 
Agavoideae 
Scilloideae 
Brodiaeoideae 
Xanthorrhoeaeceae 
Asparagaceae Agapanthaceae 
Overview Drosophila Asparagales Conclusions
How can we use the leftover data? 
Characterize repeats in each 
genome 
Infer paterns of genome size 
evoluton with TE diversity and 
abundance 
Interpret in a phylogenetc 
context 
Xeronemataceae 
Asphodeloideae 
Hemerocallidoideae 
Xanthorrhoeoideae 
Agapanthoideae 
Allioideae 
Amaryllidoideae 
Lomandroideae 
Asparagoideae 
Nolinoideae 
Aphyllanthoideae 
Agavoideae 
Scilloideae 
Brodiaeoideae 
Xanthorrhoeaeceae 
Asparagaceae Agapanthaceae 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
TE identification in non-model systems 
Raw sequence data 
(fastq) 
De novo genome assembly 
(MaSuRCA) 
Filter out plastid and mtDNA sequences 
(BLAST to organellar genomes) 
Identify results similar to known repeats 
(RepeatMasker, 3110 repeats in library, 98.7% are from grasses ) 
Categorize TEs by type 
(unknown and simple repeats removed, grouped by superfamily) 
Estimate abundance of each TE type 
(Map raw reads back to scaffolds) 
Scripts available on GitHub: 
AsparagalesTEscripts 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
Genome size varies in sampled Asparagales 
Aphyllanthes 
Lomandra 
Sansevieria 
Asparagus 
Ledebouria 
Dichelostemma 
Agapanthus 
Allium 
Haworthia 
Hosta 
Scadoxus 
25000 
20000 
15000 
10000 
5000 
0 
Genome size (Mb/1C) 
humans 
Arabidopsis 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
Genome size varies in sampled Asparagales 
What proportion of the nuclear genome is from TEs? 
Aphyllanthes 
Lomandra 
Sansevieria 
Asparagus 
Ledebouria 
Dichelostemma 
Agapanthis 
Allium 
Haworthia 
Hosta 
Scadoxus 
25000 
20000 
15000 
10000 
5000 
0 
Genome size (Mb/1C) 
Genome size 
small 
medium 
large 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
Repeat content does not vary with genome size 
Percentage of sequence 
reads from nuclear genome Aphyllanthes 
Lomandra 
Sansevieria 
Asparagus 
Ledebouria 
Dichelostemma 
Agapanthis 
Allium 
Haworthia 
Hosta 
Scadoxus 
Hertweck, 2013, Genome 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 
25000 
20000 
15000 
10000 
5000 
0 
Genome size (Mb/1C) 
Unknown contigs 
Known repeats 
Overview Drosophila Asparagales Conclusions
Does genome size vary with phylogeny? 
Genome size 
small 
medium 
large 
Hertweck, 2013, Genome 
Phylogeny 
Overview Drosophila Asparagales Conclusions
LTR retrotransposon proportions vary independent of phylogeny 
Genome size 
small 
medium 
large 
Haworthia 
Agapanthus 
Allium 
Scadoxus 
Lomandra 
Asparagus 
Sansevieria 
Aphyllanthes 
Hosta 
Ledebouria 
Dichelostemma 
25% 
20% 
15% 
10% 
5% 
0% 
Percentage of nuclear genome 
copia 
gypsy 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
Haworthia 
Agapanthus 
Allium 
Scadoxus 
Lomandra 
Asparagus 
Sansevieria 
Aphyllanthes 
Hosta 
Ledebouria 
Dichelostemma 
0.80% 
0.70% 
0.60% 
0.50% 
0.40% 
0.30% 
0.20% 
0.10% 
0.00% 
DNA TE superfamilies show some phylogenetic signal 
EnSpm 
hAT 
MuDR 
PIF 
unplaced 
Genome size 
small 
medium 
large 
Hertweck, 2013, Genome 
Overview Drosophila Asparagales Conclusions
How can we improve these analyses? 
● Need to improve TE characterization methods 
LTR family analysis 
Asparagales-specific repeat library 
P-clouds and graph-based clustering methods (RepeatExplorer) 
Protein domain searches (RT, INT, ENV, GAG) 
RNA-Seq data 
● Increasing taxonomic sampling 
Broader sampling across Asparagales 
Targeted sampling in Agavoideae 
Overview Drosophila Asparagales Conclusions
Continuing work: 
TEs, genomes, and life history in Agavoideae 
● Asparagaceae subfamily Agavoideae: 22 genera, 637 species 
● Rhizomatous, warm temperate herbs 
● Economically important: tequila, food starches, biofuels 
● Recent diversification correlated with ecological traits (Good-Avila, 2006) 
● Emerging genomic/transcriptomic resources 
● Polyploidy, bimodality, changes in genome size 
Collaborators: 
Michael McKain (Danforth Plant Science Center) 
Jim Leebens-Mack (U of Georgia) 
Alexandros Bousios (University of Sussex, UK) 
Darlington 1963, 1973 gizmodo.com 
Overview Drosophila Asparagales Conclusions
Conclusions: Asparagales 
Can we characterize TEs in huge genomes with very little a priori 
information? 
Cross-validate TE abundance and diversity estimates with different 
algorithms 
Union of TE, genomic, and organismal data requires fairly large 
taxonomic sampling 
Is transposon presence, abundance, and organization in Agaviodeae 
genomes consistent with involvement in genomic evolution? 
Do transposon proliferation and other genomic traits correlate with life 
history traits in Agavoideae? 
http://commons.wikimedia.org 
Overview Drosophila Asparagales Conclusions
Today's goals 
1. Overview: comparatve genomics 
2. Drosophila, aging, and TE populaton genomics 
3. TE proliferaton in Asparagales 
4. Conclusions and synthesis 
Transposable 
elements Genome Organism
A model of evolution 
Selection 
Transposable 
elements Genome Organism 
Structural changes Ecological interactions 
Genomic silencing (biotic and abiotic) 
machinery 
Overview Drosophila Asparagales Conclusions
TEs, genomes, and organisms 
Working with messy data to answer broad questons 
Quantitative analysis of relationships between genomic phenomena 
and organismal evolution 
Visualizing widespread genomic phenomena 
YOUR QUESTION HERE 
Methods 
Metagenomics 
Gene prediction 
Simulations 
Research synthesis 
Data integration 
Methods development 
Novel applications 
Data 
DNA, RNA, environmental samples 
Morphology, behavior 
Artificial selection 
Overview Drosophila Asparagales Conclusions
Acknowledgements 
Collaborators 
J. Chris Pires and lab (University of Missouri) 
NESCent and Duke University 
Community of scientists 
Bioinformatics team 
Mentors: A. Rodrigo, J. Graves 
Research 
https://sites.google.com/site/k8hertweck 
Blog: 
k8hert.blogspot.com 
Twitter @k8hert 
Google+ k8hertweck@gmail.com

