SlideShare a Scribd company logo
1 of 106
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
Genomes and Their Evolution
Chapter 21
Overview: Reading the Leaves from the
Tree of Life
• Complete genome sequences exist for a human,
chimpanzee, E. coli, brewer’s yeast, corn, fruit fly,
house mouse, rhesus macaque, and other
organisms
• Comparisons of genomes among organisms
provide information about the evolutionary history
of genes and taxonomic groups
© 2011 Pearson Education, Inc.
• Genomics is the study of whole sets of genes
and their interactions
• Bioinformatics is the application of
computational methods to the storage and
analysis of biological data
© 2011 Pearson Education, Inc.
Figure 21.1
Concept 21.1: New approaches have
accelerated the pace of genome sequencing
• The most ambitious mapping project to date has
been the sequencing of the human genome
• Officially begun as the Human Genome Project
in 1990, the sequencing was largely completed
by 2003
• The project had three stages
– Genetic (or linkage) mapping
– Physical mapping
– DNA sequencing
© 2011 Pearson Education, Inc.
Three-Stage Approach to Genome
Sequencing
• A linkage map (genetic map) maps the location
of several thousand genetic markers on each
chromosome
• A genetic marker is a gene or other identifiable
DNA sequence
• Recombination frequencies are used to
determine the order and relative distances
between genetic markers
© 2011 Pearson Education, Inc.
Figure 21.2-1
Cytogenetic map
Genes located
by FISH
Chromosome
bands
Figure 21.2-2
Cytogenetic map
Genes located
by FISH
Chromosome
bands
Linkage mapping
Genetic
markers
1
Figure 21.2-3
Cytogenetic map
Genes located
by FISH
Chromosome
bands
Linkage mapping
Genetic
markers
1
Physical mapping2
Overlapping
fragments
Figure 21.2-4
Cytogenetic map
Genes located
by FISH
Chromosome
bands
Linkage mapping
Genetic
markers
1
Physical mapping2
Overlapping
fragments
DNA sequencing3
• A physical map expresses the distance between
genetic markers, usually as the number of base
pairs along the DNA
• It is constructed by cutting a DNA molecule into
many short fragments and arranging them in
order by identifying overlaps
© 2011 Pearson Education, Inc.
• Sequencing machines are used to determine the
complete nucleotide sequence of each
chromosome
• A complete haploid set of human chromosomes
consists of 3.2 billion base pairs
© 2011 Pearson Education, Inc.
Whole-Genome Shotgun Approach to
Genome Sequencing
• The whole-genome shotgun approach was
developed by J. Craig Venter in 1992
• This approach skips genetic and physical mapping
and sequences random DNA fragments directly
• Powerful computer programs are used to order
fragments into a continuous sequence
© 2011 Pearson Education, Inc.
Cut the DNA into
overlapping frag-
ments short enough
for sequencing.
1
Clone the fragments
in plasmid or phage
vectors.
2
Figure 21.3-1
Cut the DNA into
overlapping frag-
ments short enough
for sequencing.
1
Clone the fragments
in plasmid or phage
vectors.
2
Sequence each
fragment.
3
Figure 21.3-2
Cut the DNA into
overlapping frag-
ments short enough
for sequencing.
1
Clone the fragments
in plasmid or phage
vectors.
2
Sequence each
fragment.
3
Order the
sequences into
one overall
sequence
with computer
software.
4
Figure 21.3-3
• Both the three-stage process and the whole-
genome shotgun approach were used for the
Human Genome Project and for genome
sequencing of other organisms
• At first many scientists were skeptical about the
whole-genome shotgun approach, but it is now
widely used as the sequencing method of choice
• The development of newer sequencing
techniques has resulted in massive increases in
speed and decreases in cost
© 2011 Pearson Education, Inc.
• Technological advances have also facilitated
metagenomics, in which DNA from a group of
species (a metagenome) is collected from an
environmental sample and sequenced
• This technique has been used on microbial
communities, allowing the sequencing of DNA of
mixed populations, and eliminating the need to
culture species in the lab
© 2011 Pearson Education, Inc.
Concept 21.2 Scientists use bioinformatics
to analyze genomes and their functions
• The Human Genome Project established
databases and refined analytical software to make
data available on the Internet
• This has accelerated progress in DNA sequence
analysis
© 2011 Pearson Education, Inc.
Centralized Resources for Analyzing
Genome Sequences
• Bioinformatics resources are provided by a
number of sources
– National Library of Medicine and the National
Institutes of Health (NIH) created the National
Center for Biotechnology Information (NCBI)
– European Molecular Biology Laboratory
– DNA Data Bank of Japan
– BGI in Shenzhen, China
© 2011 Pearson Education, Inc.
• Genbank, the NCBI database of sequences,
doubles its data approximately every 18 months
• Software is available that allows online visitors to
search Genbank for matches to
– A specific DNA sequence
– A predicted protein sequence
– Common stretches of amino acids in a protein
• The NCBI website also provides 3-D views of all
protein structures that have been determined
© 2011 Pearson Education, Inc.
Figure 21.4
Identifying Protein-Coding Genes and
Understanding Their Functions
• Using available DNA sequences, geneticists can
study genes directly in an approach called reverse
genetics
• The identification of protein coding genes within
DNA sequences in a database is called gene
annotation
© 2011 Pearson Education, Inc.
• Gene annotation is largely an automated process
• Comparison of sequences of previously unknown
genes with those of known genes in other species
may help provide clues about their function
© 2011 Pearson Education, Inc.
Understanding Genes and Gene
Expression at the Systems Level
• Proteomics is the systematic study of all proteins
encoded by a genome
• Proteins, not genes, carry out most of the
activities of the cell
© 2011 Pearson Education, Inc.
How Systems Are Studied: An Example
• A systems biology approach can be applied to
define gene circuits and protein interaction
networks
• Researchers working on the yeast
Saccharomyces cerevisiae used sophisticated
techniques to disable pairs of genes one pair at a
time, creating double mutants
• Computer software then mapped genes to
produce a network-like “functional map” of their
interactions
• The systems biology approach is possible
because of advances in bioinformatics
© 2011 Pearson Education, Inc.
Translation and
ribosomal functions
Nuclear-
cytoplasmic
transport
RNA processing
Transcription
and chromatin-
related functions
Mitochondrial
functions
Nuclear migration
and protein
degradation
Mitosis
DNA replication
and repair
Cell polarity and
morphogenesis
Protein folding,
glycosylation, and
cell wall biosynthesis
Secretion
and vesicle
transport
Metabolism
and amino acid
biosynthesis
Peroxisomal
functions
Glutamate
biosynthesis
Serine-
related
biosynthesis
Amino acid
permease pathway
Vesicle
fusion
Figure 21.5
Figure 21.5a
Translation and
ribosomal functions
Nuclear-
cytoplasmic
transport
RNA processing
Transcription
and chromatin-
related functions
Mitochondrial
functions
Nuclear migration
and protein
degradation
Mitosis
DNA replication
and repair
Cell polarity and
morphogenesis
Protein folding,
glycosylation, and
cell wall biosynthesis
Secretion
and vesicle
transport
Metabolism
and amino acid
biosynthesis
Peroxisomal
functions
Glutamate
biosynthesis
Serine-
related
biosynthesis
Amino acid
permease pathway
Vesicle
fusion
Metabolism
and amino acid
biosynthesis
Figure 21.5b
Application of Systems Biology to Medicine
• A systems biology approach has several medical
applications
– The Cancer Genome Atlas project is currently
seeking all the common mutations in three types
of cancer by comparing gene sequences and
expression in cancer versus normal cells
– This has been so fruitful, it will be extended to
ten other common cancers
– Silicon and glass “chips” have been produced
that hold a microarray of most known human
genes
© 2011 Pearson Education, Inc.
Figure 21.6
Concept 21.3 Genomes vary in size,
number of genes, and gene density
• By early 2010, over 1,200 genomes were
completely sequenced, including 1,000 bacteria,
80 archaea, and 124 eukaryotes
• Sequencing of over 5,500 genomes and over 200
metagenomes is currently in progress
© 2011 Pearson Education, Inc.
Genome Size
• Genomes of most bacteria and archaea range
from 1 to 6 million base pairs (Mb); genomes of
eukaryotes are usually larger
• Most plants and animals have genomes greater
than 100 Mb; humans have 3,000 Mb
• Within each domain there is no systematic
relationship between genome size and phenotype
© 2011 Pearson Education, Inc.
Table 21.1
Number of Genes
• Free-living bacteria and archaea have 1,500 to
7,500 genes
• Unicellular fungi have from about 5,000 genes
and multicellular eukaryotes up to at least 40,000
genes
© 2011 Pearson Education, Inc.
• Number of genes is not correlated to genome size
• For example, it is estimated that the nematode
C. elegans has 100 Mb and 20,000 genes, while
Drosophila has 165 Mb and 13,700 genes
• Vertebrate genomes can produce more than one
