Multiplexer (data Selectors)
• Definition : A multiplexers (MUX) is a device that allows digital
information from several sources to be routed onto a single
line for transmission over that line to a common destination.
• Several data input lines
• Some select line (less than the no. of input lines)
• Single output line
• If there are n data input lines and m select lines, then
2m
= n
Functional Diagram Of a Multiplexer
2 : 1 Multiplexer
S Z
0 I0
1 I1
4 : 1 Multiplexer
S0 S1 Z
0 0 I0
0 1 I1
1 0 I2
1 1 I3
8 : 1 Multiplexer
S0 S1 S3 Z
0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3
1 0 0 I4
1 0 1 I5
1 1 0 I6
1 1 1 I7
Multiplexer Tree
• The Multiplexers with more number of inputs can be obtained by
cascading two or more multiplexers with less number of inputs.
• Below is a design of 16:1 MUX using 4 4:1 MUXs :-
Demultiplexer (Data Distributor)
• Definition : A DEMULTIPLEXER (DEMUX) basically reverses
the multiplexing function. It takes data from one line and
distributes them to a given number of output lines. For this
reason, the demultiplexers is also known as a data
distributor.
• Single data input lines
• Some select line (less than the no. of output lines)
• Several output line
• If there are n data output lines and m select lines, then
2m
= n
Functional Diagram Of a Demultiplexer
1 : 2 Demultiplexer
S0 Y0 Y1
0 D 0
1 0 D
1 : 4 Demultiplexer
S0 S1 D0 D1 D2 D3
0 0 D 0 0 0
0 1 0 D 0 0
1 0 0 0 D 0
1 1 0 0 0 D
1 : 8 Demultiplexer
1 : 8 Demultiplexer (Truth Table)
S0 S1 S3 D0 D1 D2 D3 D4 D5 D6 D7
0 0 0 D 0 0 0 0 0 0 0
0 0 1 0 D 0 0 0 0 0 0
0 1 0 0 0 D 0 0 0 0 0
0 1 1 0 0 0 D 0 0 0 0
1 0 0 0 0 0 0 D 0 0 0
1 0 1 0 0 0 0 0 D 0 0
1 1 0 0 0 0 0 0 0 D 0
1 1 1 0 0 0 0 0 0 0 D
Demultiplexer Tree
F0 F1 F3F2 F4 F5 F6
F7
S0
S1
S2
1:2 Demux
1:2 Demux
1:2 Demux
1:2 Demux
1:2 Demux
1:2 Demux 1:2 Demux
INPUT
0 1
0
0
0
0
0
0
1
1
1
1
1 1
S
S
S
S
S
S
S
Below is a design of 1:8 MUX using 7 1: MUXs :-
Implementation Of Logic Functions
using Multiplexer
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
f(a, b, c) = a’b’c + ab
0
0
0
1
0
0
1
1
A B C
S2 S0S1
F
8:1 MUX
0
4
3
1
2
5
6
7
A B C O F
0 0 0 0
C
0 0 1 1
0 1 0 0
0
0 1 1 0
1 0 0 0
0
1 0 1 0
1 1 0 1
1
1 1 1 1
C
0
0
1
B C
S0S1
F
4:1 MUX
0
1
2
3
f(a, b, c) = a’b’c + ab
A B C D O F
0 0 0 0 0
D
0 0 0 1 1
0 0 1 0 0
D
0 0 1 1 1
0 1 0 0 1
D’
0 1 0 1 0
0 1 1 0 0
0
0 1 1 1 0
1 0 0 0 0
0
1 0 0 1 0
1 0 1 0 0
D’
1 0 1 1 1
1 1 0 0 1
1
1 1 0 1 1
1 1 1 0 1
1
1 1 1 1 1
f(a, b, c) = F=A’B’C’D + A’B’CD + A’BC’D’ + AB’CD +
ABC’D’ + ABC’D + ABCD’ +ABCD
D
0
1
A B C
S2 S0S1
F
8:1 MUX
0
4
3
1
2
5
6
7
D’
THANK YOU

Multiplexers & Demultiplexers

  • 1.