More Related Content

What's hot

chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.dbskkv
 
Comparative genomics presentation
Comparative genomics presentationComparative genomics presentation
Comparative genomics presentationEmmanuel Aguon
 
proteomics and genomics-1
proteomics and genomics-1proteomics and genomics-1
proteomics and genomics-1Shyam Kodi
 
When is a genome finished?
When is a genome finished? When is a genome finished?
When is a genome finished? Keith Bradnam
 
Bio305 Lecture on Genetics
Bio305 Lecture on Genetics Bio305 Lecture on Genetics
Bio305 Lecture on Genetics Mark Pallen
 
Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Sijo A
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomicskiran singh
 
Gene families and clusters
Gene families and clusters Gene families and clusters
Gene families and clusters vidyadeepala
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...WAidid
 
Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)Zohaib HUSSAIN
 
Comparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organellesComparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organellesKAUSHAL SAHU
 
Mitochondrial DNA in Taxonomy and Phylogeny
Mitochondrial DNA in Taxonomy and PhylogenyMitochondrial DNA in Taxonomy and Phylogeny
Mitochondrial DNA in Taxonomy and PhylogenyRachel Jacob
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomicsNikhil Aggarwal
 
NAISTビッグデータシンポジウム - バイオ久保先生
NAISTビッグデータシンポジウム - バイオ久保先生NAISTビッグデータシンポジウム - バイオ久保先生
NAISTビッグデータシンポジウム - バイオ久保先生ysuzuki-naist
 
Organellar genome and its composition
Organellar genome and its compositionOrganellar genome and its composition
Organellar genome and its compositionShilpa C
 

What's hot (20)

chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.
 
Comparative genomics presentation
Comparative genomics presentationComparative genomics presentation
Comparative genomics presentation
 
proteomics and genomics-1
proteomics and genomics-1proteomics and genomics-1
proteomics and genomics-1
 
When is a genome finished?
When is a genome finished? When is a genome finished?
When is a genome finished?
 
