SlideShare a Scribd company logo
1 of 7
Download to read offline
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 669
Pitch Control of Wind Turbine through PID, Fuzzy and an Adaptive
Fuzzy-PID Controller
Silpa Baburajan1, Dr. Abdulla Ismail2
1Graduate Student, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE
2Professor, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Recently, the renewable energy, especially
wind energy, has been paid much attention due to the
energy shortage and environmental concern. As the
penetration of the wind energy into the electrical power
grid is extensively increased, the influence of the wind
turbine systems on the frequency and voltage stability
becomes more and more significant [1]– [4]. Wind turbine
rotor bears different types of loads; aerodynamic loads,
gravitational loads and centrifugal loads. These loads cause
fatigue and vibration in blades, which cause degradation to
the rotor blades. These loads can be overcome and the
amount of collected power can be controlled using a good
pitch controller (PC) which will tune the attack angle of a
wind turbine rotor blade into or out of the wind. Each blade
is exposed to different loads due to the variation of the wind
speed across the rotor blades. For this reason, individual
electric drives can be used in future to control the pitch of
the blades in a process called Individual Pitch Control. In
this thesis work, a new pitch angle control strategy based on
the fuzzy logic control is proposed to cope with the
nonlinear characteristics of wind turbine as well as to
reduce the loads on the blades. A mathematical model of
wind turbine (pitch control system) is developed and is
tested with three controllers -PID, Fuzzy and an Adaptive
Fuzzy-PID. After comparing the three proposed strategies,
the simulation results show that the Adaptive Fuzzy-PID
controller has the optimum response as it controls the pitch
system as well as the disturbances and uncertain factors
associated with the system.
Key Words: Energy, Wind-Power, Pitch Controller,
PID, Fuzzy Controller, Adaptive Fuzzy-PID Controller.
1. INTRODUCTION
Energy crisis is the one of the biggest problems faced by
people in the twenty-first century. The increase in the
demand for electric energy along with the availability of
limited fossil fuels have together contributed to the need
for shifting from the human dependency on conventional
resources for energy to the renewable energy resources.
There are three important renewable energy resources
available to us: solar, gravitational and geothermal energy.
Wind energy is one of the indirect consequence from the
incident solar energy, promoting air circulation between
hot and cold zones [1]. The kinetic energy present in the
wind can be converted to mechanical energy by using a
wind turbine and further into electrical energy by using
wind turbine generator.
2. MOTIVATION
To increase the power capacity of the wind turbine, larger
rotors are being built which causes an increase in
aerodynamics and other loads across the blades. The
aerodynamics and other loads contribute to fatigue failure
which results in decrease in the lifespan and efficiency of
the wind turbine [5]. With the help of good pitch angle
controllers, the lift profile of the rotor blades can have
altered which results in reduction of the aerodynamics
and other loads across the blades. This mechanism uses
the fact that much of the fatigue causing loads are partly
deterministic, periodic and vary slowly over a fixed time
[7]. Therefore, in this thesis the main goal is to design an
optimum controller to control the pitch angle of the wind
turbine system so that the loads on the blades are reduced.
Reduction in the loads on the blades will ultimately help to
improve the performance, efficiency and power output
daily of the wind turbine.
3. Control Techniques of Wind Turbine
System:
It The wind energy captured by the turbine can be
increased by the following two control strategies: pitch
control and stall control. The initial step in both strategies
is to check the turbine’s power output several times per
second using an electronic controller. In case the output
power is too high, a signal is send to the blade pitch
mechanism because of which the rotor blades turn slightly
out of the wind, adapting the attack angle. Once the wind
drops, these blades are turned back into the wind.
Turbines with this type of control mechanism is known as
pitch controlled wind turbines.
In the stall control technique, the rotor blades are fixed
onto the hub at a fixed angle. But the geometry of the rotor
blade is aerodynamically designed in such a way that it
ensures that from the moment the wind speed becomes