polypeptide per gene because of alternative
splicing of RNA transcripts
© 2011 Pearson Education, Inc.
Gene Density and Noncoding DNA
• Humans and other mammals have the lowest
gene density, or number of genes, in a given
length of DNA
• Multicellular eukaryotes have many introns within
genes and noncoding DNA between genes
© 2011 Pearson Education, Inc.
Concept 21.4: Multicellular eukaryotes
have much noncoding DNA and many
multigene families
• The bulk of most eukaryotic genomes neither
encodes proteins nor functional RNAs
• Much evidence indicates that noncoding DNA
(previously called “junk DNA”) plays important
roles in the cell
• For example, genomes of humans, rats, and mice
show high sequence conservation for about 500
noncoding regions
© 2011 Pearson Education, Inc.
• Sequencing of the human genome reveals that
98.5% does not code for proteins, rRNAs, or
tRNAs
• About a quarter of the human genome codes for
introns and gene-related regulatory sequences
© 2011 Pearson Education, Inc.
• Intergenic DNA is noncoding DNA found between
genes
– Pseudogenes are former genes that have
accumulated mutations and are nonfunctional
– Repetitive DNA is present in multiple copies in
the genome
• About three-fourths of repetitive DNA is made up
of transposable elements and sequences related
to them
© 2011 Pearson Education, Inc.
Figure 21.7
Exons (1.5%) Introns (5%)
Regulatory
sequences
(∼20%)
Unique
noncoding
DNA (15%)
Repetitive
DNA
unrelated to
transposable
elements
(14%)
Large-segment
duplications (5−6%)
Simple sequence
DNA (3%)
Alu elements
(10%)
L1
sequences
(17%)
Repetitive
DNA that
includes
transposable
elements
and related
sequences
(44%)
Transposable Elements and Related
Sequences
• The first evidence for mobile DNA segments
came from geneticist Barbara McClintock’s
breeding experiments with Indian corn
• McClintock identified changes in the color of corn
kernels that made sense only by postulating that
some genetic elements move from other genome
locations into the genes for kernel color
• These transposable elements move from one
site to another in a cell’s DNA; they are present in
both prokaryotes and eukaryotes
© 2011 Pearson Education, Inc.
Figure 21.8
Figure 21.8a
Figure 21.8b
Movement of Transposons and
Retrotransposons
• Eukaryotic transposable elements are of two
types
– Transposons, which move by means of a DNA
intermediate
– Retrotransposons, which move by means of an
RNA intermediate
© 2011 Pearson Education, Inc.
Figure 21.9
Transposon
Transposon
is copied
DNA of
genome
Mobile transposon
Insertion
New copy of
transposon
Figure 21.10
Retrotransposon
New copy of
retrotransposon
Insertion
Reverse
transcriptase
RNA
Formation of a
single-stranded
RNA intermediate
Sequences Related to Transposable
Elements
• Multiple copies of transposable elements and
related sequences are scattered throughout the
eukaryotic genome
• In primates, a large portion of transposable
element–related DNA consists of a family of
similar sequences called Alu elements
• Many Alu elements are transcribed into RNA
molecules; however their function, if any, is
unknown
© 2011 Pearson Education, Inc.
• The human genome also contains many
sequences of a type of retrotransposon called
LINE-1 (L1)
• L1 sequences have a low rate of transposition
and may help regulate gene expression
© 2011 Pearson Education, Inc.
Other Repetitive DNA, Including Simple
Sequence DNA
• About 15% of the human genome consists of
duplication of long sequences of DNA from one
location to another
• In contrast, simple sequence DNA contains
many copies of tandemly repeated short
sequences
© 2011 Pearson Education, Inc.
• A series of repeating units of 2 to 5 nucleotides is
called a short tandem repeat (STR)
• The repeat number for STRs can vary among
sites (within a genome) or individuals
• Simple sequence DNA is common in
centromeres and telomeres, where it probably
plays structural roles in the chromosome
© 2011 Pearson Education, Inc.
Genes and Multigene Families
• Many eukaryotic genes are present in one copy
per haploid set of chromosomes
• The rest of the genes occur in multigene
families, collections of identical or very similar
genes
• Some multigene families consist of identical DNA
sequences, usually clustered tandemly, such as
those that code for rRNA products
© 2011 Pearson Education, Inc.
Figure 21.11
DNA
RNA transcripts
Nontranscribed
spacer Transcription unit
DNA
18S 5.8S 28S
28S
5.8S
18S
(a) Part of the ribosomal RNA gene family
α-Globin
α-Globin gene family
Chromosome 16
β-Globin gene family
Chromosome 11
β-Globin
Heme
ζ ψζ ψα2
ψα1
α2
α1
ψθ ε Gγ Aγ
ψβ δ β
(b) The human α-globin and β-globin gene families
Embryo
Fetus
and adult Fetus Adult
rRNA
Embryo
Figure 21.11a
DNA
RNA transcripts
Nontranscribed
spacer Transcription unit
DNA
18S
5.8S
28S
28S
5.8S
18S
(a) Part of the ribosomal RNA gene family
rRNA
Figure 21.11c
DNA
RNA transcripts
Nontranscribed
spacer Transcription unit
• The classic examples of multigene families of
nonidentical genes are two related families of
genes that encode globins
• α-globins and β-globins are polypeptides of
hemoglobin and are coded by genes on different
human chromosomes and are expressed at
different times in development
© 2011 Pearson Education, Inc.
Figure 21.11b
α-Globin
α-Globin gene family
Chromosome 16
β-Globin gene family
Chromosome 11
β-Globin
Heme
ζ ψζ ψα 2
ψα 1
α2 α1 ψθ ε Gγ
Aγ ψβ δ β
Embryo
Fetus
and adult Fetus AdultEmbryo
(b) The human α-globin and β-globin gene families
Concept 21.5: Duplication,
rearrangement, and mutation of DNA
contribute to genome evolution
• The basis of change at the genomic level is
mutation, which underlies much of genome
evolution
• The earliest forms of life likely had a minimal
number of genes, including only those necessary
for survival and reproduction
• The size of genomes has increased over
evolutionary time, with the extra genetic material
providing raw material for gene diversification
© 2011 Pearson Education, Inc.
Duplication of Entire Chromosome Sets
• Accidents in meiosis can lead to one or more
extra sets of chromosomes, a condition known as
polyploidy
• The genes in one or more of the extra sets can
diverge by accumulating mutations; these
variations may persist if the organism carrying
them survives and reproduces
© 2011 Pearson Education, Inc.
Alterations of Chromosome Structure
• Humans have 23 pairs of chromosomes, while
chimpanzees have 24 pairs
• Following the divergence of humans and
chimpanzees from a common ancestor, two
ancestral chromosomes fused in the human line
• Duplications and inversions result from mistakes
during meiotic recombination
• Comparative analysis between chromosomes of
humans and seven mammalian species paints a
hypothetical chromosomal evolutionary history
© 2011 Pearson Education, Inc.
Figure 21.12
Human
chromosome 2
Telomere
sequences
Centromere
sequences
Chimpanzee
chromosomes
12
Telomere-like
sequences
Centromere-like
sequences
Human
chromosome 16
13
(a) Human and chimpanzee chromosomes (b) Human and mouse chromosomes
7 8 16 17
Mouse
chromosomes
Figure 21.12a
Human
chromosome 2
Telomere
sequences
Centromere
sequences
Chimpanzee
chromosomes
12
Telomere-like
sequences
Centromere-like
sequences
13
(a) Human and chimpanzee chromosomes
Figure 21.12b
Human
chromosome 16
(b) Human and mouse chromosomes
7 8 16 17
Mouse
chromosomes
• The rate of duplications and inversions seems to
have accelerated about 100 million years ago
• This coincides with when large dinosaurs went
extinct and mammals diversified
• Chromosomal rearrangements are thought to
contribute to the generation of new species
• Some of the recombination “hot spots” associated
with chromosomal rearrangement are also
locations that are associated with diseases
© 2011 Pearson Education, Inc.
Duplication and Divergence of Gene-Sized
Regions of DNA
• Unequal crossing over during prophase I of
meiosis can result in one chromosome with a
deletion and another with a duplication of a
particular region
• Transposable elements can provide sites for
crossover between nonsister chromatids
© 2011 Pearson Education, Inc.
Nonsister
chromatids
Gene Transposable
element
Crossover
point
and
Incorrect pairing
of two homologs
during meiosis
Figure 21.13
Evolution of Genes with Related Functions:
The Human Globin Genes
• The genes encoding the various globin proteins
evolved from one common ancestral globin gene,
which duplicated and diverged about 450–500
million years ago
• After the duplication events, differences between
the genes in the globin family arose from the
accumulation of mutations
© 2011 Pearson Education, Inc.
Figure 21.14
Ancestral globin gene
α-Globin gene family
on chromosome 16
β-Globin gene family
on chromosome 11
Duplication of
ancestral gene
Mutation in
both copies
Transposition to
different chromosomes
Further duplications
and mutations
Evolutionarytime
ζ
β
β
α β
ε γ
α
αζ
ψθψζ ψα
2
ψα
1
α2
α1 βε Gγ Aγ ψβ δ
• Subsequent duplications of these genes and
random mutations gave rise to the present globin
genes, which code for oxygen-binding proteins
• The similarity in the amino acid sequences of the
various globin proteins supports this model of
