SlideShare a Scribd company logo
1 of 19
Download to read offline
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 323
DevelopmentiiandiidesigniiofiifullyiiautomatediiIndooriiFarm/Gardeningii
iiWithiiIOTiiandiiMachineiiLearning
RachitiiSinghiiPawar1,iiAyushiiNagaria2,iiYashiiJaiswal3,iiDr.iiHarminderiiSinghiiSaggu4ii ii
1,2,3 iUndergraduateiiStudent,iiSchooliiofiiMechanicaliiEngineering,iiLovelyiiProfessionaliiUniversity,iiPhagwara,
iiPunjab,iiIndia
4iiAssistantiiProfessor,iiSchooliiofiiMechanicaliiEngineering,iiLovelyiiProfessionaliiUniversity,iiPhagwara,iiPunjab,
iiIndia
---------------------------------------------------------------------***------------------------------------------------------------------
Abstract ii- iiSmart iifarming iitechniques iiusing iithe
iiInternet iiOf iiThings(IOT) iiare iiarisingiiconceptsiibecause
iielectronic iisensors iiare iicapable iiof iiproviding
iiinformation iiabout iihumidity, iiph, iitemperature, iisoil
iimoisture, iiwater iilevel, iietc, iiand iiother iinecessities iifor
iifarming iithen iiact iiupon iibased iion iithe iisensor'siiinput.
iiThis iipaper iifocuses iion iithe iidevelopment iiof iiaiisystem
iithat iican iimonitor iitemperature, iilevel iiof iiwater,
iimoisture, iiph, ii iiand iieven iiweather iiconditions iisoiithat
iiwe iican iiprepare iifor iiprecautions iiwhen iinecessary
iithrough iisensors iiusing iiArduino iiUNO iimicrocontroller
iiand iia iiMachine iiLearning iiAlgorithm. iiThis iiproject
iiaims iiat iimaking iiuse iiof iievolving iitechnology iii.e.
iiInternet iiOf iiThings iiand iiMachine iiLearning. iiOnce iithe
iihardware iihas iibeen iideveloped iidepending iion iithe
iichange iiin iirequirements iiand iitechnology iithe iisoftware
iiand iihardware iineed iito iibe iiupdated. iiThis iinew
iiversion iirequires iirelentless iitesting iito iiensure iichanges
iiare iidone iiin iithe iiold iiversion iiso iithat iiit iiworks
iicorrectly iiwithout iiany iibugs iiin iiother iiparts iiof iithe
iisystem. iiThis iiis iinecessary iibecause iiupdating iione iipart
iiof iithe iihardware iimay iibring iisome iiicky iieffects iion
iiother iiparts iiof iithe iihardware.
Key iiWords: ii iiInternet iiof iiThings ii(IOT), iiMachine
iiLearning, iiSmart iiFaming, iiIndoor iiFarming,
iiArduino iiUNO, iiSoil iiMoisture iiSensor, iiWater
iilevel iiSensor, iiTemperature iiSensor.
1.INTRODUCTION ii
The iiSmart iiFarming iiSystem iiis iian iiInternet iiOf
iiThings iiandiiMachineiiLearning-basediideviceiiwhichiiis
iicapable iiof iiautomating iithe iiirrigation iiprocess iiby
iianalyzing iithe iimoisture iiof iisoil iiand iithe iiclimate
iicondition ii(like iirain). iiSoil iiParameters iilike iisoil
iimoisture, iipH, iiand iiHumidity iiare iimeasurediiandiithe
iiPressure iisensor iiand iithe iisensed iivalues iiare
iidisplayed iion iian iiOLED iipanel iiand iialso iion iia
iimobile iiapplication.
The iineed iifor iian iiautomated iifarming iisystem iiis iito
iiovercome iiover-irrigation iiand iiunder iiirrigation. iiThe
iipurpose iiof iia iismart iifarming iisystem iiis iito iidefeat
iithe iiconventional iimethods iiof iifarming iidone iiby
iifarmers. iiThe iiconventional iimethods iiwere iithe iiones
iiin iiwhich iithe iifarmer iidid iieverything iimanually iiby
iiuser iiinteraction iiwith iitheiimotors,iipump,iietc.iiThisii
iiwas iitime-consuming iiand iihad iiunpredictable iioutput.
iiConditions iisuch iias iiunexpected iiweather, iiunder
iiirrigation, iiand iiover-irrigation iiimpacted iitraditional
iimethods iias iiwell ii.The iifarmer iiwas iinot iiable iito
iicomplete iieverything iiat iia iiparticular iitime iiand
iiusually, iithis iiled iito iidecreased iioutput iiand iipoor
iimanagement.