too high, it is caused turbulence on the side of the rotor
blade which is not facing the wind, creating a stall which
prevents the lifting force of the rotor blade from acting on
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 670
the rotor [1]. In the modern turbines, the pitch control
technique is used because it helps in controlling the output
power simultaneously operating at variable speed to
control tip speed ratio and so the power extraction for
different wind speeds [8].
4. Model of the Wind Turbine System
The block diagram of a typical wind turbine system
model is shown in the figure below [6]. In the following
sections, the pitch actuator model and the drive terrain
model are explained.
Figure 1: Wind Turbine System Feedback Control
System Model
5. Pitch Actuator Model
The pitch actuator is used to turn blades along their
longitudinal axis. The actuator model describes a dynamic
behavior between a pitch demand, from the pitch
controller and measurement of pitch angle [6]
The change in pitch angle is given by
This is the required Transfer Function. The value of
time constant of pitch actuator, T p can be calculated from
initial parameters of Wind Turbine [6] shown in Table I.
Table 1: Parameters of Wind Turbine
6. Drive Terrain Model
Figure 2: Mechanical model of drive train
The parameters taken while modelling the drive train are
shown in Table 2
Table 2: Mechanical Model Parameters of Drive Train
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 671
The dynamics of drive-train are described by following
differential equations
This is the required first order Transfer function of
Drivetrain. This can also be represented as
Thus, the mathematical model of wind turbine is derived.
7. Implementation of Conventional PID
Controller
The Simulink model of wind turbine pitch control system
with conventional PID Controller is shown in Fig. 3 and the
control parameters for the PID controller are shown in
Fg.4.
Figure 3: Simulink diagram of PID Controller
Implementation
Figure 4: PID Controller Parameters
8. Implementation of Fuzzy Logic Controller
First the rules-surface diagrams for each parameter Kp, Ki,
Kd are shown in the figures 5,6 and 7. Then all the 49 rules
are displayed in the figure 8. Finally, the Simulink model of
wind turbine pitch control system with fuzzy logic is
shown in Fig. 9 and the subsystems are shown in Fig 10
and Fig 11.
Figure 5:Surface Rule Diagram for Kp
Figure 6:Surface Rule for Ki
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 672
Figure 7:Surface Rule Diagram for Kd
Figure 8:Rule Viewer for Fuzzy Controller
Figure 9: Simulation diagram of fuzzy controller for
pitch control system
Figure 10: Fuzzy Controller Subsystem
Figure 11: Plant Subsystem
9. Implementation of Fuzzy Adaptive PID
Controller
Figure 12: The Simulink model of wind turbine pitch
control system with fuzzy adaptive PID
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 673
Figure 13: Fuzzy Controller Subsystem
Figure 14: PID Subsystem
Values for PID are Kp= 0.5, Ki=0.75, Kd=0
10. Simulation and Result of System without
Controllers
The figures below show the Simulink model of wind
turbine without any controllers and the output graph
Figure 15: Wind Turbine System Without Controllers
Figure 16:The unit step response of wind turbine
without controllers
We see that the desired output is not reached as well
Settling time very high. Also the Overshoot and
Undershoot is high. Hence, we need to implement
controller to overcome these drawbacks.
11. Simulation of the Plant with PID
Controller
Figure 17:The unit step response of wind turbine with
PID controller
The unit step response of wind turbine pitch control
system is shown in Fig. 17. Time domain specifications are
observed from the response graphs and tabulated in Table
6. With PID controller, we observed less rise time, settling
time and peak overshoot when compared to the wind
turbine model without any controllers.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 674
12. Simulation of the Plant with Fuzzy
Controller
Figure 18:The unit step response of wind turbine with
Fuzzy controller
The unit step response of wind turbine pitch control
system is shown in Fig.18. Time domain specifications are
observed from the response graphs and tabulated in Table
6. With fuzzy controller, we observed more rise time and
less settling time compared to conventional PID controller
and a very little overshoot.
13. Simulation of the Plant with Adaptive
Fuzzy-PID Controller
Figure 19:The unit step response of wind turbine with
Adaptive Fuzzy PID controller
The unit step response of wind turbine pitch control
system is shown in Fig. 19. Time domain specifications are
observed from the response graphs and tabulated in Table