gene duplication and mutation
© 2011 Pearson Education, Inc.
Table 21.2
Evolution of Genes with Novel Functions
• The copies of some duplicated genes have
diverged so much in evolution that the functions
of their encoded proteins are now very different
• For example the lysozyme gene was duplicated
and evolved into the gene that encodes
α-lactalbumin in mammals
• Lysozyme is an enzyme that helps protect
animals against bacterial infection
• α-lactalbumin is a nonenzymatic protein that
plays a role in milk production in mammals
© 2011 Pearson Education, Inc.
Rearrangements of Parts of Genes: Exon
Duplication and Exon Shuffling
• The duplication or repositioning of exons has
contributed to genome evolution
• Errors in meiosis can result in an exon being
duplicated on one chromosome and deleted from
the homologous chromosome
• In exon shuffling, errors in meiotic recombination
lead to some mixing and matching of exons,
either within a gene or between two nonallelic
genes
© 2011 Pearson Education, Inc.
Exon
duplication
Exon
shuffling
Exon
shuffling
F EGF K K
K
F F F F
EGF EGF EGF EGF
Epidermal growth
factor gene with multiple
EGF exons
Fibronectin gene with multiple
“finger” exons
Plasminogen gene with a
“kringle” exon
Portions of ancestral genes TPA gene as it exists today
Figure 21.15
How Transposable Elements Contribute
to Genome Evolution
• Multiple copies of similar transposable elements
may facilitate recombination, or crossing over,
between different chromosomes
• Insertion of transposable elements within a
protein-coding sequence may block protein
production
• Insertion of transposable elements within a
regulatory sequence may increase or decrease
protein production
© 2011 Pearson Education, Inc.
• Transposable elements may carry a gene or
groups of genes to a new position
• Transposable elements may also create new
sites for alternative splicing in an RNA transcript
• In all cases, changes are usually detrimental but
may on occasion prove advantageous to an
organism
© 2011 Pearson Education, Inc.
Concept 21.6: Comparing genome
sequences provides clues to evolution and
development
• Genome sequencing and data collection has
advanced rapidly in the last 25 years
• Comparative studies of genomes
– Advance our understanding of the evolutionary
history of life
– Help explain how the evolution of development
leads to morphological diversity
© 2011 Pearson Education, Inc.
Comparing Genomes
• Genome comparisons of closely related species
help us understand recent evolutionary events
• Genome comparisons of distantly related species
help us understand ancient evolutionary events
• Relationships among species can be represented
by a tree-shaped diagram
© 2011 Pearson Education, Inc.
Most recent
common
ancestor
of all living
things
Bacteria
Eukarya
Archaea
Chimpanzee
Human
Mouse
Millions of years ago
Billions of years ago
4 3 2
010203040506070
01
Figure 21.16
Comparing Distantly Related Species
• Highly conserved genes have changed very little
over time
• These help clarify relationships among species
that diverged from each other long ago
• Bacteria, archaea, and eukaryotes diverged from
each other between 2 and 4 billion years ago
• Highly conserved genes can be studied in one
model organism, and the results applied to other
organisms
© 2011 Pearson Education, Inc.
Comparing Closely Related Species
• Genetic differences between closely related
species can be correlated with phenotypic
differences
• For example, genetic comparison of several
mammals with nonmammals helps identify what it
takes to make a mammal
© 2011 Pearson Education, Inc.
• Human and chimpanzee genomes differ by 1.2%,
at single base-pairs, and by 2.7% because of
insertions and deletions
• Several genes are evolving faster in humans than
chimpanzees
• These include genes involved in defense against
malaria and tuberculosis and in regulation of
brain size, and genes that code for transcription
factors
© 2011 Pearson Education, Inc.
• Humans and chimpanzees differ in the expression
of the FOXP2 gene, whose product turns on
genes involved in vocalization
• Differences in the FOXP2 gene may explain why
humans but not chimpanzees communicate by
speech
© 2011 Pearson Education, Inc.
EXPERIMENT
Wild type: two normal
copies of FOXP2
RESULTS
Heterozygote: one
copy of FOXP2
disrupted
Homozygote: both
copies of FOXP2
disrupted
Experiment 1: Researchers cut thin sections of brain and stained
them with reagents that allow visualization of brain anatomy in a
UV fluorescence microscope.
Experiment 1 Experiment 2
Experiment 2: Researchers separated
each newborn pup from its mother
and recorded the number of
ultrasonic whistles produced by the
pup.
Wild type Heterozygote Homozygote
Numberofwhistles
400
300
200
100
0
Wild
type
Hetero-
zygote
Homo-
zygote
(No
whistles)
Figure 21.17
EXPERIMENT
Wild type: two normal
copies of FOXP2
RESULTS
Heterozygote: one
copy of FOXP2
disrupted
Homozygote: both
copies of FOXP2
disrupted
Experiment 1: Researchers cut thin sections of brain and stained
them with reagents that allow visualization of brain anatomy in a
UV fluorescence microscope.
Experiment 1
Wild type Heterozygote Homozygote
Figure 21.17a
Wild type: two normal
copies of FOXP2
Heterozygote: one
copy of FOXP2
disrupted
Homozygote: both
copies of FOXP2
disrupted
Experiment 2: Researchers separated each newborn pup from its mother
and recorded the number of ultrasonic whistles produced by the pup.
Experiment 2
Numberofwhistles
400
300
200
100
0
Wild
type
Hetero-
zygote
Homo-
zygote
(No
whistles)
EXPERIMENT
RESULTS
Figure 21.17b
Figure 21.17c
Wild type
Figure 21.17d
Heterozygote
Figure 21.17e
Homozygote
Figure 21.17f
Comparing Genomes Within a Species
• As a species, humans have only been around
about 200,000 years and have low within-species
genetic variation
• Variation within humans is due to single
nucleotide polymorphisms, inversions, deletions,
and duplications
• Most surprising is the large number of copy-
number variants
• These variations are useful for studying human
evolution and human health
© 2011 Pearson Education, Inc.
Comparing Developmental Processes
• Evolutionary developmental biology, or evo-devo,
is the study of the evolution of developmental
processes in multicellular organisms
• Genomic information shows that minor differences
in gene sequence or regulation can result in
striking differences in form
© 2011 Pearson Education, Inc.
Widespread Conservation of Developmental
Genes Among Animals
• Molecular analysis of the homeotic genes in
Drosophila has shown that they all include a
sequence called a homeobox
• An identical or very similar nucleotide sequence
has been discovered in the homeotic genes of
both vertebrates and invertebrates
• Homeobox genes code for a domain that allows a
protein to bind to DNA and to function as a
transcription regulator
• Homeotic genes in animals are called Hox genes
© 2011 Pearson Education, Inc.
Figure 21.18
Adult
fruit fly
Fruit fly embryo
(10 hours)
Fly chromosome
Mouse
chromosomes
Mouse embryo
(12 days)
Adult mouse
Figure 21.18a
Adult
fruit fly
Fruit fly embryo
(10 hours)
Fly chromosome
Figure 21.18b
Mouse
chromosomes
Mouse embryo
(12 days)
Adult mouse
• Related homeobox sequences have been found
in regulatory genes of yeasts, plants, and even
prokaryotes
• In addition to homeotic genes, many other
developmental genes are highly conserved from
species to species
© 2011 Pearson Education, Inc.
• Sometimes small changes in regulatory
sequences of certain genes lead to major
changes in body form
• For example, variation in Hox gene expression
controls variation in leg-bearing segments of
crustaceans and insects
• In other cases, genes with conserved sequences
play different roles in different species
© 2011 Pearson Education, Inc.
Figure 21.19
Thorax Abdomen
Genital
segments
Thorax Abdomen
Comparison of Animal and Plant
Development
• In both plants and animals, development relies on
a cascade of transcriptional regulators turning
genes on or off in a finely tuned series
• Molecular evidence supports the separate
evolution of developmental programs in plants
and animals
• Mads-box genes in plants are the regulatory
equivalent of Hox genes in animals
© 2011 Pearson Education, Inc.
Archaea
Most are 1−6 Mb
Eukarya
Genome
size
Number of
genes
Gene
density
Introns
Other
noncoding
DNA Very little
None in
protein-coding
genes
Present in
some genes
Higher than in eukaryotes
1,500−7,500 5,000−40,000
Most are 10−4,000 Mb, but a
few are much larger
Lower than in prokaryotes
(Within eukaryotes, lower
density is correlated with larger
genomes.)
Unicellular eukaryotes:
present, but prevalent only in
some species
Multicellular eukaryotes:
present in most genes
Can be large amounts;
generally more repetitive
noncoding DNA in
multicellular eukaryotes
Bacteria
Figure 21.UN01
Protein-coding,
rRNA, and
tRNA genes (1.5%)
Human genome
Introns and
regulatory
sequences (∼26%)
Repetitive DNA
(green and teal)
Figure 21.UN02
Figure 21.UN03
α-Globin gene family
Chromosome 16
β-Globin gene family
Chromosome 11
βζ ψζ ψα 2
ψα 1
α2 α1 ψθ ε G Aγ γ ψβ δ
Figure 21.UN04
Figure 21.UN05
Crossover
point
Figure 21.UN06

