Welcome
To
Our presentation
Presented by
Shahriar Reza Rusel
ID-011132065
Samrin Ahmed Riya
ID-011142021
Rayhan Ahamed
ID-011142141
Rakib Hasan Suvo
ID-011142016
Dept-CSE
 A digital circuit.
 Sums the amplitudes of two input signals.
Representation of Adders:
 Binary-Coded-Decimal or Excess-3
Processor Use:
 Calculate addresses, table indices and
similar operations.
What is ADDER ?
Types of Adder
Half ADDER:
 A computational device.
 Adds two binary digits .
 No carry as input.
 Produces a sum bit and
a carry bit.
Types of Adder
INPUTS OUTPUTS
A B SUM CARRY
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
Half Adder Circuit
Full Adder:
 A computational device.
 Adds three one-bit binary numbers.
 Produces a sum of two inputs and a carry value.
Types of ADDER (Cont...)
INPUTS OUTPUTS
A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Full Adder Circuit
 Also Known as 8421 digit.
 A 4-bit binary adder.
 Adds two 4-bit digits having a BCD.
 Resulting format 4-bit output digit.
 Sum exceeding decimal value of 9, a carry’s
generated.
What is BCD ADDER?
Conversion and Coding
 (12)10
1100 00010010Conversion
Coding
(using BCD code
for each digit)
 A 4-bit BCD code’s used to represent 0 to 9 digits.
 Adding BCD numbers using BCD addition.
 Adding 6 with the sum while exceeding 9 and generating a carry.
 By adding 6 to the sum, make an invalid digit valid.
.
Maximum sum is 9+9 + 1 = 19
Max digit Carry from previous digits
Number C S3 S2 S1 S0
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
Number C S3 S2 S1 S0
10 1 0 0 0 0
11 1 0 0 0 1
12 1 0 0 1 0
13 1 0 0 1 1
14 1 0 1 0 0
15 1 0 1 0 1
16 1 0 1 1 0
17 1 0 1 1 1
18 1 1 0 0 0
19 1 1 0 0 1
BCD adder sum Binary sum
Number
C S3 S2 S1 S0
10 1 0 0 0 0
11 1 0 0 0 1
12 1 0 0 1 0
13 1 0 0 1 1
14 1 0 1 0 0
15 1 0 1 0 1
16 1 0 1 1 0
17 1 0 1 1 1
18 1 1 0 0 0
19 1 1 0 0 1
K s3 s2 s1 s0
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
+6
 If sum is up to 9
 Use the regular Adder.
 If the sum > 9
 Use the regular adder and add 6 to the result
 Sum of two BCD digits exceeding 9.
 A carry is generated.
 Converting the invalid digit into valid digit.
 Carry generated by adding 6 to the invalid BCD digit’s
passed on to the next BCD digit.
Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K +
Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K + S3*S2+
Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K + S3*S2+
S3*S1
4-bit Adder
4-bit Adder
0 0
s3 s2 s1 s0
S3 S2 S1 S0
Cin
K
0 1 1 00 1 1 1
1 1 0 1
0
1 1 0 1
1 1
1
0 0 1 1
1
0
1
 Applications in Decimal Number Display.
 Systematic running of counters.
 Organized digital clocks.
 http://www.electronics-
tutorials.ws/combination/comb_7.html
 http://www.encyclopedia.com/doc/1O11-
binarycodeddecimal.html
 http://www2.elo.utfsm.cl/~lsb/elo211/aplicaci
ones/katz/chapter5/chapter05.doc4.html
 https://tams-www.informatik.uni-
hamburg.de/applets/hades/webdemos/20-
arithmetic/10-adders/bcd-adder.html
BCD ADDER
BCD ADDER

BCD ADDER

  • 1.
    Welcome To Our presentation Presented by ShahriarReza Rusel ID-011132065 Samrin Ahmed Riya ID-011142021 Rayhan Ahamed ID-011142141 Rakib Hasan Suvo ID-011142016 Dept-CSE
  • 3.
     A digitalcircuit.  Sums the amplitudes of two input signals. Representation of Adders:  Binary-Coded-Decimal or Excess-3 Processor Use:  Calculate addresses, table indices and similar operations. What is ADDER ?