6. With Fuzzy adaptive PID controller, we observed very
less settling time compared to both conventional PID and
fuzzy logic controller and almost no overshoot. However,
the performance is not better in terms of rise time when
compared to conventional PID controller.
14. Comparison of Simulation Results of the
Plant using PID, Fuzzy and an Adaptive
Fuzzy-PID Controller
Figure 20:Comparision of unit step response of wind
turbine pitch controllers
Table 3:Comparison of Time Domain Specifications of
Pitch Control System for Unit Step Input Using
From the Table above and Fig.20, we can see that the
Adaptive Fuzzy PID controller has the best response when
compared to the other controllers. The settling time is fast
and overshoot is very less, hence the Adaptive Fuzzy PID
gives a better control for the pitch angle of the wind
turbine system.
15. CONCLUSIONS AND FUTURE WORK
In this paper, we developed the wind turbine
pitch control system mathematical model and simulated
with conventional PID, fuzzy and fuzzy adaptive PID
controllers using MATLAB/Simulink to achieve optimum
response. We compared the responses in terms of time
domain specifications for unit step input using
conventional PID, fuzzy and fuzzy adaptive PID
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 675
controllers. Even though, the PID controller produces the
response with lower delay time and rise time, it has
oscillations with a peak overshoot of 11.8%, which causes
the damage in the system performance. To suppress these
oscillations fuzzy logic controller is proposed to use. From
the results, it can be observed that, this controller can
effectively suppress the oscillations and produces smooth
response, but it has more delay time, rise time and settling
time. By using fuzzy adaptive PID controller, where the
PID gains are tuned by using fuzzy logic concepts, the
results showed that this design can effectively suppress
the steady state error and the system has minimum delay
time, fast rising, quick settling and stability. From the
analysis, we conclude that fuzzy adaptive PID controller
gives relatively fast response for unit step input. This
technique is much better to realize the control of pitch
system and to guarantee the stability of wind turbine
output power.
In future, one can use artificial neural networks
to control the pitch angle of the wind turbine system and
check its performance with the Adaptive Fuzzy PID
controller. Also, Individual pitch control method can be
used along with the Adaptive Fuzzy PID controller to
improve the overall performance of the system.
REFERENCES
[1]. Civelek, Zafer, Ertuğrul Çam, Murat Lüy, and Hayati
Mamur. "Proportional–integral–derivative Parameter
Optimisation of Blade Pitch Controller in Wind Turbines
by a New Intelligent Genetic Algorithm." IET Renewable
Power Generation 10.8 (2016): 1220-228.
[2] C. Tan and H. Wang, "A Review on Pitch Angle Control
Strategy of Variable Pitch Wind Turbines", Advanced
Materials Research, vol. 772, pp. 744-748, 2013.
[3] Dunne, F. "Optimizing Blade Pitch Control of Wind
Turbines with Preview Measurements of the Wind." Order
No. 10108716 University of Colorado at Boulder, 2016.
Ann Arbor: ProQuest. Web. 4 Feb. 2017.
[4]. Han, Bing, Lawu Zhou, Fan Yang, and Zeng Xiang.
"Individual Pitch Controller Based on Fuzzy Logic Control
for Wind Turbine Load Mitigation." IET Renewable Power
Generation 10.5 (2016): 687-93. Kozak, Peter. "Blade Pitch
Optimization Methods for Vertical-axis Wind Turbines."
Thesis. ProQuest Dissertations Publishing, n.d. 2016.
[5] Jason T Brown. Montana environmental information
centre. http://meic.org, 2013.
[6] Novak P, Ekelund T, Jovik I, and Schmidt Bauer B.
"Modeling andControl of Variable-Speed Wind-Turbine
Drive-System Dynamics,"IEEE Control Syst Mag 1995;
15(4), pp. 28-38.
[7] Sharma, R.D. (2013). ‘Feedforward Learning Control
for Individual Blade Pitch Control of Modern Two-Bladed
Wind Turbines’.
[8] S.Suryanarayanan, A.Dixit, "Control of Large Wind
Turbines: Review and Suggested Approach to
Multivariable Design", Proc. of theAmerican Control
Conference 2005, Portland, USA, pp. 686-690.
BIOGRAPHIES
Silpa Baburajan obtained her B.SC
Electrical Engineering degree from
American University of Sharjah (2015)
and is currently pursuing her Master’s
degree in Electrical Engineering,
specializing in Control System, at
Rochester Institute of Technology (RIT),
Dubai Campus.
Dr Abdulla Ismail obtained his B.Sc.
(’80), M.Sc. (’83), and Ph.D. (’86) in
electrical engineering, from the
University of Arizona, U.S.A. Currently,
he is working as a professor in the
Electrical Engineering Department and
assistant to the President at the
Rochester Institute of Technology,
Dubai, UAE