More Related Content

What's hot

16 the molecular basis of inheritance
16 the molecular basis of inheritance16 the molecular basis of inheritance
16 the molecular basis of inheritancekindarspirit
 
Ch 14: Mendel and the Gene Idea
Ch 14: Mendel and the Gene IdeaCh 14: Mendel and the Gene Idea
Ch 14: Mendel and the Gene Ideaveneethmathew
 
Ch 11: Cell Communication
Ch 11: Cell CommunicationCh 11: Cell Communication
Ch 11: Cell Communicationveneethmathew
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance veneethmathew
 
22 descent with modification a darwinian view
22 descent with modification a darwinian view22 descent with modification a darwinian view
22 descent with modification a darwinian viewkindarspirit
 
Chapter 18: Gene expression
Chapter 18: Gene expressionChapter 18: Gene expression
Chapter 18: Gene expressionAngel Vega
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cellsciencewithsuresh
 
13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycleskindarspirit
 
23 lecture evolution_populations
23 lecture evolution_populations23 lecture evolution_populations
23 lecture evolution_populationsveneethmathew
 
17 - From Gene to Protein
17 - From Gene to Protein17 - From Gene to Protein
17 - From Gene to Proteinkindarspirit
 
22 lecture descent_with_modification
22 lecture descent_with_modification22 lecture descent_with_modification
22 lecture descent_with_modificationveneethmathew
 
Ch 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of InheritanceCh 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of Inheritanceveneethmathew
 
Phylogenetics Questions Answers
Phylogenetics Questions Answers Phylogenetics Questions Answers
Phylogenetics Questions Answers Zohaib HUSSAIN
 
Biology in Focus Chapter 1
Biology in Focus Chapter 1Biology in Focus Chapter 1
Biology in Focus Chapter 1mpattani
 
Campbell Biology 10th edition ( PDFDrive ).pdf
Campbell Biology 10th edition ( PDFDrive ).pdfCampbell Biology 10th edition ( PDFDrive ).pdf
Campbell Biology 10th edition ( PDFDrive ).pdfMalikSaleemHadiery
 

What's hot (20)

16 the molecular basis of inheritance
16 the molecular basis of inheritance16 the molecular basis of inheritance
16 the molecular basis of inheritance
 
Ch 14: Mendel and the Gene Idea
Ch 14: Mendel and the Gene IdeaCh 14: Mendel and the Gene Idea
Ch 14: Mendel and the Gene Idea
 
Ch 11: Cell Communication
Ch 11: Cell CommunicationCh 11: Cell Communication
Ch 11: Cell Communication
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance
 
24 lectures ppt
24 lectures ppt24 lectures ppt
24 lectures ppt
 
Chapter 9 part 1
Chapter 9 part 1 Chapter 9 part 1
Chapter 9 part 1
 
19 - Viruses
19 - Viruses19 - Viruses
19 - Viruses
 
22 descent with modification a darwinian view
22 descent with modification a darwinian view22 descent with modification a darwinian view
22 descent with modification a darwinian view
 
Chapter 18: Gene expression
Chapter 18: Gene expressionChapter 18: Gene expression
Chapter 18: Gene expression
 
Ch 12: Cell Cycle
Ch 12: Cell CycleCh 12: Cell Cycle
Ch 12: Cell Cycle
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cell
 
13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycles
 
23 lecture evolution_populations
23 lecture evolution_populations23 lecture evolution_populations
23 lecture evolution_populations
 
17 - From Gene to Protein
17 - From Gene to Protein17 - From Gene to Protein
17 - From Gene to Protein
 
22 lecture descent_with_modification
22 lecture descent_with_modification22 lecture descent_with_modification
22 lecture descent_with_modification
 
Ch 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of InheritanceCh 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of Inheritance
 
Phylogenetics Questions Answers
Phylogenetics Questions Answers Phylogenetics Questions Answers
Phylogenetics Questions Answers
 
12 the cell cycle
12 the cell cycle12 the cell cycle
12 the cell cycle
 
Biology in Focus Chapter 1
Biology in Focus Chapter 1Biology in Focus Chapter 1
Biology in Focus Chapter 1
 
Campbell Biology 10th edition ( PDFDrive ).pdf
Campbell Biology 10th edition ( PDFDrive ).pdfCampbell Biology 10th edition ( PDFDrive ).pdf
Campbell Biology 10th edition ( PDFDrive ).pdf
 

Viewers also liked

L11 dna__polymorphisms__mutations_and_genetic_diseases
L11  dna__polymorphisms__mutations_and_genetic_diseasesL11  dna__polymorphisms__mutations_and_genetic_diseases
L11 dna__polymorphisms__mutations_and_genetic_diseasesMUBOSScz
 
Fine structure of gene
Fine structure of geneFine structure of gene
Fine structure of geneSayali28
 
Ppt on karyotyping, chromosome banding and chromosome painting.
Ppt on karyotyping, chromosome banding and chromosome painting.Ppt on karyotyping, chromosome banding and chromosome painting.
Ppt on karyotyping, chromosome banding and chromosome painting.ICRISAT
 

Viewers also liked (7)

L11 dna__polymorphisms__mutations_and_genetic_diseases
L11  dna__polymorphisms__mutations_and_genetic_diseasesL11  dna__polymorphisms__mutations_and_genetic_diseases
L11 dna__polymorphisms__mutations_and_genetic_diseases
 
Chromosome
ChromosomeChromosome
Chromosome
 
organization of DNA in chromosomes.
organization of DNA in chromosomes.organization of DNA in chromosomes.
organization of DNA in chromosomes.
 
Chromosome
ChromosomeChromosome
Chromosome
 
Fine structure of gene
Fine structure of geneFine structure of gene
Fine structure of gene
 
Ppt on karyotyping, chromosome banding and chromosome painting.
Ppt on karyotyping, chromosome banding and chromosome painting.Ppt on karyotyping, chromosome banding and chromosome painting.
Ppt on karyotyping, chromosome banding and chromosome painting.
 