  • 4.
  • 5.
    Half ADDER:  Acomputational device.  Adds two binary digits .  No carry as input.  Produces a sum bit and a carry bit. Types of Adder INPUTS OUTPUTS A B SUM CARRY 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 Half Adder Circuit
  • 6.
    Full Adder:  Acomputational device.  Adds three one-bit binary numbers.  Produces a sum of two inputs and a carry value. Types of ADDER (Cont...) INPUTS OUTPUTS A B CIN COUT S 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 Full Adder Circuit
  • 7.
     Also Knownas 8421 digit.  A 4-bit binary adder.  Adds two 4-bit digits having a BCD.  Resulting format 4-bit output digit.  Sum exceeding decimal value of 9, a carry’s generated. What is BCD ADDER?
  • 8.
    Conversion and Coding (12)10 1100 00010010Conversion Coding (using BCD code for each digit)
  • 9.
     A 4-bitBCD code’s used to represent 0 to 9 digits.  Adding BCD numbers using BCD addition.  Adding 6 with the sum while exceeding 9 and generating a carry.  By adding 6 to the sum, make an invalid digit valid. .
  • 10.
    Maximum sum is9+9 + 1 = 19 Max digit Carry from previous digits
  • 11.
    Number C S3S2 S1 S0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 3 0 0 0 1 1 4 0 0 1 0 0 5 0 0 1 0 1 6 0 0 1 1 0 7 0 0 1 1 1 8 0 1 0 0 0 9 0 1 0 0 1
  • 12.
    Number C S3S2 S1 S0 10 1 0 0 0 0 11 1 0 0 0 1 12 1 0 0 1 0 13 1 0 0 1 1 14 1 0 1 0 0 15 1 0 1 0 1 16 1 0 1 1 0 17 1 0 1 1 1 18 1 1 0 0 0 19 1 1 0 0 1
  • 13.
    BCD adder sumBinary sum Number C S3 S2 S1 S0 10 1 0 0 0 0 11 1 0 0 0 1 12 1 0 0 1 0 13 1 0 0 1 1 14 1 0 1 0 0 15 1 0 1 0 1 16 1 0 1 1 0 17 1 0 1 1 1 18 1 1 0 0 0 19 1 1 0 0 1 K s3 s2 s1 s0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 +6
  • 14.
     If sumis up to 9  Use the regular Adder.  If the sum > 9  Use the regular adder and add 6 to the result
  • 15.
     Sum oftwo BCD digits exceeding 9.  A carry is generated.  Converting the invalid digit into valid digit.  Carry generated by adding 6 to the invalid BCD digit’s passed on to the next BCD digit.
  • 16.
    Binary sum Number K S3S2 S1 S0 10 0 1 0 1 0 11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0 15 0 1 1 1 1 16 1 0 0 0 0 17 1 0 0 0 1 18 1 0 0 1 0 19 1 0 0 1 1 C = K +
  • 17.
    Binary sum Number K S3S2 S1 S0 10 0 1 0 1 0 11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0 15 0 1 1 1 1 16 1 0 0 0 0 17 1 0 0 0 1 18 1 0 0 1 0 19 1 0 0 1 1 C = K + S3*S2+
  • 18.
    Binary sum Number K S3S2 S1 S0 10 0 1 0 1 0 11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0 15 0 1 1 1 1 16 1 0 0 0 0 17 1 0 0 0 1 18 1 0 0 1 0 19 1 0 0 1 1 C = K + S3*S2+ S3*S1
  • 20.
    4-bit Adder 4-bit Adder 00 s3 s2 s1 s0 S3 S2 S1 S0 Cin K 0 1 1 00 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1
  • 21.
     Applications inDecimal Number Display.  Systematic running of counters.  Organized digital clocks.
  • 22.
     http://www.electronics- tutorials.ws/combination/comb_7.html  http://www.encyclopedia.com/doc/1O11- binarycodeddecimal.html http://www2.elo.utfsm.cl/~lsb/elo211/aplicaci ones/katz/chapter5/chapter05.doc4.html  https://tams-www.informatik.uni- hamburg.de/applets/hades/webdemos/20- arithmetic/10-adders/bcd-adder.html