More Related Content

What's hot

IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...
IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...
IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...IRJET Journal
 
Speed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial ApplicationSpeed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial Applicationijtsrd
 
Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineRayan Hameed
 
Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Larry Branscomb
 
IRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging MachinesIRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging MachinesIRJET Journal
 
PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine IJECEIAES
 
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...IJECEIAES
 
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...IRJET Journal
 
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind TurbinesFuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind TurbinesIRJET Journal
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineIRJET Journal
 
Lecture 4 Characteristics, Specifications & Load Calculation
Lecture 4   Characteristics, Specifications & Load CalculationLecture 4   Characteristics, Specifications & Load Calculation
Lecture 4 Characteristics, Specifications & Load CalculationManipal Institute of Technology
 
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...IRJET Journal
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET Journal
 
A Review: Control Strategy of Doubly Fed Induction Generator
A Review: Control Strategy of Doubly Fed Induction GeneratorA Review: Control Strategy of Doubly Fed Induction Generator
A Review: Control Strategy of Doubly Fed Induction GeneratorIRJET Journal
 
Energy auditing in mines ppt
Energy auditing in mines pptEnergy auditing in mines ppt
Energy auditing in mines pptRohit Raj
 
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEED
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEEDDEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEED
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEEDIngeteam Wind Energy
 

What's hot (20)

The fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbineThe fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbine
 
IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...
IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...
IRJET- Performance Analysis and Monitoring of Horizontal Axis Wind Turbine us...
 
Speed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial ApplicationSpeed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial Application
 
Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbine
 
Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)
 
IRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging MachinesIRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging Machines
 
PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine
 
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
 
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...
IRJET- Comparative Study of Load Frequency Control using PID and Fuzzy- PID C...
 
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind TurbinesFuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
 
Lecture 2 Wind Energy Course
Lecture 2  Wind Energy Course Lecture 2  Wind Energy Course
Lecture 2 Wind Energy Course
 
Lecture 4 Characteristics, Specifications & Load Calculation
Lecture 4   Characteristics, Specifications & Load CalculationLecture 4   Characteristics, Specifications & Load Calculation
Lecture 4 Characteristics, Specifications & Load Calculation
 
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
 
PROJECT REVIEW PPT
PROJECT REVIEW PPTPROJECT REVIEW PPT
PROJECT REVIEW PPT
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
 
A Review: Control Strategy of Doubly Fed Induction Generator
A Review: Control Strategy of Doubly Fed Induction GeneratorA Review: Control Strategy of Doubly Fed Induction Generator
A Review: Control Strategy of Doubly Fed Induction Generator
 