    Multiplexer (data Selectors) •Definition : A multiplexers (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination. • Several data input lines • Some select line (less than the no. of input lines) • Single output line • If there are n data input lines and m select lines, then 2m = n
  • 2.
    Functional Diagram Ofa Multiplexer
  • 3.
    2 : 1Multiplexer S Z 0 I0 1 I1
  • 4.
    4 : 1Multiplexer S0 S1 Z 0 0 I0 0 1 I1 1 0 I2 1 1 I3
  • 5.
    8 : 1Multiplexer S0 S1 S3 Z 0 0 0 I0 0 0 1 I1 0 1 0 I2 0 1 1 I3 1 0 0 I4 1 0 1 I5 1 1 0 I6 1 1 1 I7
  • 6.
    Multiplexer Tree • TheMultiplexers with more number of inputs can be obtained by cascading two or more multiplexers with less number of inputs. • Below is a design of 16:1 MUX using 4 4:1 MUXs :-
  • 7.
    Demultiplexer (Data Distributor) •Definition : A DEMULTIPLEXER (DEMUX) basically reverses the multiplexing function. It takes data from one line and distributes them to a given number of output lines. For this reason, the demultiplexers is also known as a data distributor. • Single data input lines • Some select line (less than the no. of output lines) • Several output line • If there are n data output lines and m select lines, then 2m = n
  • 8.
    Functional Diagram Ofa Demultiplexer
  • 9.
    1 : 2Demultiplexer S0 Y0 Y1 0 D 0 1 0 D
  • 10.
    1 : 4Demultiplexer S0 S1 D0 D1 D2 D3 0 0 D 0 0 0 0 1 0 D 0 0 1 0 0 0 D 0 1 1 0 0 0 D
  • 11.
    1 : 8Demultiplexer
  • 12.
    1 : 8Demultiplexer (Truth Table) S0 S1 S3 D0 D1 D2 D3 D4 D5 D6 D7 0 0 0 D 0 0 0 0 0 0 0 0 0 1 0 D 0 0 0 0 0 0 0 1 0 0 0 D 0 0 0 0 0 0 1 1 0 0 0 D 0 0 0 0 1 0 0 0 0 0 0 D 0 0 0 1 0 1 0 0 0 0 0 D 0 0 1 1 0 0 0 0 0 0 0 D 0 1 1 1 0 0 0 0 0 0 0 D
  • 13.
    Demultiplexer Tree F0 F1F3F2 F4 F5 F6 F7 S0 S1 S2 1:2 Demux 1:2 Demux 1:2 Demux 1:2 Demux 1:2 Demux 1:2 Demux 1:2 Demux INPUT 0 1 0 0 0 0 0 0 1 1 1 1 1 1 S S S S S S S Below is a design of 1:8 MUX using 7 1: MUXs :-
  • 14.
    Implementation Of LogicFunctions using Multiplexer A B C F 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 f(a, b, c) = a’b’c + ab 0 0 0 1 0 0 1 1 A B C S2 S0S1 F 8:1 MUX 0 4 3 1 2 5 6 7
  • 15.
    A B CO F 0 0 0 0 C 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 C 0 0 1 B C S0S1 F 4:1 MUX 0 1 2 3 f(a, b, c) = a’b’c + ab
  • 16.
    A B CD O F 0 0 0 0 0 D 0 0 0 1 1 0 0 1 0 0 D 0 0 1 1 1 0 1 0 0 1 D’ 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 D’ 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 f(a, b, c) = F=A’B’C’D + A’B’CD + A’BC’D’ + AB’CD + ABC’D’ + ABC’D + ABCD’ +ABCD D 0 1 A B C S2 S0S1 F 8:1 MUX 0 4 3 1 2 5 6 7 D’
  • 17.