Chromosome structure
Chromosome structure Chromosome structure
Chromosome structure
 

Similar to 21 lecture genome_and_evolution

18lecturepresentation 160212184145
18lecturepresentation 16021218414518lecturepresentation 160212184145
18lecturepresentation 160212184145Cleophas Rwemera
 
Biology in Focus - Chapter 18
Biology in Focus - Chapter 18Biology in Focus - Chapter 18
Biology in Focus - Chapter 18mpattani
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomicsNikhil Aggarwal
 
Bioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomicsBioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomicsjuancarlosrise
 
genomics proteomics metbolomics.pptx
genomics proteomics metbolomics.pptxgenomics proteomics metbolomics.pptx
genomics proteomics metbolomics.pptxRajesh Yadav
 
Genomics and Bioinformatics
Genomics and BioinformaticsGenomics and Bioinformatics
Genomics and BioinformaticsAmit Garg
 
Genomics and bioinformatics
Genomics and bioinformatics Genomics and bioinformatics
Genomics and bioinformatics Senthil Natesan
 
Molecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionMolecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionUdayBhanushali111
 
Human genome project - Decoding the codes of life
Human genome project - Decoding the codes of lifeHuman genome project - Decoding the codes of life
Human genome project - Decoding the codes of lifearjunaa7
 
GENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSGENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSsandeshGM
 
Human genome project
Human genome projectHuman genome project
Human genome projectShital Pal
 
A comparative study using different measure of filteration
A comparative study using different measure of filterationA comparative study using different measure of filteration
A comparative study using different measure of filterationpurkaitjayati29
 

Similar to 21 lecture genome_and_evolution (20)

Genome.ppt
Genome.pptGenome.ppt
Genome.ppt
 
18lecturepresentation 160212184145
18lecturepresentation 16021218414518lecturepresentation 160212184145
18lecturepresentation 160212184145
 
Biology in Focus - Chapter 18
Biology in Focus - Chapter 18Biology in Focus - Chapter 18
Biology in Focus - Chapter 18
 
Genomics types
Genomics typesGenomics types
Genomics types
 
Genomics
GenomicsGenomics
Genomics
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomics
 
Bioinformatics
BioinformaticsBioinformatics
Bioinformatics
 
Bioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomicsBioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomics
 
Biotecnología
BiotecnologíaBiotecnología
Biotecnología
 
genomics proteomics metbolomics.pptx
genomics proteomics metbolomics.pptxgenomics proteomics metbolomics.pptx
genomics proteomics metbolomics.pptx
 
Genomics and Bioinformatics
Genomics and BioinformaticsGenomics and Bioinformatics
Genomics and Bioinformatics
 
Genomics and bioinformatics
Genomics and bioinformatics Genomics and bioinformatics
Genomics and bioinformatics
 
Molecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionMolecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contruction
 
Synthetic Genome
Synthetic Genome Synthetic Genome
Synthetic Genome
 
Metagenomics
MetagenomicsMetagenomics
Metagenomics
 
Human genome project - Decoding the codes of life
Human genome project - Decoding the codes of lifeHuman genome project - Decoding the codes of life
Human genome project - Decoding the codes of life
 
GENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSGENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICS
 
rheumatoid arthritis
rheumatoid arthritisrheumatoid arthritis
rheumatoid arthritis
 
Human genome project
Human genome projectHuman genome project
Human genome project
 
A comparative study using different measure of filteration
A comparative study using different measure of filterationA comparative study using different measure of filteration
A comparative study using different measure of filteration
 

More from veneethmathew

Ch 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life CyclesCh 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life Cyclesveneethmathew
 
Ch 10: Photosynthesis
Ch 10: PhotosynthesisCh 10: Photosynthesis
Ch 10: Photosynthesisveneethmathew
 
Ch 9: Cell Respiration and Fermentation
Ch 9: Cell Respiration and FermentationCh 9: Cell Respiration and Fermentation
Ch 9: Cell Respiration and Fermentationveneethmathew
 
Ch 8: Introduction to Metabolism
Ch 8: Introduction to MetabolismCh 8: Introduction to Metabolism
Ch 8: Introduction to Metabolismveneethmathew
 
Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function veneethmathew
 
Ch 6: A Tour of the Cell
Ch 6: A Tour of the CellCh 6: A Tour of the Cell
Ch 6: A Tour of the Cellveneethmathew
 
Ch 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological MoleculesCh 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological Moleculesveneethmathew
 
Ch 4: Carbon and Diversity
Ch 4: Carbon and DiversityCh 4: Carbon and Diversity
Ch 4: Carbon and Diversityveneethmathew
 
Ch 3: Water and Life
Ch 3: Water and LifeCh 3: Water and Life
Ch 3: Water and Lifeveneethmathew
 
Ch 2: The Chemical Context of Life
Ch 2: The Chemical Context of LifeCh 2: The Chemical Context of Life
Ch 2: The Chemical Context of Lifeveneethmathew
 
Ch 1: Themes in the Study of Life
Ch 1: Themes in the Study of LifeCh 1: Themes in the Study of Life
Ch 1: Themes in the Study of Lifeveneethmathew
 

More from veneethmathew (13)

27 lecture bacteria
27 lecture bacteria27 lecture bacteria
27 lecture bacteria
 
19 lecture viruses
19 lecture viruses19 lecture viruses
19 lecture viruses
 
Ch 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life CyclesCh 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life Cycles
 
Ch 10: Photosynthesis
Ch 10: PhotosynthesisCh 10: Photosynthesis
Ch 10: Photosynthesis
 
Ch 9: Cell Respiration and Fermentation
Ch 9: Cell Respiration and FermentationCh 9: Cell Respiration and Fermentation
Ch 9: Cell Respiration and Fermentation
 
Ch 8: Introduction to Metabolism
Ch 8: Introduction to MetabolismCh 8: Introduction to Metabolism
Ch 8: Introduction to Metabolism
 
Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function
 
Ch 6: A Tour of the Cell
Ch 6: A Tour of the CellCh 6: A Tour of the Cell
Ch 6: A Tour of the Cell
 
Ch 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological MoleculesCh 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological Molecules
 
Ch 4: Carbon and Diversity
Ch 4: Carbon and DiversityCh 4: Carbon and Diversity
Ch 4: Carbon and Diversity
 
Ch 3: Water and Life
Ch 3: Water and LifeCh 3: Water and Life
Ch 3: Water and Life
 
Ch 2: The Chemical Context of Life
Ch 2: The Chemical Context of LifeCh 2: The Chemical Context of Life
Ch 2: The Chemical Context of Life
 
Ch 1: Themes in the Study of Life
Ch 1: Themes in the Study of LifeCh 1: Themes in the Study of Life
Ch 1: Themes in the Study of Life
 