Lecture 5 Servomotor driver, control & Model
Lecture 5   Servomotor driver, control & ModelLecture 5   Servomotor driver, control & Model
Lecture 5 Servomotor driver, control & Model
 
Energy auditing in mines ppt
Energy auditing in mines pptEnergy auditing in mines ppt
Energy auditing in mines ppt
 
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEED
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEEDDEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEED
DEWI Magazin49_Ingeteam_INGECON WIND FIX2VAR SPEED
 

Similar to Pitch Control of Wind Turbine through PID, Fuzzy and an Adaptive Fuzzy-PID Controller

Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...
Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...
Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...IRJET Journal
 
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...IRJET Journal
 
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel VehicleIRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel VehicleIRJET Journal
 
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...Kashif Mehmood
 
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
IRJET-  	  Modelling of a PMSG Wind Turbine with Voltage ControlIRJET-  	  Modelling of a PMSG Wind Turbine with Voltage Control
IRJET- Modelling of a PMSG Wind Turbine with Voltage ControlIRJET Journal
 
Quadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD TechniqueQuadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD TechniqueIRJET Journal
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET Journal
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET Journal
 
Study on power control of doubly fed induction generator
Study on power control of doubly fed induction generatorStudy on power control of doubly fed induction generator
Study on power control of doubly fed induction generatorIRJET Journal
 
Study of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind TurbineStudy of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind TurbineIJMTST Journal
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...IRJET Journal
 
Simulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID ControllerSimulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID Controllerijtsrd
 
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...IRJET Journal
 
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET Journal
 
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...IRJET Journal
 
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy SystemFault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy SystemIRJET Journal
 
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...IRJET Journal
 

Similar to Pitch Control of Wind Turbine through PID, Fuzzy and an Adaptive Fuzzy-PID Controller (20)

Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...
Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...
Aero Dynamic Power Control of Permanent Magnet Synchronous Generator using Fu...
 
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
 
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel VehicleIRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
 
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
 
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
IRJET-  	  Modelling of a PMSG Wind Turbine with Voltage ControlIRJET-  	  Modelling of a PMSG Wind Turbine with Voltage Control
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
 
196 200
196 200196 200
196 200
 
paper.pdf
paper.pdfpaper.pdf
paper.pdf
 
Quadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD TechniqueQuadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD Technique
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
 
Study on power control of doubly fed induction generator
Study on power control of doubly fed induction generatorStudy on power control of doubly fed induction generator
Study on power control of doubly fed induction generator
 
Robust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generatorRobust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generator
 
Study of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind TurbineStudy of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind Turbine
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
 
Simulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID ControllerSimulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID Controller
 
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...
Speed Control of a Seperately Excited DC Motor by Implementing Fuzzy Logic Co...
 
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction Motor
 
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
 
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy SystemFault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
 
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
 

More from IRJET Journal

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...IRJET Journal
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTUREIRJET Journal
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...IRJET Journal
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsIRJET Journal
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...IRJET Journal
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...IRJET Journal
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...IRJET Journal
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...IRJET Journal
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASIRJET Journal
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...IRJET Journal
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProIRJET Journal
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...IRJET Journal
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemIRJET Journal
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesIRJET Journal
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web applicationIRJET Journal
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...IRJET Journal
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.IRJET Journal
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...IRJET Journal
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignIRJET Journal
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...IRJET Journal
 

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 

Pitch Control of Wind Turbine through PID, Fuzzy and an Adaptive Fuzzy-PID Controller