Genome origin
Genome originGenome origin
Genome origin
 
Bio305 Lecture on Genetics
Bio305 Lecture on Genetics Bio305 Lecture on Genetics
Bio305 Lecture on Genetics
 
Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Gene families and clusters
Gene families and clusters Gene families and clusters
Gene families and clusters
 
Genomics
GenomicsGenomics
Genomics
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...
 
Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)
 
Genomic variation
Genomic variationGenomic variation
Genomic variation
 
Comparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organellesComparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organelles
 
Mitochondrial DNA in Taxonomy and Phylogeny
Mitochondrial DNA in Taxonomy and PhylogenyMitochondrial DNA in Taxonomy and Phylogeny
Mitochondrial DNA in Taxonomy and Phylogeny
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomics
 
NAISTビッグデータシンポジウム - バイオ久保先生
NAISTビッグデータシンポジウム - バイオ久保先生NAISTビッグデータシンポジウム - バイオ久保先生
NAISTビッグデータシンポジウム - バイオ久保先生
 
Organellar genome and its composition
Organellar genome and its compositionOrganellar genome and its composition
Organellar genome and its composition
 
Plant genome project(aribidopsis)
Plant genome project(aribidopsis)Plant genome project(aribidopsis)
Plant genome project(aribidopsis)
 
Genome evolution
Genome evolutionGenome evolution
Genome evolution
 

Viewers also liked

21 lecture genome_and_evolution
21 lecture genome_and_evolution21 lecture genome_and_evolution
21 lecture genome_and_evolutionveneethmathew
 
Reeta yadav. roll no. 01. transposable elements in prokaryotes
Reeta yadav. roll no. 01. transposable elements in prokaryotesReeta yadav. roll no. 01. transposable elements in prokaryotes
Reeta yadav. roll no. 01. transposable elements in prokaryotesManisha Jangra
 
Science of Happiness Presentation
Science of Happiness PresentationScience of Happiness Presentation
Science of Happiness PresentationJon Unal
 
transposons complete ppt
transposons complete ppttransposons complete ppt
transposons complete ppttauseefsko
 
SeqinR - biological data handling
SeqinR - biological data handlingSeqinR - biological data handling
SeqinR - biological data handlingpau_corral
 

Viewers also liked (7)

21 lecture genome_and_evolution
21 lecture genome_and_evolution21 lecture genome_and_evolution
21 lecture genome_and_evolution
 
Poster
PosterPoster
Poster
 
Reeta yadav. roll no. 01. transposable elements in prokaryotes
Reeta yadav. roll no. 01. transposable elements in prokaryotesReeta yadav. roll no. 01. transposable elements in prokaryotes
Reeta yadav. roll no. 01. transposable elements in prokaryotes
 
Science of Happiness Presentation
Science of Happiness PresentationScience of Happiness Presentation
Science of Happiness Presentation
 
Happiness presentation ppt
Happiness presentation pptHappiness presentation ppt
Happiness presentation ppt
 
transposons complete ppt
transposons complete ppttransposons complete ppt
transposons complete ppt
 
SeqinR - biological data handling
SeqinR - biological data handlingSeqinR - biological data handling
SeqinR - biological data handling
 

Similar to Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)

Hertweck AB3ACBS presentation
Hertweck AB3ACBS presentationHertweck AB3ACBS presentation
Hertweck AB3ACBS presentationKate Hertweck
 
Hertweck Evolution 2014
Hertweck Evolution 2014Hertweck Evolution 2014
Hertweck Evolution 2014Kate Hertweck
 
Plang functional genome
Plang functional genomePlang functional genome
Plang functional genometcha163
 
Systematic error and the contours of a theory of macroevolution
Systematic error and the contours of a theory of macroevolutionSystematic error and the contours of a theory of macroevolution
Systematic error and the contours of a theory of macroevolutionLiliana Davalos
 
Montgomery expression
Montgomery expressionMontgomery expression
Montgomery expressionmorenorossi
 
How Can Ngs Forward Research Essay
How Can Ngs Forward Research EssayHow Can Ngs Forward Research Essay
How Can Ngs Forward Research EssayStefanie Yang
 
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...David Cook
 
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013Mar Gonzales Porta, One gene One transcript, fged_seattle_2013
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013Functional Genomics Data Society
 
Functionally annotate genomic variants
Functionally annotate genomic variantsFunctionally annotate genomic variants
Functionally annotate genomic variantsDenis C. Bauer
 