21 lecture genome_and_evolution

  • 1. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick Genomes and Their Evolution Chapter 21
  • 2. Overview: Reading the Leaves from the Tree of Life • Complete genome sequences exist for a human, chimpanzee, E. coli, brewer’s yeast, corn, fruit fly, house mouse, rhesus macaque, and other organisms • Comparisons of genomes among organisms provide information about the evolutionary history of genes and taxonomic groups © 2011 Pearson Education, Inc.
  • 3. • Genomics is the study of whole sets of genes and their interactions • Bioinformatics is the application of computational methods to the storage and analysis of biological data © 2011 Pearson Education, Inc.
  • 5. Concept 21.1: New approaches have accelerated the pace of genome sequencing • The most ambitious mapping project to date has been the sequencing of the human genome • Officially begun as the Human Genome Project in 1990, the sequencing was largely completed by 2003 • The project had three stages – Genetic (or linkage) mapping – Physical mapping – DNA sequencing © 2011 Pearson Education, Inc.
  • 6. Three-Stage Approach to Genome Sequencing • A linkage map (genetic map) maps the location of several thousand genetic markers on each chromosome • A genetic marker is a gene or other identifiable DNA sequence • Recombination frequencies are used to determine the order and relative distances between genetic markers © 2011 Pearson Education, Inc.
  • 7. Figure 21.2-1 Cytogenetic map Genes located by FISH Chromosome bands
  • 8. Figure 21.2-2 Cytogenetic map Genes located by FISH Chromosome bands Linkage mapping Genetic markers 1
  • 9. Figure 21.2-3 Cytogenetic map Genes located by FISH Chromosome bands Linkage mapping Genetic markers 1 Physical mapping2 Overlapping fragments
  • 10. Figure 21.2-4 Cytogenetic map Genes located by FISH Chromosome bands Linkage mapping Genetic markers 1 Physical mapping2 Overlapping fragments DNA sequencing3
  • 11. • A physical map expresses the distance between genetic markers, usually as the number of base pairs along the DNA • It is constructed by cutting a DNA molecule into many short fragments and arranging them in order by identifying overlaps © 2011 Pearson Education, Inc.
  • 12. • Sequencing machines are used to determine the complete nucleotide sequence of each chromosome • A complete haploid set of human chromosomes consists of 3.2 billion base pairs © 2011 Pearson Education, Inc.
  • 13. Whole-Genome Shotgun Approach to Genome Sequencing • The whole-genome shotgun approach was developed by J. Craig Venter in 1992 • This approach skips genetic and physical mapping and sequences random DNA fragments directly • Powerful computer programs are used to order fragments into a continuous sequence © 2011 Pearson Education, Inc.
  • 14. Cut the DNA into overlapping frag- ments short enough for sequencing. 1 Clone the fragments in plasmid or phage vectors. 2 Figure 21.3-1
  • 15. Cut the DNA into overlapping frag- ments short enough for sequencing. 1 Clone the fragments in plasmid or phage vectors. 2 Sequence each fragment. 3 Figure 21.3-2
  • 16. Cut the DNA into overlapping frag- ments short enough for sequencing. 1 Clone the fragments in plasmid or phage vectors. 2 Sequence each fragment. 3 Order the sequences into one overall sequence with computer software. 4 Figure 21.3-3
  • 17. • Both the three-stage process and the whole- genome shotgun approach were used for the Human Genome Project and for genome sequencing of other organisms • At first many scientists were skeptical about the whole-genome shotgun approach, but it is now widely used as the sequencing method of choice • The development of newer sequencing techniques has resulted in massive increases in speed and decreases in cost © 2011 Pearson Education, Inc.
  • 18. • Technological advances have also facilitated metagenomics, in which DNA from a group of species (a metagenome) is collected from an environmental sample and sequenced • This technique has been used on microbial communities, allowing the sequencing of DNA of mixed populations, and eliminating the need to culture species in the lab © 2011 Pearson Education, Inc.
  • 19. Concept 21.2 Scientists use bioinformatics to analyze genomes and their functions • The Human Genome Project established databases and refined analytical software to make data available on the Internet • This has accelerated progress in DNA sequence analysis © 2011 Pearson Education, Inc.
  • 20. Centralized Resources for Analyzing Genome Sequences • Bioinformatics resources are provided by a number of sources – National Library of Medicine and the National Institutes of Health (NIH) created the National Center for Biotechnology Information (NCBI) – European Molecular Biology Laboratory – DNA Data Bank of Japan – BGI in Shenzhen, China © 2011 Pearson Education, Inc.
  • 21. • Genbank, the NCBI database of sequences, doubles its data approximately every 18 months • Software is available that allows online visitors to search Genbank for matches to – A specific DNA sequence – A predicted protein sequence – Common stretches of amino acids in a protein • The NCBI website also provides 3-D views of all protein structures that have been determined © 2011 Pearson Education, Inc.
  • 23. Identifying Protein-Coding Genes and Understanding Their Functions • Using available DNA sequences, geneticists can study genes directly in an approach called reverse genetics • The identification of protein coding genes within DNA sequences in a database is called gene annotation © 2011 Pearson Education, Inc.
  • 24. • Gene annotation is largely an automated process • Comparison of sequences of previously unknown genes with those of known genes in other species may help provide clues about their function © 2011 Pearson Education, Inc.
  • 25. Understanding Genes and Gene Expression at the Systems Level • Proteomics is the systematic study of all proteins encoded by a genome • Proteins, not genes, carry out most of the activities of the cell © 2011 Pearson Education, Inc.
  • 26. How Systems Are Studied: An Example • A systems biology approach can be applied to define gene circuits and protein interaction networks • Researchers working on the yeast Saccharomyces cerevisiae used sophisticated techniques to disable pairs of genes one pair at a time, creating double mutants • Computer software then mapped genes to produce a network-like “functional map” of their interactions • The systems biology approach is possible because of advances in bioinformatics © 2011 Pearson Education, Inc.
  • 27. Translation and ribosomal functions Nuclear- cytoplasmic transport RNA processing Transcription and chromatin- related functions Mitochondrial functions Nuclear migration and protein degradation Mitosis DNA replication and repair Cell polarity and morphogenesis Protein folding, glycosylation, and cell wall biosynthesis Secretion and vesicle transport Metabolism and amino acid biosynthesis Peroxisomal functions Glutamate biosynthesis Serine- related biosynthesis Amino acid permease pathway Vesicle fusion Figure 21.5
  • 28. Figure 21.5a Translation and ribosomal functions Nuclear- cytoplasmic transport RNA processing Transcription and chromatin- related functions Mitochondrial functions Nuclear migration and protein degradation Mitosis DNA replication and repair Cell polarity and morphogenesis Protein folding, glycosylation, and cell wall biosynthesis Secretion and vesicle transport Metabolism and amino acid biosynthesis Peroxisomal functions
  • 30. Application of Systems Biology to Medicine • A systems biology approach has several medical applications – The Cancer Genome Atlas project is currently seeking all the common mutations in three types of cancer by comparing gene sequences and expression in cancer versus normal cells – This has been so fruitful, it will be extended to ten other common cancers – Silicon and glass “chips” have been produced that hold a microarray of most known human genes © 2011 Pearson Education, Inc.
  • 32. Concept 21.3 Genomes vary in size, number of genes, and gene density • By early 2010, over 1,200 genomes were completely sequenced, including 1,000 bacteria, 80 archaea, and 124 eukaryotes • Sequencing of over 5,500 genomes and over 200 metagenomes is currently in progress © 2011 Pearson Education, Inc.
  • 33. Genome Size • Genomes of most bacteria and archaea range from 1 to 6 million base pairs (Mb); genomes of eukaryotes are usually larger • Most plants and animals have genomes greater than 100 Mb; humans have 3,000 Mb • Within each domain there is no systematic relationship between genome size and phenotype © 2011 Pearson Education, Inc.
  • 35. Number of Genes • Free-living bacteria and archaea have 1,500 to 7,500 genes • Unicellular fungi have from about 5,000 genes and multicellular eukaryotes up to at least 40,000 genes © 2011 Pearson Education, Inc.
  • 36. • Number of genes is not correlated to genome size • For example, it is estimated that the nematode C. elegans has 100 Mb and 20,000 genes, while Drosophila has 165 Mb and 13,700 genes • Vertebrate genomes can produce more than one polypeptide per gene because of alternative splicing of RNA transcripts © 2011 Pearson Education, Inc.
  • 37. Gene Density and Noncoding DNA • Humans and other mammals have the lowest gene density, or number of genes, in a given length of DNA • Multicellular eukaryotes have many introns within genes and noncoding DNA between genes © 2011 Pearson Education, Inc.
  • 38. Concept 21.4: Multicellular eukaryotes have much noncoding DNA and many multigene families • The bulk of most eukaryotic genomes neither encodes proteins nor functional RNAs • Much evidence indicates that noncoding DNA (previously called “junk DNA”) plays important roles in the cell • For example, genomes of humans, rats, and mice show high sequence conservation for about 500 noncoding regions © 2011 Pearson Education, Inc.
  • 39. • Sequencing of the human genome reveals that 98.5% does not code for proteins, rRNAs, or tRNAs • About a quarter of the human genome codes for introns and gene-related regulatory sequences © 2011 Pearson Education, Inc.
  • 40. • Intergenic DNA is noncoding DNA found between genes – Pseudogenes are former genes that have accumulated mutations and are nonfunctional – Repetitive DNA is present in multiple copies in the genome • About three-fourths of repetitive DNA is made up of transposable elements and sequences related to them © 2011 Pearson Education, Inc.
  • 41. Figure 21.7 Exons (1.5%) Introns (5%) Regulatory sequences (∼20%) Unique noncoding DNA (15%) Repetitive DNA unrelated to transposable elements (14%) Large-segment duplications (5−6%) Simple sequence DNA (3%) Alu elements (10%) L1 sequences (17%) Repetitive DNA that includes transposable elements and related sequences (44%)
  • 42. Transposable Elements and Related Sequences • The first evidence for mobile DNA segments came from geneticist Barbara McClintock’s breeding experiments with Indian corn • McClintock identified changes in the color of corn kernels that made sense only by postulating that some genetic elements move from other genome locations into the genes for kernel color • These transposable elements move from one site to another in a cell’s DNA; they are present in both prokaryotes and eukaryotes © 2011 Pearson Education, Inc.
  • 46. Movement of Transposons and Retrotransposons • Eukaryotic transposable elements are of two types – Transposons, which move by means of a DNA intermediate – Retrotransposons, which move by means of an RNA intermediate © 2011 Pearson Education, Inc.
  • 47. Figure 21.9 Transposon Transposon is copied DNA of genome Mobile transposon Insertion New copy of transposon
  • 48. Figure 21.10 Retrotransposon New copy of retrotransposon Insertion Reverse transcriptase RNA Formation of a single-stranded RNA intermediate
  • 49. Sequences Related to Transposable Elements • Multiple copies of transposable elements and related sequences are scattered throughout the eukaryotic genome • In primates, a large portion of transposable element–related DNA consists of a family of similar sequences called Alu elements • Many Alu elements are transcribed into RNA molecules; however their function, if any, is unknown © 2011 Pearson Education, Inc.
  • 50. • The human genome also contains many sequences of a type of retrotransposon called LINE-1 (L1) • L1 sequences have a low rate of transposition and may help regulate gene expression © 2011 Pearson Education, Inc.
  • 51. Other Repetitive DNA, Including Simple Sequence DNA • About 15% of the human genome consists of duplication of long sequences of DNA from one location to another • In contrast, simple sequence DNA contains many copies of tandemly repeated short sequences © 2011 Pearson Education, Inc.
  • 52. • A series of repeating units of 2 to 5 nucleotides is called a short tandem repeat (STR) • The repeat number for STRs can vary among sites (within a genome) or individuals • Simple sequence DNA is common in centromeres and telomeres, where it probably plays structural roles in the chromosome © 2011 Pearson Education, Inc.
  • 53. Genes and Multigene Families • Many eukaryotic genes are present in one copy per haploid set of chromosomes • The rest of the genes occur in multigene families, collections of identical or very similar genes • Some multigene families consist of identical DNA sequences, usually clustered tandemly, such as those that code for rRNA products © 2011 Pearson Education, Inc.