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 669 Pitch Control of Wind Turbine through PID, Fuzzy and an Adaptive Fuzzy-PID Controller Silpa Baburajan1, Dr. Abdulla Ismail2 1Graduate Student, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE 2Professor, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Recently, the renewable energy, especially wind energy, has been paid much attention due to the energy shortage and environmental concern. As the penetration of the wind energy into the electrical power grid is extensively increased, the influence of the wind turbine systems on the frequency and voltage stability becomes more and more significant [1]– [4]. Wind turbine rotor bears different types of loads; aerodynamic loads, gravitational loads and centrifugal loads. These loads cause fatigue and vibration in blades, which cause degradation to the rotor blades. These loads can be overcome and the amount of collected power can be controlled using a good pitch controller (PC) which will tune the attack angle of a wind turbine rotor blade into or out of the wind. Each blade is exposed to different loads due to the variation of the wind speed across the rotor blades. For this reason, individual electric drives can be used in future to control the pitch of the blades in a process called Individual Pitch Control. In this thesis work, a new pitch angle control strategy based on the fuzzy logic control is proposed to cope with the nonlinear characteristics of wind turbine as well as to reduce the loads on the blades. A mathematical model of wind turbine (pitch control system) is developed and is tested with three controllers -PID, Fuzzy and an Adaptive Fuzzy-PID. After comparing the three proposed strategies, the simulation results show that the Adaptive Fuzzy-PID controller has the optimum response as it controls the pitch system as well as the disturbances and uncertain factors associated with the system. Key Words: Energy, Wind-Power, Pitch Controller, PID, Fuzzy Controller, Adaptive Fuzzy-PID Controller. 1. INTRODUCTION Energy crisis is the one of the biggest problems faced by people in the twenty-first century. The increase in the demand for electric energy along with the availability of limited fossil fuels have together contributed to the need for shifting from the human dependency on conventional resources for energy to the renewable energy resources. There are three important renewable energy resources available to us: solar, gravitational and geothermal energy. Wind energy is one of the indirect consequence from the incident solar energy, promoting air circulation between hot and cold zones [1]. The kinetic energy present in the wind can be converted to mechanical energy by using a wind turbine and further into electrical energy by using wind turbine generator. 2. MOTIVATION To increase the power capacity of the wind turbine, larger rotors are being built which causes an increase in aerodynamics and other loads across the blades. The aerodynamics and other loads contribute to fatigue failure which results in decrease in the lifespan and efficiency of the wind turbine [5]. With the help of good pitch angle controllers, the lift profile of the rotor blades can have altered which results in reduction of the aerodynamics and other loads across the blades. This mechanism uses the fact that much of the fatigue causing loads are partly deterministic, periodic and vary slowly over a fixed time [7]. Therefore, in this thesis the main goal is to design an optimum controller to control the pitch angle of the wind turbine system so that the loads on the blades are reduced. Reduction in the loads on the blades will ultimately help to improve the performance, efficiency and power output daily of the wind turbine. 3. Control Techniques of Wind Turbine System: It The wind energy captured by the turbine can be increased by the following two control strategies: pitch control and stall control. The initial step in both strategies is to check the turbine’s power output several times per second using an electronic controller. In case the output power is too high, a signal is send to the blade pitch mechanism because of which the rotor blades turn slightly out of the wind, adapting the attack angle. Once the wind drops, these blades are turned back into the wind. Turbines with this type of control mechanism is known as pitch controlled wind turbines. In the stall control technique, the rotor blades are fixed onto the hub at a fixed angle. But the geometry of the rotor blade is aerodynamically designed in such a way that it ensures that from the moment the wind speed becomes too high, it is caused turbulence on the side of the rotor blade which is not facing the wind, creating a stall which prevents the lifting force of the rotor blade from acting on