How to transform genomic big data into valuable clinical information
How to transform genomic big data into valuable clinical informationHow to transform genomic big data into valuable clinical information
How to transform genomic big data into valuable clinical informationJoaquin Dopazo
 
AliciaPoster (Wafa%2c Alicia)
AliciaPoster (Wafa%2c Alicia)AliciaPoster (Wafa%2c Alicia)
AliciaPoster (Wafa%2c Alicia)Alicia Wafa
 
Current Directions in PsychologicalScience2015, Vol. 24(4).docx
Current Directions in PsychologicalScience2015, Vol. 24(4).docxCurrent Directions in PsychologicalScience2015, Vol. 24(4).docx
Current Directions in PsychologicalScience2015, Vol. 24(4).docxannettsparrow
 
Genetic regulation of human brain aging
Genetic regulation of human brain agingGenetic regulation of human brain aging
Genetic regulation of human brain agingAlzforum
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalKamal Tyagi
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalKamal Tyagi
 

Similar to Evolution of transposons, genomes, and organisms (Hertweck Fall 2014) (20)

Hertweck AB3ACBS presentation
Hertweck AB3ACBS presentationHertweck AB3ACBS presentation
Hertweck AB3ACBS presentation
 
Hertweck Evolution 2014
Hertweck Evolution 2014Hertweck Evolution 2014
Hertweck Evolution 2014
 
Omics era
Omics eraOmics era
Omics era
 
Plang functional genome
Plang functional genomePlang functional genome
Plang functional genome
 
te_poster_sping_2016
te_poster_sping_2016te_poster_sping_2016
te_poster_sping_2016
 
Systematic error and the contours of a theory of macroevolution
Systematic error and the contours of a theory of macroevolutionSystematic error and the contours of a theory of macroevolution
Systematic error and the contours of a theory of macroevolution
 
Montgomery expression
Montgomery expressionMontgomery expression
Montgomery expression
 
How Can Ngs Forward Research Essay
How Can Ngs Forward Research EssayHow Can Ngs Forward Research Essay
How Can Ngs Forward Research Essay
 
Bio
BioBio
Bio
 
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
 
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013Mar Gonzales Porta, One gene One transcript, fged_seattle_2013
Mar Gonzales Porta, One gene One transcript, fged_seattle_2013
 
Functionally annotate genomic variants
Functionally annotate genomic variantsFunctionally annotate genomic variants
Functionally annotate genomic variants
 
How to transform genomic big data into valuable clinical information
How to transform genomic big data into valuable clinical informationHow to transform genomic big data into valuable clinical information
How to transform genomic big data into valuable clinical information
 
Family history
Family history Family history
Family history
 
AliciaPoster (Wafa%2c Alicia)
AliciaPoster (Wafa%2c Alicia)AliciaPoster (Wafa%2c Alicia)
AliciaPoster (Wafa%2c Alicia)
 
Current Directions in PsychologicalScience2015, Vol. 24(4).docx
Current Directions in PsychologicalScience2015, Vol. 24(4).docxCurrent Directions in PsychologicalScience2015, Vol. 24(4).docx
Current Directions in PsychologicalScience2015, Vol. 24(4).docx
 
Importance of method
Importance of methodImportance of method
Importance of method
 
Genetic regulation of human brain aging
Genetic regulation of human brain agingGenetic regulation of human brain aging
Genetic regulation of human brain aging
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__final
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__final
 

More from Kate Hertweck

Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...Kate Hertweck
 
Archives of a Future Commons: Seeds and/as Data
Archives of a Future Commons:  Seeds and/as DataArchives of a Future Commons:  Seeds and/as Data
Archives of a Future Commons: Seeds and/as DataKate Hertweck
 
Hertweck Evolution 2017
Hertweck Evolution 2017Hertweck Evolution 2017
Hertweck Evolution 2017Kate Hertweck
 
Transposable elements of Agavoideae
Transposable elements of AgavoideaeTransposable elements of Agavoideae
Transposable elements of AgavoideaeKate Hertweck
 
Developing an undergraduate bioinformatics course
Developing an undergraduate bioinformatics courseDeveloping an undergraduate bioinformatics course
Developing an undergraduate bioinformatics courseKate Hertweck
 
Hertweck Monocots V Presentation
Hertweck Monocots V PresentationHertweck Monocots V Presentation
Hertweck Monocots V PresentationKate Hertweck
 
Hertweck Asparagales 2013
Hertweck Asparagales  2013Hertweck Asparagales  2013
Hertweck Asparagales 2013Kate Hertweck
 
iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012Kate Hertweck
 
iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012Kate Hertweck
 

More from Kate Hertweck (14)

Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...
 