  • 54. Figure 21.11 DNA RNA transcripts Nontranscribed spacer Transcription unit DNA 18S 5.8S 28S 28S 5.8S 18S (a) Part of the ribosomal RNA gene family α-Globin α-Globin gene family Chromosome 16 β-Globin gene family Chromosome 11 β-Globin Heme ζ ψζ ψα2 ψα1 α2 α1 ψθ ε Gγ Aγ ψβ δ β (b) The human α-globin and β-globin gene families Embryo Fetus and adult Fetus Adult rRNA Embryo
  • 55. Figure 21.11a DNA RNA transcripts Nontranscribed spacer Transcription unit DNA 18S 5.8S 28S 28S 5.8S 18S (a) Part of the ribosomal RNA gene family rRNA
  • 57. • The classic examples of multigene families of nonidentical genes are two related families of genes that encode globins • α-globins and β-globins are polypeptides of hemoglobin and are coded by genes on different human chromosomes and are expressed at different times in development © 2011 Pearson Education, Inc.
  • 58. Figure 21.11b α-Globin α-Globin gene family Chromosome 16 β-Globin gene family Chromosome 11 β-Globin Heme ζ ψζ ψα 2 ψα 1 α2 α1 ψθ ε Gγ Aγ ψβ δ β Embryo Fetus and adult Fetus AdultEmbryo (b) The human α-globin and β-globin gene families
  • 59. Concept 21.5: Duplication, rearrangement, and mutation of DNA contribute to genome evolution • The basis of change at the genomic level is mutation, which underlies much of genome evolution • The earliest forms of life likely had a minimal number of genes, including only those necessary for survival and reproduction • The size of genomes has increased over evolutionary time, with the extra genetic material providing raw material for gene diversification © 2011 Pearson Education, Inc.
  • 60. Duplication of Entire Chromosome Sets • Accidents in meiosis can lead to one or more extra sets of chromosomes, a condition known as polyploidy • The genes in one or more of the extra sets can diverge by accumulating mutations; these variations may persist if the organism carrying them survives and reproduces © 2011 Pearson Education, Inc.
  • 61. Alterations of Chromosome Structure • Humans have 23 pairs of chromosomes, while chimpanzees have 24 pairs • Following the divergence of humans and chimpanzees from a common ancestor, two ancestral chromosomes fused in the human line • Duplications and inversions result from mistakes during meiotic recombination • Comparative analysis between chromosomes of humans and seven mammalian species paints a hypothetical chromosomal evolutionary history © 2011 Pearson Education, Inc.
  • 64. Figure 21.12b Human chromosome 16 (b) Human and mouse chromosomes 7 8 16 17 Mouse chromosomes
  • 65. • The rate of duplications and inversions seems to have accelerated about 100 million years ago • This coincides with when large dinosaurs went extinct and mammals diversified • Chromosomal rearrangements are thought to contribute to the generation of new species • Some of the recombination “hot spots” associated with chromosomal rearrangement are also locations that are associated with diseases © 2011 Pearson Education, Inc.
  • 66. Duplication and Divergence of Gene-Sized Regions of DNA • Unequal crossing over during prophase I of meiosis can result in one chromosome with a deletion and another with a duplication of a particular region • Transposable elements can provide sites for crossover between nonsister chromatids © 2011 Pearson Education, Inc.
  • 68. Evolution of Genes with Related Functions: The Human Globin Genes • The genes encoding the various globin proteins evolved from one common ancestral globin gene, which duplicated and diverged about 450–500 million years ago • After the duplication events, differences between the genes in the globin family arose from the accumulation of mutations © 2011 Pearson Education, Inc.
  • 69. Figure 21.14 Ancestral globin gene α-Globin gene family on chromosome 16 β-Globin gene family on chromosome 11 Duplication of ancestral gene Mutation in both copies Transposition to different chromosomes Further duplications and mutations Evolutionarytime ζ β β α β ε γ α αζ ψθψζ ψα 2 ψα 1 α2 α1 βε Gγ Aγ ψβ δ
  • 70. • Subsequent duplications of these genes and random mutations gave rise to the present globin genes, which code for oxygen-binding proteins • The similarity in the amino acid sequences of the various globin proteins supports this model of gene duplication and mutation © 2011 Pearson Education, Inc.
  • 72. Evolution of Genes with Novel Functions • The copies of some duplicated genes have diverged so much in evolution that the functions of their encoded proteins are now very different • For example the lysozyme gene was duplicated and evolved into the gene that encodes α-lactalbumin in mammals • Lysozyme is an enzyme that helps protect animals against bacterial infection • α-lactalbumin is a nonenzymatic protein that plays a role in milk production in mammals © 2011 Pearson Education, Inc.
  • 73. Rearrangements of Parts of Genes: Exon Duplication and Exon Shuffling • The duplication or repositioning of exons has contributed to genome evolution • Errors in meiosis can result in an exon being duplicated on one chromosome and deleted from the homologous chromosome • In exon shuffling, errors in meiotic recombination lead to some mixing and matching of exons, either within a gene or between two nonallelic genes © 2011 Pearson Education, Inc.
  • 74. Exon duplication Exon shuffling Exon shuffling F EGF K K K F F F F EGF EGF EGF EGF Epidermal growth factor gene with multiple EGF exons Fibronectin gene with multiple “finger” exons Plasminogen gene with a “kringle” exon Portions of ancestral genes TPA gene as it exists today Figure 21.15
  • 75. How Transposable Elements Contribute to Genome Evolution • Multiple copies of similar transposable elements may facilitate recombination, or crossing over, between different chromosomes • Insertion of transposable elements within a protein-coding sequence may block protein production • Insertion of transposable elements within a regulatory sequence may increase or decrease protein production © 2011 Pearson Education, Inc.
  • 76. • Transposable elements may carry a gene or groups of genes to a new position • Transposable elements may also create new sites for alternative splicing in an RNA transcript • In all cases, changes are usually detrimental but may on occasion prove advantageous to an organism © 2011 Pearson Education, Inc.
  • 77. Concept 21.6: Comparing genome sequences provides clues to evolution and development • Genome sequencing and data collection has advanced rapidly in the last 25 years • Comparative studies of genomes – Advance our understanding of the evolutionary history of life – Help explain how the evolution of development leads to morphological diversity © 2011 Pearson Education, Inc.
  • 78. Comparing Genomes • Genome comparisons of closely related species help us understand recent evolutionary events • Genome comparisons of distantly related species help us understand ancient evolutionary events • Relationships among species can be represented by a tree-shaped diagram © 2011 Pearson Education, Inc.
  • 79. Most recent common ancestor of all living things Bacteria Eukarya Archaea Chimpanzee Human Mouse Millions of years ago Billions of years ago 4 3 2 010203040506070 01 Figure 21.16
  • 80. Comparing Distantly Related Species • Highly conserved genes have changed very little over time • These help clarify relationships among species that diverged from each other long ago • Bacteria, archaea, and eukaryotes diverged from each other between 2 and 4 billion years ago • Highly conserved genes can be studied in one model organism, and the results applied to other organisms © 2011 Pearson Education, Inc.
  • 81. Comparing Closely Related Species • Genetic differences between closely related species can be correlated with phenotypic differences • For example, genetic comparison of several mammals with nonmammals helps identify what it takes to make a mammal © 2011 Pearson Education, Inc.
  • 82. • Human and chimpanzee genomes differ by 1.2%, at single base-pairs, and by 2.7% because of insertions and deletions • Several genes are evolving faster in humans than chimpanzees • These include genes involved in defense against malaria and tuberculosis and in regulation of brain size, and genes that code for transcription factors © 2011 Pearson Education, Inc.
  • 83. • Humans and chimpanzees differ in the expression of the FOXP2 gene, whose product turns on genes involved in vocalization • Differences in the FOXP2 gene may explain why humans but not chimpanzees communicate by speech © 2011 Pearson Education, Inc.
  • 84. EXPERIMENT Wild type: two normal copies of FOXP2 RESULTS Heterozygote: one copy of FOXP2 disrupted Homozygote: both copies of FOXP2 disrupted Experiment 1: Researchers cut thin sections of brain and stained them with reagents that allow visualization of brain anatomy in a UV fluorescence microscope. Experiment 1 Experiment 2 Experiment 2: Researchers separated each newborn pup from its mother and recorded the number of ultrasonic whistles produced by the pup. Wild type Heterozygote Homozygote Numberofwhistles 400 300 200 100 0 Wild type Hetero- zygote Homo- zygote (No whistles) Figure 21.17
  • 85. EXPERIMENT Wild type: two normal copies of FOXP2 RESULTS Heterozygote: one copy of FOXP2 disrupted Homozygote: both copies of FOXP2 disrupted Experiment 1: Researchers cut thin sections of brain and stained them with reagents that allow visualization of brain anatomy in a UV fluorescence microscope. Experiment 1 Wild type Heterozygote Homozygote Figure 21.17a
  • 86. Wild type: two normal copies of FOXP2 Heterozygote: one copy of FOXP2 disrupted Homozygote: both copies of FOXP2 disrupted Experiment 2: Researchers separated each newborn pup from its mother and recorded the number of ultrasonic whistles produced by the pup. Experiment 2 Numberofwhistles 400 300 200 100 0 Wild type Hetero- zygote Homo- zygote (No whistles) EXPERIMENT RESULTS Figure 21.17b
  • 91. Comparing Genomes Within a Species • As a species, humans have only been around about 200,000 years and have low within-species genetic variation • Variation within humans is due to single nucleotide polymorphisms, inversions, deletions, and duplications • Most surprising is the large number of copy- number variants • These variations are useful for studying human evolution and human health © 2011 Pearson Education, Inc.
  • 92. Comparing Developmental Processes • Evolutionary developmental biology, or evo-devo, is the study of the evolution of developmental processes in multicellular organisms • Genomic information shows that minor differences in gene sequence or regulation can result in striking differences in form © 2011 Pearson Education, Inc.
  • 93. Widespread Conservation of Developmental Genes Among Animals • Molecular analysis of the homeotic genes in Drosophila has shown that they all include a sequence called a homeobox • An identical or very similar nucleotide sequence has been discovered in the homeotic genes of both vertebrates and invertebrates • Homeobox genes code for a domain that allows a protein to bind to DNA and to function as a transcription regulator • Homeotic genes in animals are called Hox genes © 2011 Pearson Education, Inc.
  • 94. Figure 21.18 Adult fruit fly Fruit fly embryo (10 hours) Fly chromosome Mouse chromosomes Mouse embryo (12 days) Adult mouse
  • 95. Figure 21.18a Adult fruit fly Fruit fly embryo (10 hours) Fly chromosome
  • 97. • Related homeobox sequences have been found in regulatory genes of yeasts, plants, and even prokaryotes • In addition to homeotic genes, many other developmental genes are highly conserved from species to species © 2011 Pearson Education, Inc.
  • 98. • Sometimes small changes in regulatory sequences of certain genes lead to major changes in body form • For example, variation in Hox gene expression controls variation in leg-bearing segments of crustaceans and insects • In other cases, genes with conserved sequences play different roles in different species © 2011 Pearson Education, Inc.
  • 100. Comparison of Animal and Plant Development • In both plants and animals, development relies on a cascade of transcriptional regulators turning genes on or off in a finely tuned series • Molecular evidence supports the separate evolution of developmental programs in plants and animals • Mads-box genes in plants are the regulatory equivalent of Hox genes in animals © 2011 Pearson Education, Inc.
  • 101. Archaea Most are 1−6 Mb Eukarya Genome size Number of genes Gene density Introns Other noncoding DNA Very little None in protein-coding genes Present in some genes Higher than in eukaryotes 1,500−7,500 5,000−40,000 Most are 10−4,000 Mb, but a few are much larger Lower than in prokaryotes (Within eukaryotes, lower density is correlated with larger genomes.) Unicellular eukaryotes: present, but prevalent only in some species Multicellular eukaryotes: present in most genes Can be large amounts; generally more repetitive noncoding DNA in multicellular eukaryotes Bacteria Figure 21.UN01
  • 102. Protein-coding, rRNA, and tRNA genes (1.5%) Human genome Introns and regulatory sequences (∼26%) Repetitive DNA (green and teal) Figure 21.UN02
  • 103. Figure 21.UN03 α-Globin gene family Chromosome 16 β-Globin gene family Chromosome 11 βζ ψζ ψα 2 ψα 1 α2 α1 ψθ ε G Aγ γ ψβ δ