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 670 the rotor [1]. In the modern turbines, the pitch control technique is used because it helps in controlling the output power simultaneously operating at variable speed to control tip speed ratio and so the power extraction for different wind speeds [8]. 4. Model of the Wind Turbine System The block diagram of a typical wind turbine system model is shown in the figure below [6]. In the following sections, the pitch actuator model and the drive terrain model are explained. Figure 1: Wind Turbine System Feedback Control System Model 5. Pitch Actuator Model The pitch actuator is used to turn blades along their longitudinal axis. The actuator model describes a dynamic behavior between a pitch demand, from the pitch controller and measurement of pitch angle [6] The change in pitch angle is given by This is the required Transfer Function. The value of time constant of pitch actuator, T p can be calculated from initial parameters of Wind Turbine [6] shown in Table I. Table 1: Parameters of Wind Turbine 6. Drive Terrain Model Figure 2: Mechanical model of drive train The parameters taken while modelling the drive train are shown in Table 2 Table 2: Mechanical Model Parameters of Drive Train
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 671 The dynamics of drive-train are described by following differential equations This is the required first order Transfer function of Drivetrain. This can also be represented as Thus, the mathematical model of wind turbine is derived. 7. Implementation of Conventional PID Controller The Simulink model of wind turbine pitch control system with conventional PID Controller is shown in Fig. 3 and the control parameters for the PID controller are shown in Fg.4. Figure 3: Simulink diagram of PID Controller Implementation Figure 4: PID Controller Parameters 8. Implementation of Fuzzy Logic Controller First the rules-surface diagrams for each parameter Kp, Ki, Kd are shown in the figures 5,6 and 7. Then all the 49 rules are displayed in the figure 8. Finally, the Simulink model of wind turbine pitch control system with fuzzy logic is shown in Fig. 9 and the subsystems are shown in Fig 10 and Fig 11. Figure 5:Surface Rule Diagram for Kp Figure 6:Surface Rule for Ki
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 672 Figure 7:Surface Rule Diagram for Kd Figure 8:Rule Viewer for Fuzzy Controller Figure 9: Simulation diagram of fuzzy controller for pitch control system Figure 10: Fuzzy Controller Subsystem Figure 11: Plant Subsystem 9. Implementation of Fuzzy Adaptive PID Controller Figure 12: The Simulink model of wind turbine pitch control system with fuzzy adaptive PID
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 673 Figure 13: Fuzzy Controller Subsystem Figure 14: PID Subsystem Values for PID are Kp= 0.5, Ki=0.75, Kd=0 10. Simulation and Result of System without Controllers The figures below show the Simulink model of wind turbine without any controllers and the output graph Figure 15: Wind Turbine System Without Controllers Figure 16:The unit step response of wind turbine without controllers We see that the desired output is not reached as well Settling time very high. Also the Overshoot and Undershoot is high. Hence, we need to implement controller to overcome these drawbacks. 11. Simulation of the Plant with PID Controller Figure 17:The unit step response of wind turbine with PID controller The unit step response of wind turbine pitch control system is shown in Fig. 17. Time domain specifications are observed from the response graphs and tabulated in Table 6. With PID controller, we observed less rise time, settling time and peak overshoot when compared to the wind turbine model without any controllers.
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 674 12. Simulation of the Plant with Fuzzy Controller Figure 18:The unit step response of wind turbine with Fuzzy controller The unit step response of wind turbine pitch control system is shown in Fig.18. Time domain specifications are observed from the response graphs and tabulated in Table 6. With fuzzy controller, we observed more rise time and less settling time compared to conventional PID controller and a very little overshoot. 13. Simulation of the Plant with Adaptive Fuzzy-PID Controller Figure 19:The unit step response of wind turbine with Adaptive Fuzzy PID controller The unit step response of wind turbine pitch control system is shown in Fig. 19. Time domain specifications are observed from the response graphs and tabulated in Table 6. With Fuzzy adaptive PID controller, we observed very less settling time compared to both conventional PID and fuzzy logic controller and almost no overshoot. However, the performance is not better in terms of rise time when compared to conventional PID controller. 