The iigoal iiof iismart iifarming iiis iito iiground iia
iidecision-making iisupport iisystem iifor iifarm
iimanagement. iiSmart iifarming iideems iiit iinecessary iito
iiaddress iithe iiissues iiof iipopulation iigrowth, iiclimate
iichange, iiand iilabor iithat iihave iigained iia iilot iiof
iitechnological iiattention, iifrom iiplanting iiand iiwatering
iiof iicrops iito iihealth iiand iiharvesting
Thus iithere iicame iithe iineed iito iiautomate iiit iiand
iimake iia iiSmart iisystem iiso iithat iiall iithe iiprocesses
iican iibe iiimproved.
Hence iiwe iiare iire-engineering iithe iisystem iias
iiAdvanced iiIrrigation iiSystem iiwhich iiwould iibe iivery
iiaccurate iiin iinature iidue iito iithe iivarious iimachine
iilearning iitechniques iiwhich iihave iibeen iiapplied iitoiiit
iito iimake iithe iisystem iipossibly iiefficient iiin iinature.
Thus, iiwe iiaim iito iiachieve iian iiAdvance iifarming
iisystem iithat iioffers iicomplete iiautomation iiby iitaking
iiin iiparameters iilike iitemperature, iiwater iicontent,
iihumidity, iilight, iietc, iiand iithen iipredicting iitheiifuture
iivalues iiand iiaccording iito iithese iipredictions
iicontrolling iithe iientire iiprocess iion iiits iiown iiand
iihence iimaking iithe iiprocess iifully iiautomated iiin
iinature.
The iifollowing iitechniques iiare iiamong iithe iicurrent
iitrends iiin iithe iismart iiirrigation iimarket:
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 324
1. iiDrip iiIrrigation: iiThis iienables iiexact iicontrol iiof
iiwater iiand iifertiliser ii iiapplication, iiresulting iiin iia
iisignificant iireduction iiin iithe iiamount iiof iiwater
iirequired iifor iiagricultural iiirrigation.
2. iiWater iiFlow iiMeasuring: iiUsing iiwater iiflow
iimeters iito iiprecisely iimeasure iiwater iiusageiicaniihelp
iifarmers iiavoid iioverwatering iiand iisave iimoney.
3. iiData iiAnalytics: iiNew iisoftware iisolutions iithat
iicrunch iivast iivolumes iiof iidata iican iisupply iifarmers
iiwith iicritical iiknowledge iithey iididn't iihave iibefore.
4. iiDrilling iiMore iiWells: iiAs iithe iiwater iitableiidrops
iidue iito iiunsustainable iipumping iilevels, iifarmers iiare
iirelying iimore iion iigroundwater iisupplies iifor
iiirrigation.
1.1 iiProblem iiDefinition
Collecting iiInformation iirelated iito iithe iifarm
iienvironment iiviz iisoil iimoisture, iihumidity, iietc ii, iiand
iiproviding iiadequate iisupport iitoiitheiisystemiiwithiithe
iiuse iiof iiMachineiiLearningiiAlgorithmiiandiiputtingiithe
iifarmer iiat iiease.
It iican iibe iimonitored iiusing iian iiapplication iithat
iiwill iibe iidesigned iion iitheiiMachineiiLearningiiPlatform
iiand iicreating iia iinetwork iibetween iithe iisensors, iiand
iia iimicroprocessor, iiHence iiovercoming iithe iimanual
iioperations iirequired iito iimonitor iiand iimaintain iithe
iiagricultural iifarms iiandiisavingiiaiilotiiofiitimeiiforiithe
iifarmer.