Archives of a Future Commons: Seeds and/as Data
Archives of a Future Commons:  Seeds and/as DataArchives of a Future Commons:  Seeds and/as Data
Archives of a Future Commons: Seeds and/as Data
 
Hertweck Evolution 2017
Hertweck Evolution 2017Hertweck Evolution 2017
Hertweck Evolution 2017
 
Transposable elements of Agavoideae
Transposable elements of AgavoideaeTransposable elements of Agavoideae
Transposable elements of Agavoideae
 
Careers in Botany
Careers in BotanyCareers in Botany
Careers in Botany
 
Developing an undergraduate bioinformatics course
Developing an undergraduate bioinformatics courseDeveloping an undergraduate bioinformatics course
Developing an undergraduate bioinformatics course
 
Hertweck Monocots V Presentation
Hertweck Monocots V PresentationHertweck Monocots V Presentation
Hertweck Monocots V Presentation
 
Phylolecture
PhylolecturePhylolecture
Phylolecture
 
Hertweck Asparagales 2013
Hertweck Asparagales  2013Hertweck Asparagales  2013
Hertweck Asparagales 2013
 
Hertweck bbl2012
Hertweck bbl2012Hertweck bbl2012
Hertweck bbl2012
 
Hertweck uva2012
Hertweck uva2012Hertweck uva2012
Hertweck uva2012
 
iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012
 
iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012
 
Evolution 2012
Evolution 2012Evolution 2012
Evolution 2012
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCherry
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Cherry
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptxMuhammadRazzaq31
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 

Recently uploaded (20)

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 

Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)