Editor's Notes

  1. Figure 21.1 What genomic information distinguishes a human from a chimpanzee?
  2. Figure 21.2 Three-stage approach to sequencing an entire genome.
  3. Figure 21.2 Three-stage approach to sequencing an entire genome.
  4. Figure 21.2 Three-stage approach to sequencing an entire genome.
  5. Figure 21.2 Three-stage approach to sequencing an entire genome.
  6. Figure 21.3 Whole-genome shotgun approach to sequencing.
  7. Figure 21.3 Whole-genome shotgun approach to sequencing.
  8. Figure 21.3 Whole-genome shotgun approach to sequencing.
  9. Figure 21.4 Bioinformatics tools available on the Internet.
  10. Figure 21.5 The systems biology approach to protein interactions.
  11. Figure 21.5 The systems biology approach to protein interactions.
  12. Figure 21.5 The systems biology approach to protein interactions.
  13. Figure 21.6 A human gene microarray chip.
  14. Table 21.1 Genome Sizes and Estimated Numbers of Genes
  15. Figure 21.7 Types of DNA sequences in the human genome.
  16. Figure 21.8 The effect of transposable elements on corn kernel color.
  17. Figure 21.8 The effect of transposable elements on corn kernel color.
  18. Figure 21.8 The effect of transposable elements on corn kernel color.
  19. Figure 21.9 Transposon movement.
  20. Figure 21.10 Retrotransposon movement.
  21. Figure 21.11 Gene families.
  22. Figure 21.11 Gene families.
  23. Figure 21.11 Gene families.
  24. Figure 21.11 Gene families.
  25. Figure 21.12 Related chromosome sequences among mammals.
  26. Figure 21.12 Related chromosome sequences among mammals.
  27. Figure 21.12 Related chromosome sequences among mammals.
  28. Figure 21.13 Gene duplication due to unequal crossing over.
  29. Figure 21.14 A model for the evolution of the human -globin and -globin gene families from a single ancestral globin gene.
  30. Table 21.2 Percentage of Similarity in Amino Acid Sequence Between Human Globin Proteins
  31. Figure 21.15 Evolution of a new gene by exon shuffling.
  32. Figure 21.16 Evolutionary relationships of the three domains of life.
  33. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  34. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  35. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  36. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  37. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  38. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  39. Figure 21.17 Inquiry: What is the function of a gene (FOXP2) that is rapidly evolving in the human lineage?
  40. Figure 21.18 Conservation of homeotic genes in a fruit fly and a mouse.
  41. Figure 21.18 Conservation of homeotic genes in a fruit fly and a mouse.
  42. Figure 21.18 Conservation of homeotic genes in a fruit fly and a mouse.
  43. Figure 21.19 Effect of differences in Hox gene expression in crustaceans and insects.
  44. Figure 21.UN01 Summary figure, Concept 21.3
  45. Figure 21.UN02 Summary figure, Concept 21.4
  46. Figure 21.UN03 Summary figure, Concept 21.4
  47. Figure 21.UN04 Test Your Understanding, question 5
  48. Figure 21.UN05 Appendix A: answer to Figure 21.13 legend question
  49. Figure 21.UN06 Appendix A: answer to Test Your Understanding, question 5