2. iiLITERATURE iiREVIEW
Balaji iiBanu ii[1] iidesigned iia iiwireless iisensoriinetwork
iito iiobserve iithe iiconditions iiof iifarming iiand iiincrease
iicrop iiyield iiand iiquality. iiSensors iiare iiused iito
iimonitor iidifferent iiconditions iiof iithe iienvironment
iilike iiwater iilevel, iihumidity, iitemperature, iietc., iiThe
iiprocessors iiATMEGA8535 iiand iiIC S8817 iiBS, iianalog
iito iidigital iiconversion, iiand iiwireless iisensor iinodes
iiwith iiwireless iitransceiveriimoduleiibasediioniiZigiibee
iiprotocol iiare iiused iiin iithe iidesigning iithe iisystem.
iiDatabase iiand iiweb iiapplication iiis iiused iito iiretrieve
iiand iistore iidata. iiIn iithis iiExperiment, iithe iisensor
iinode iifailure iiand iienergy iiefficiency iiare iimanaged.
Liu iiDan ii[2], iiJoseph iiHaule, iiKisangiri iiMichael ii[3]
iiand iiWangWeihong, iiCao iiShuntian ii iicarried iiout
iiexperiments iion iiintelligent iiagriculture iigreenhouse
iimonitoring iisystem iibased iion iiZig iiBee iitechnology.
iiThe iisystem iiperforms iidata iiacquisition, iiprocessing,
iitransmission, iiand iireception iifunctions. iiTheir
iiexperiments iiaim iito iirealize iia iigreenhouse
iienvironment iisystem,iiwhereiitheiisystemiiefficiencyiito
iimanage iithe iienvironment iiare iia iiand iireduce iithe
iimoney iiand iifarming iicost iiand iialso iisave iienergy.
iiIoT iitechnology iihere iiis iibasediioniitheiiB-Siistructure
iiandcc2530 iiused iilike iia iiprocessing iichip iito iiwork
iifor iiwireless iisensor iinode iiand iicoordinator. iiThe
iigateway iihas iiLinux iioperating iisystem iiana iid iicortex
iiA8 iiprocessor iiactthe ii iias iicore. iiOverall iithe iidesign
iirealizes iiremote iiintelligent iimonitoring iiand
iicontrolgreenhouseen iihouse iiand iialso iireplaces iithe
iitraditional iiwired iitechnology iitwithwireless, iialso
iireduces iimanpower iicost.
Joseph iihaule ii[3], iiDragoş iiMihai iiOfrim, iiBogdan
iiAlexandruOfrim, iiand iiDragoş iiIoan iiSăcăleanu iihave
iiproposed iian iiexperiment iithat iiexplains iithe iiuse iiof
iiwsn iiused iiin iiautomatic iiirrigation. iiIrrigationiicontrol
iiand iirescheduling iibased iion iiwsn iiare iipowerful
iisolutions iifor iioptimum iiwater iimanagement iithrough
iiautomatic iicommunication iito iiknow iithe iisoil
iimoisture iiconditions iiof iiirrigation iidesign. iiThe
iiprocess iiused iihere iiis iito iidetermine iithe iiproper
iifrequency iiand iitime iiof iiwatering iiare iiimportant iito
iiensure iithe iiefficient iiuse iiofiiwater,iihigh-qualityiicrop
iidetection iidelay iithroughput, iiand iiload. iiSimulation iiis
iidonefor iiagriculture iiby iiOPNET. iiAnother iidesign iiof
iiwsn iiis iideployed iifor iiirrigation iisystems iiusing iiZig
iibee iiprotocol iiwhich iiwill iiimpact iibattery iilife. iiThere
iiare iisome iidrawbacks iias iiwsn iiis iistill iiunder
iidevelopment iistage iiwith iiunreliable iicommunication
iitimes, iifragile, iipower iiconsumption iiand
iicommunication iicaniibeiilostiiiniitheiiagricultural iifield.
iiso iiautomated iiirrigation iisystems iiand iischeduling
iibased iion iiwireless iisensor iinetworksiiareiiused.iiWSN
iiuses iilow iipower iiand iia iilow iidata iirate iiand iihence
iienergy-efficienttechnology. iiAll iithe iidevices iiand
iimachines iiare iicontrolled iiwith iithe iihelp iiof iiinputs
iireceived iivia iisensors iithat iiare iimixed iiwith iisoil.
iiFarmers iican iianalyze iiwhether iithe iisystem iiperforms
iiin iinormally iior iisome iiactions iineed iito iibe
iiperformed.