  • 1. Evolution of transposons, genomes, and organisms Kate L Hertweck The University of Texas at Tyler Department of Biology https://www.uttyler.edu/biology/ Research https://sites.google.com/site/k8hertweck Blog k8hert.blogspot.com Twitter @k8hert
  • 2. Today's goals 1. Overview: comparatve genomics 2. Drosophila, aging, and TE populaton genomics 3. TE proliferaton in Asparagales 4. Future research and conclusions
  • 3. What's in a genome? Regions between genes: Selfish, mystery, or junk DNA; dark matter Sandwalk.blogspot.com Intergenic region { Gene { Wikimedia Commons Traditionally, genetics focused on genes (functional sequence regions) Overview Drosophila Asparagales Conclusions
  • 4. Sequencing the “junk” Intergenic (“non-coding”) regions are full of repetitive sequences: difficult to obtain sequence! Telomeres, centromeres, ribosomal DNA, satellite DNA, pseudogenes, transposable elements Hertweck, unpublished data ENCODE: “Google Maps for the human genome” 80% of the human genome is functional! We're getting better at identifying portions of the genome, reducing “dark matter” Encodeproject.org Overview Drosophila Asparagales Conclusions
  • 5. Transposable elements as a model system ● TEs, mobile genetic elements, or jumping genes ● Parasitic, self-replicating ● Similar to or derived from viruses ● Move independently in a genome Class I: Retrotransposons (copy and paste) LTR LINE SINE ERV SVA Class II: DNA transposons (cut and paste) TIR (P elements) MITE Crypton Helitron Maverick Populations of TE sequences in a genome evolve AND Surrounding genomic sequences evolve Overview Drosophila Asparagales Conclusions
  • 6. TEs allow for evolutionary innovation TEs are a special type of mutation Interactions with genes Disrupting gene function Regulatory changes Exaptation Genome-wide modifications Rates of insertion/deletion Chromosomal restructuring Changes in genome size Effects on the organism Disease Phenotype Adaptation Overview Drosophila Asparagales Conclusions
  • 7. TEs allow for evolutionary innovation Exaptaton of TEs into genes: Alu elements contributed to evoluton of three color vision (Dulai, 1999) Genome size variaton: TEs account for ~70% of variaton in genome size between Zea mays and Z. luxurians(Tenaillon et al., 2011) TEs and disease: TE insertons in somatc cells are responsible for multple cancer pathways, (Lee et al., 2012); retrotranspositon in neurons contributes to schizophrenia (Bundo et al., 2014) Overview Drosophila Asparagales Conclusions
  • 8. How do transposable elements affect genomic and organismal evolution? Data Research synthesis Data integration Methods development Novel applications Next-generation sequencing Genome annotations Life history traits Methods Bioinformatics Phylogenetics Comparative analysis Overview Drosophila Asparagales Conclusions
  • 9. 1. Overview: comparatve genomics 2. Drosophila, aging, and TE populaton genomics 3. TE proliferaton in Asparagales 4. Future research and conclusions Collaborators: Mira Han (UNLV) Mark A. Phillips (UC Irvine) Lee F. Greer (UC Irvine) Michael R. Rose (UC Irvine) Joseph L. Graves (NC A&T, UNCG)
  • 10. How and why to study aging? Biological aging (senescence): accumulation of changes that disrupt metabolism Complex phenotype not easily explained by genetics existanew.com Medical concerns drive our personal interest in aging We study these questions using demographic and disease-related data Overview Drosophila Asparagales Conclusions
  • 11. Aging as a phenotype Aging as a biological phenomenon: what are evolutionary implications? Model systems with much shorter life span, ability to experimentally manipulate In Drosophila, we study the process of aging by examining time to development, which is closely correlated with lifespan Martinez, 1998 Overview Drosophila Asparagales Conclusions
  • 12. How do TEs affect aging? Theory: accumulation of mutations (Kirkwood 1986, Murrey 1990) More TEs lifespan Empirical data: it depends on model system, type of TE, and method of measuring TE proliferation ● TIR DNA transposons: decrease or have no effect on lifespan (Drosophila: Nikitin and Woodruff 1995; C. elegans: Egilmez and Reis 1994) ● LTR retrotransposons decrease lifespan (Drosophila: Driver and McKechnie 1992) ● Alu SINEs reverse senescence (human cell lines: Wang et al. 2011) What is the relationship between TE insertions and aging? Overview Drosophila Asparagales Conclusions
  • 13. Rose laboratory Drosophila stocks ACO CO Long term experimental evolution system Established 1980 A 9-day life cycle B 14-day life cycle (baseline) C 28-day life cycle NCO AO BO B O Original population A, B, C derived twice each Reversal of selection Testing for convergence All populations replicated five times Overview Drosophila Asparagales Conclusions
  • 14. Phenotypes associated with selection Physiological: ● Heart function ● Flight duration ● Stress resistance (starvation, dessication) Developmental: ● Hatching rate ● Time to pupation ● Emergence from pupa newswatch.nationalgeographic.com Phenotypes respond predictably to selective treatment Overview Drosophila Asparagales Conclusions