14. Comparison of Simulation Results of the Plant using PID, Fuzzy and an Adaptive Fuzzy-PID Controller Figure 20:Comparision of unit step response of wind turbine pitch controllers Table 3:Comparison of Time Domain Specifications of Pitch Control System for Unit Step Input Using From the Table above and Fig.20, we can see that the Adaptive Fuzzy PID controller has the best response when compared to the other controllers. The settling time is fast and overshoot is very less, hence the Adaptive Fuzzy PID gives a better control for the pitch angle of the wind turbine system. 15. CONCLUSIONS AND FUTURE WORK In this paper, we developed the wind turbine pitch control system mathematical model and simulated with conventional PID, fuzzy and fuzzy adaptive PID controllers using MATLAB/Simulink to achieve optimum response. We compared the responses in terms of time domain specifications for unit step input using conventional PID, fuzzy and fuzzy adaptive PID
  • 7. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 675 controllers. Even though, the PID controller produces the response with lower delay time and rise time, it has oscillations with a peak overshoot of 11.8%, which causes the damage in the system performance. To suppress these oscillations fuzzy logic controller is proposed to use. From the results, it can be observed that, this controller can effectively suppress the oscillations and produces smooth response, but it has more delay time, rise time and settling time. By using fuzzy adaptive PID controller, where the PID gains are tuned by using fuzzy logic concepts, the results showed that this design can effectively suppress the steady state error and the system has minimum delay time, fast rising, quick settling and stability. From the analysis, we conclude that fuzzy adaptive PID controller gives relatively fast response for unit step input. This technique is much better to realize the control of pitch system and to guarantee the stability of wind turbine output power. In future, one can use artificial neural networks to control the pitch angle of the wind turbine system and check its performance with the Adaptive Fuzzy PID controller. Also, Individual pitch control method can be used along with the Adaptive Fuzzy PID controller to improve the overall performance of the system. REFERENCES [1]. Civelek, Zafer, Ertuğrul Çam, Murat Lüy, and Hayati Mamur. "Proportional–integral–derivative Parameter Optimisation of Blade Pitch Controller in Wind Turbines by a New Intelligent Genetic Algorithm." IET Renewable Power Generation 10.8 (2016): 1220-228. [2] C. Tan and H. Wang, "A Review on Pitch Angle Control Strategy of Variable Pitch Wind Turbines", Advanced Materials Research, vol. 772, pp. 744-748, 2013. [3] Dunne, F. "Optimizing Blade Pitch Control of Wind Turbines with Preview Measurements of the Wind." Order No. 10108716 University of Colorado at Boulder, 2016. Ann Arbor: ProQuest. Web. 4 Feb. 2017. [4]. Han, Bing, Lawu Zhou, Fan Yang, and Zeng Xiang. "Individual Pitch Controller Based on Fuzzy Logic Control for Wind Turbine Load Mitigation." IET Renewable Power Generation 10.5 (2016): 687-93. Kozak, Peter. "Blade Pitch Optimization Methods for Vertical-axis Wind Turbines." Thesis. ProQuest Dissertations Publishing, n.d. 2016. [5] Jason T Brown. Montana environmental information centre. http://meic.org, 2013. [6] Novak P, Ekelund T, Jovik I, and Schmidt Bauer B. "Modeling andControl of Variable-Speed Wind-Turbine Drive-System Dynamics,"IEEE Control Syst Mag 1995; 15(4), pp. 28-38. [7] Sharma, R.D. (2013). ‘Feedforward Learning Control for Individual Blade Pitch Control of Modern Two-Bladed Wind Turbines’. [8] S.Suryanarayanan, A.Dixit, "Control of Large Wind Turbines: Review and Suggested Approach to Multivariable Design", Proc. of theAmerican Control Conference 2005, Portland, USA, pp. 686-690. BIOGRAPHIES Silpa Baburajan obtained her B.SC Electrical Engineering degree from American University of Sharjah (2015) and is currently pursuing her Master’s degree in Electrical Engineering, specializing in Control System, at Rochester Institute of Technology (RIT), Dubai Campus. Dr Abdulla Ismail obtained his B.Sc. (’80), M.Sc. (’83), and Ph.D. (’86) in electrical engineering, from the University of Arizona, U.S.A. Currently, he is working as a professor in the Electrical Engineering Department and assistant to the President at the Rochester Institute of Technology, Dubai, UAE