Vijay iiKumar ii[4], iiLin iiZhang, iiMin iiyuan, iiDeyi iiTai,
iiXia iiOweixu, iiXiang iiZhan, iiYuanyuan iiZhang iistudied
iithe iiwork iiof iirural iifarming iicommunities iithat
iireplaces iisome iiof iithe iitraditional iitechniques. iiThe
iisensor iinodes iihave iiseveral iiexternal iisensorsiinamely
iileaf iiwetness, iisoil iimoisture iisensor, iisoil iipH,
iiatmospheric iipressure iisensors iiattached iito iiit.iiBased
iion iithe iisoil iimoisture iisensor iithe iimoteiitriggersiithe
iiwater iisprinkling iiduring iithe iiperiod iiof iiwater
iiscarcity iiand iiswitches iioff iiafter iiadequate iiwater iiis
iisprinkled. iiThis iiresults iiin iiwater iiconservation iiand
iisoil iipH iiis iisent iito iithe iibase iistation iiand iiin iiturn
iibase iistation iiintimates iithe iifarmer iiabout iisoil iipH
iivia iiSMS iiusing iiGSM iimodel. iiThis iiinformation iihelps
iithe iifarmers iito iireduce iiquantity iiof iifertilizers iiused.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 325
iiA iidevelopment iiof iirice iicropiimonitoringiiusingiiWSN
iiis iiproposed iito iiprovide iia iihelping iihandiitoiifarmers
iiin iireal iitime iimonitoring iiand iiincreasing iithe iirice
iiproduction. iiThe iiautomated iicontrol iiof iiwater
iisprinkling iiand iiultimate iisupply iiof iiinformation iiis
iiimplemented iiusing iiwireless iisensor iinetwork.
iiG. iiNisha ii[5], iiChun-lingiiFan,iiYuaniiGuoiiproposed iia
iiwireless iisensor-based iiautomated iiirrigation iisystem
iito iioptimize iiwater iiuse iifor iiagricultural iipurpose.
iiThe iisystem iiconsists iiof iidistributed iiwireless iisensor
iinetwork iiof iisoil iimoisture, iiand iitemperature iisensors
iimounted iiin iithe iicropiifield.iiZigbeeiiprotocol iiisiiused
iito iihandle iithe iisensor iiinformation iiand iiwater
iiquantity iiprogramming iiusing iialgorithm iiwith
iithreshold iivalues iiof iithe iisensors iisent iito iia iimicro
iicontroller iifor iiirrigation iisystem. iiData iiinspection iiis
iidone iiusing iiby iiusing iisolar iipanel iiand iicellular
iiinternet iiinterface. iiA iiwireless iicamera iiis iifixed iiin
iicrop iifield iito iimonitor iithe iidisease iiarea iiusing
iiimage iiprocessing iitechnique.
Meng iiJi-hua ii[6] iiconductediia iiresearchiioniigrowthiiof
iicereal iicrop iiseedlings, iias iiwell iias iithe iistatus iiand
iitrend iiof iitheir iigrowth. iiThis iipaper iiintroduced iithe
iidesign, iimethods iiused iiand iiimplementation iiof iia
iiglobal iicrop iigrowth iimonitoring iisystem, iiwhich
iisatisfies iithe iineed iiof iithe iiglobal iicrop iimonitoring
iiin iithe iiworld. iiThe iisystem iiuses iitwo iimethods iiof
iimonitoring, iiwhich iiare iireal-time iicrop iigrowth
iimonitoring iiand iicrop iigrowing iiprocess iimonitoring.