  • 15. Experimental data ● Whole-genome resequencing (Illumina Hi-Seq) 120 females x six treatments x five replicates ● How do genomic features respond to selective treatment? Pilot study (Burke et al., 2010) ● Our analysis: ● SNPs: Popoolation2 (Kofler et al., 2011) ● Structural variants: Delly (Rausch et al., 2012) ● How do frequencies of TE insertions respond to selective pressures? ● Magnitude of variation? ● Which TEs? ● Where in the genome? Overview Drosophila Asparagales Conclusions
  • 16. Analysis of known TE insertions ● T-lex (Fiston-Lavier et al. 2010): pipeline with four modules ● 2947 known TE insertions annotated in Drosophila (Release 5) ● Resulting data: genome-wide frequencies (presence/absence) of TE insertions from each population ● Comparing all populations: no data, fixed, absent, variable total 1400 1200 1000 800 600 400 200 0 FB TIR LINE LTR INE-1 number of TE insertions Overview Drosophila Asparagales Conclusions
  • 17. Analysis of known TE insertions ● 177 TE insertions vary in frequency ● Does variation matter? total variable 1400 1200 1000 800 600 400 200 0 FB TIR LINE LTR INE-1 number of TE insertions Overview Drosophila Asparagales Conclusions
  • 18. Analysis of known TE insertions ● Fisher's Exact test ● Cochran-Mantel-Haenszel (CMH) test ● 95 TE insertions vary significantly ● Does frequency of insertion significantly vary with selective treatment? total variable significant 1400 1200 1000 800 600 400 200 0 FB TIR LINE LTR INE-1 number of TE insertions Overview Drosophila Asparagales Conclusions
  • 19. Which populations do we compare? ACO CO NCO AO BO B O Original population ● Phenotype: time to development ● Is there genomic convergence? ● Compare different treatments: short vs long expect more more significant differentiation Overview Drosophila Asparagales Conclusions
  • 20. Which populations do we compare? ACO CO NCO AO BO B O Original population ● Phenotype: time to development ● Is there genomic convergence? ● Compare same treatments: short vs short long vs long baseline vs baseline expect little significant differentiation Overview Drosophila Asparagales Conclusions
  • 21. 60 50 40 30 20 10 0 # of significant TE insertions Is there convergence? Compare different treatments Compare same treatments ACO CO AO NCO ACO AO CO NCO B BO ● Much less differentiation within treatment than among treatment types ● Significant TEs are distributed across the genome TEs which are known to exist in the Drosophila genome show genomic convergence, similar to consistency of measured phenotypes. Overview Drosophila Asparagales Conclusions
  • 22. What about de novo TE insertions? Hertweck, unpublished data ● TEs interact with a genome by moving independently ● RelocaTE 1.0.4 (Robb et al. 2013): uses reference genome and known TE sequences/motifs to identify all TEs in genome ● Resulting data: total number and location of TEs (LTR and IR) in genome ● Compare number of TEs Overview Drosophila Asparagales Conclusions
  • 23. DWe hnaotv aob ToEuts daels noo svhoo TwE c ionnsveertrigoennsc?e * * CO ACO NCO AO BO B Comparisons between some treatment types show significant differentiation Short-lived populations have more LTR-retrotransposons than long lived populations! Overview Drosophila Asparagales Conclusions
  • 24. Continuing population genomics in Drosophila ● Continuing analysis of TEs: Searching for unannotated (novel) insertions Applying null models (Blumensteil et al., 2014) ● Integration of data types Rearrangements and inversions? Phenotypes with genotypes Statistical testing to combine genotypic data Overview Drosophila Asparagales Conclusions
  • 25. Conclusions: Drosophila How do frequencies of TE insertions in experimental populations respond to selective pressures? TEs (both known and de novo) exhibit convergent patterns similar to phenotypes and other genomic data All TE types change frequency in response to selection Significant changes are seen across the genome existanew.com What does this mean across an evolutionary timescale? Overview Drosophila Asparagales Conclusions
  • 26. Today's goals 1. Overview: comparatve genomics 2. Drosophila, aging, and TE populaton genomics 3. TE proliferaton in Asparagales 4. Future research and conclusions Wikimedia Commons
  • 27. Asparagales as a model system ● ca. 26000 species, many edible and ornamental ● Variation in life history traits: growth habit, habitat ● Patterns of genomic evolution: size and chromosomes ● Few genomic resources Can we characterize TEs in huge genomes with very litle a priori informaton? ag.arizona.edu Naturehills.com Overview Drosophila Asparagales Conclusions
  • 28. Next-gen sequencing in Asparagales ● Anonymous, low coverage, genome wide sequence data (genomic survey sequences, or GSS) ● Mined for phylogenetc markers ● Used less than 90% of the data collected! Steele, Hertweck, Mayfield, McKain, Leebens-Mack, and Pires, 2012 AJB Xeronemataceae Asphodeloideae Hemerocallidoideae Xanthorrhoeoideae Agapanthoideae Allioideae Amaryllidoideae Lomandroideae Asparagoideae Nolinoideae Aphyllanthoideae Agavoideae Scilloideae Brodiaeoideae Xanthorrhoeaeceae Asparagaceae Agapanthaceae Overview Drosophila Asparagales Conclusions