iiReal-time iicrop iigrowth iimonitoring iicould iiget iithe
iicrop iigrowing iistatus iifor iicertain iiperiod iiby
iicomparing iithe iiremote iisensed iidata ii(NDVI, iifor
iiexample) iiof iithe iiperiod iiwith iithe iidata iiof iithe
iiperiod iiin iithe iihistory ii(last iiyear, iimostly). iiThe
iidifferential iiresult iiwas iiclassified iiinto iiseveral
iicategories iito iireflect iithe iicondition iiat iidifference
iilevel iiof iicrop iigrowing. iiIn iithis iisystem, iiboth iireal-
time iicrop iigrowth iimonitoring iiand iicrop iigrowing
iiprocess iimonitoring iiare iicarriediioutiiatiithreeiiscales,
iiwhich iiare iistate ii(province)iiscale,iicountryiiscaleiiand
iicontinent iiscale. iiGlobal iicrop iigrowth iimonitoring
iisystem iiwas iifound iiin iithis iidesign iiand iibuilt iia
iisystem iithat iican iimonitor iithe iiglobal iicrop iigrowth
iiwith iiremote iisensing iidata. iiThe iisystemiishowediithe
iicharacteristics iiof iifast, iieffective,iihighiicredibilityiiand
iioperational iiin iiits iirun. ii
Alan iiMain-waring ii[7], iiA. iiSivasankari,iiS.iiGandhimathi
iihave iiprovided iian iiin-depth iistudy iiof iiapplying
iiwireless iisensor iinetworks iito iireal-world iihabitat
iimonitoring. iiA iiset iiof iisystem iidesign iirequirements
iiare iideveloped iithat iicover iithe iihardware iidesign iiof
iithe iinodes, iithe iidesign iiof iithe iisensor iinetwork, iiand
iithe iicapabilities iifor iiremote iidata iiaccess iiand
iimanagement. iiTo iievaluate iithis iiimplementation,iihave
iideployed iian iiinitial iiprototype iinetwork iiat iithe
iiJames iiSan iiJacinto iiMountains iiReserve ii(JMR) iiin
iiIdyllwild, iiCalifornia. iiJMR iiis iia ii29-acreecological
iipreserve, iirepresenting iijust iione iiof iithe iiUniversity
iiof iiCalifornia iiSystem iiNatural iiReserve iiSystem’s ii34
iiland iiholdings. iiJMR iiclimate iiis iidifferent iifrom iiGD
iiand iiweather iichanges iican iiexists iifor iilong iitime.
iiThe iidata iicollection iican iibe iimade iieasy iifrom
iipreviously iiinaccessible iiusing iia iimicro-measurement
iiscale. ii iiXiao
ii[8] iiFiona iiEdwards iiMurphy, iiEmanuel iiPopovici, ii
iiWhelan, iiand iiMichele iiMagno ii iiProposed iiagriculture
iimonitoring iisystem iiusing iiwireless iisensor
iinetwork(WSN). iiTheiiconditionsiicaniibeiimonitored iiin
iireal iitime iiare iitemperature, iilight iiintensity, iiand
iihumidity. iiThe iiexperiment iiinvolves iithe iihardware
iiand iisoftware iidesign iiof iitheiibuiltiimodules,iinetwork
iitopology iiand iinetwork ii ii iiwith iithe iichallenges.
iiDesign iiexplains iihow iithe iinode iican iiachieve
iiagricultural iicondition iiinformation iicollection iiand
iitransmission. iiThe iisystem iiis iicompact iiin iiframe
iiwork, iilightweight, iigood iiin iiperformance iiand
iioperation. iiIt iiimproves iithe iiagricultural iiproduction
iiefficiency iiautomatically. ii
Ling-ling iiLI ii[9], iiWen-Yao iiZhuang, iiMiguel iiCosta
iiJunior, iiPedro iiCheong, iiKam-Weng iiTam ii[12] iihave
iiproposed iisystem iiuses iiZigBee iitechnology. iiThis
iiresearch iideals iiwith iihardware iiand iithe iisoftwareiiof
iithe iinetwork iicoordinator iinode iiand iithe iisensor
iinodes. iiThe iitheoretical iiand iipractical iiresults iishow
iithat iithe iisystem iican iiefficiently iicapture iigreenhouse
iienvironmental iiparameters, iiincluding iitemperature,
iihumidity, iiand iicarbon iidioxide iiconcentration iiand
iialso iiclears iithe iinormal iicommunication iibetween
iinodes iiand iithe iinetwork iicoordinator, iigood iinetwork
iistability. iiThe iiimplementation iiexplored iivalues iiused
iiin iithe iicomplex iigreenhouse iienvironmental
iimonitoring.