  • 29. How can we use the leftover data? Characterize repeats in each genome Infer paterns of genome size evoluton with TE diversity and abundance Interpret in a phylogenetc context Xeronemataceae Asphodeloideae Hemerocallidoideae Xanthorrhoeoideae Agapanthoideae Allioideae Amaryllidoideae Lomandroideae Asparagoideae Nolinoideae Aphyllanthoideae Agavoideae Scilloideae Brodiaeoideae Xanthorrhoeaeceae Asparagaceae Agapanthaceae Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 30. TE identification in non-model systems Raw sequence data (fastq) De novo genome assembly (MaSuRCA) Filter out plastid and mtDNA sequences (BLAST to organellar genomes) Identify results similar to known repeats (RepeatMasker, 3110 repeats in library, 98.7% are from grasses ) Categorize TEs by type (unknown and simple repeats removed, grouped by superfamily) Estimate abundance of each TE type (Map raw reads back to scaffolds) Scripts available on GitHub: AsparagalesTEscripts Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 31. Genome size varies in sampled Asparagales Aphyllanthes Lomandra Sansevieria Asparagus Ledebouria Dichelostemma Agapanthus Allium Haworthia Hosta Scadoxus 25000 20000 15000 10000 5000 0 Genome size (Mb/1C) humans Arabidopsis Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 32. Genome size varies in sampled Asparagales What proportion of the nuclear genome is from TEs? Aphyllanthes Lomandra Sansevieria Asparagus Ledebouria Dichelostemma Agapanthis Allium Haworthia Hosta Scadoxus 25000 20000 15000 10000 5000 0 Genome size (Mb/1C) Genome size small medium large Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 33. Repeat content does not vary with genome size Percentage of sequence reads from nuclear genome Aphyllanthes Lomandra Sansevieria Asparagus Ledebouria Dichelostemma Agapanthis Allium Haworthia Hosta Scadoxus Hertweck, 2013, Genome 70% 60% 50% 40% 30% 20% 10% 0% 25000 20000 15000 10000 5000 0 Genome size (Mb/1C) Unknown contigs Known repeats Overview Drosophila Asparagales Conclusions
  • 34. Does genome size vary with phylogeny? Genome size small medium large Hertweck, 2013, Genome Phylogeny Overview Drosophila Asparagales Conclusions
  • 35. LTR retrotransposon proportions vary independent of phylogeny Genome size small medium large Haworthia Agapanthus Allium Scadoxus Lomandra Asparagus Sansevieria Aphyllanthes Hosta Ledebouria Dichelostemma 25% 20% 15% 10% 5% 0% Percentage of nuclear genome copia gypsy Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 36. Haworthia Agapanthus Allium Scadoxus Lomandra Asparagus Sansevieria Aphyllanthes Hosta Ledebouria Dichelostemma 0.80% 0.70% 0.60% 0.50% 0.40% 0.30% 0.20% 0.10% 0.00% DNA TE superfamilies show some phylogenetic signal EnSpm hAT MuDR PIF unplaced Genome size small medium large Hertweck, 2013, Genome Overview Drosophila Asparagales Conclusions
  • 37. How can we improve these analyses? ● Need to improve TE characterization methods LTR family analysis Asparagales-specific repeat library P-clouds and graph-based clustering methods (RepeatExplorer) Protein domain searches (RT, INT, ENV, GAG) RNA-Seq data ● Increasing taxonomic sampling Broader sampling across Asparagales Targeted sampling in Agavoideae Overview Drosophila Asparagales Conclusions
  • 38. Continuing work: TEs, genomes, and life history in Agavoideae ● Asparagaceae subfamily Agavoideae: 22 genera, 637 species ● Rhizomatous, warm temperate herbs ● Economically important: tequila, food starches, biofuels ● Recent diversification correlated with ecological traits (Good-Avila, 2006) ● Emerging genomic/transcriptomic resources ● Polyploidy, bimodality, changes in genome size Collaborators: Michael McKain (Danforth Plant Science Center) Jim Leebens-Mack (U of Georgia) Alexandros Bousios (University of Sussex, UK) Darlington 1963, 1973 gizmodo.com Overview Drosophila Asparagales Conclusions
  • 39. Conclusions: Asparagales Can we characterize TEs in huge genomes with very little a priori information? Cross-validate TE abundance and diversity estimates with different algorithms Union of TE, genomic, and organismal data requires fairly large taxonomic sampling Is transposon presence, abundance, and organization in Agaviodeae genomes consistent with involvement in genomic evolution? Do transposon proliferation and other genomic traits correlate with life history traits in Agavoideae? http://commons.wikimedia.org Overview Drosophila Asparagales Conclusions
  • 40. Today's goals 1. Overview: comparatve genomics 2. Drosophila, aging, and TE populaton genomics 3. TE proliferaton in Asparagales 4. Conclusions and synthesis Transposable elements Genome Organism
  • 41. A model of evolution Selection Transposable elements Genome Organism Structural changes Ecological interactions Genomic silencing (biotic and abiotic) machinery Overview Drosophila Asparagales Conclusions
  • 42. TEs, genomes, and organisms Working with messy data to answer broad questons Quantitative analysis of relationships between genomic phenomena and organismal evolution Visualizing widespread genomic phenomena YOUR QUESTION HERE Methods Metagenomics Gene prediction Simulations Research synthesis Data integration Methods development Novel applications Data DNA, RNA, environmental samples Morphology, behavior Artificial selection Overview Drosophila Asparagales Conclusions
  • 43. Acknowledgements Collaborators J. Chris Pires and lab (University of Missouri) NESCent and Duke University Community of scientists Bioinformatics team Mentors: A. Rodrigo, J. Graves Research https://sites.google.com/site/k8hertweck Blog: k8hert.blogspot.com Twitter @k8hert Google+ k8hertweck@gmail.com