Yunseop iiKim ii[14], iiR.iiBalamurali,iiK.iiKathiravanii[15]
iihave iiproposed iithe iidesign iifor iiwireless iisensor
iinetwork ii(WSN) iifor iia iiwater iiirrigation iicontrol iiand
iimonitoring iithat iiis iicomposed iiof iia iinumber iiof
iisensor iinodes iiwith iia iinetworking iicapability iithat iiis
iideployed iifor iian iiad-hoc iifor iithe iipurpose iiof
iiongoing iimonitoring. iiThe iiparameters iiused iiin iithe
iiwater iireservation iicontrol iiare iiwater iilevels iiand
iimotor iimovement iiof iithe iigate iicontrolling iithe iiflow
iiof iiwater iiwhich iiis iimeasured iiby iithe iisensors,
iiwhich iiwill iisense iithe iicondition iiand iiforward iiit iito
iibase iistation iior iicontrol iiroom. iiThis iiproposed
iisystem iioffers iia iilow iipower iiconsumptioniiwithiihigh
iireliability iibased iion iithe iiresult. iiThe iiuse iiof iihigh
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 326
iipower iiWSN iiis iisuitable iifor iitasks iiin iiindustries
iiinvolving iihuge iiarea iimonitoring iilike iimanufacturing,
iimining iiconstructing, iietc., iiThe iisystem iidiscussed
iihere iiis iivery iieasy iito iiinstall iiand iithe iibase iistation
iican iibe iiplaced iiat iithe iilocal iiresidence iiclose iito iithe
iiarea iiof iimonitoring iiwhere iia iiperson iirequires
iiminimal iitraining iiat iithe iibeginning iiof iithe iisystem
iiinstallation. ii
Giuseppe iiAnastasi ii[16] iidesigned iia iiWSN-based
iisystem iito iimonitor iithe iiproductive iicycle iiof iihigh-
quality iiwine iiin iia iisicilian iiwinery. iiThis iiproject
iiaimed iito iiensure iioverall iigood iiquality iiof iithe
iiproduction. iiThe iidesign iiincorporates iiaccurate
iiplanning iiin iifield, iithe iistored iiproduct iipreservation.
iiWireless iiSensor iiNetworks iiare iideployed iias iithe
iisensing iiinfrastructure iiof iidistributed iisystem iito
iicontrol iiprototype iiproductive iichain, iinodes iihave
iibeen iideployed iiboth iiin iitheiifieldiiandiiiniitheiicellar,
iiwhere iiwine iiaging iiis iiproduced. iiThe iidata iiis
iicollected iiat iia iimain iiunit iiin iiorder iito iiprocess
iiinferences iithat iisuggest iitimely iiinterventions iithat
iipreserve iithe iigrapes iiquality.
iiRwan iiMahmoud ii[17], iiChen iiXianYi, iiJin iiZhi iiGang,
iiYang iiXiong ii[33] iidescribes iithe iisecurity iiissues iiof
iiInternet iiof iiThings iiwhich iiare iidirectly iirelated iito
iithe iiwide iiapplication iiofiitheiisystem.iiBeginningiiwith
iithe iiarchitecture iiand iifeatures iiof iiIOT, iiexpands
iimany iisecurity iiissues iithat iiexist iiin iithree iilayered
iiarchitectures, iiand iicame iiup iiwith iisolutions iito iithe
iiissues. iiThe iisafety iimeasures iiconcernediiwithiiit,iithe
iiones iiabout iiperception iilayer iiare iiparticularly
iiviewed, iiincluding iialgorithm iiand iikey iimanagement,
iisecurity iirouting iiprotocol iiand iidata iifusion
iitechnology, iias iiwell iias iiauthentication iiand iiaccess
iicontrol, iietc.
iiDragoş iiMihai iiOfrim ii[18], iiZulhani ii iiRasin, iiHizzi
iiHamzah iiMohd, iiShahrieel iiMohd iiAras ii[24] iidesigned
iian iiimproved iisystem iifor iienvironmental iimonitoring
iiand iicontrolling iiin iiterms iiof iiefficiency, iiflexibility
iiand iiperformance. iiSome iiparameters iithatiihaveiibeen
iitaken iiinto iiconsideration iiare iiresolution, iiaccuracy,
iiacquisition iirate, iienergy iiconsumption, iiflexibilityiietc.,
iiThe iidesigned iisystem iiallows iimulti-point iimonitoring
iiat iiany iilocation, iiwithout iiany iineed iiof iiwired
iiconnection iiand iihave iiintelligent iisensors. iiThe
iimeasuring iipoint iidensity iioffers iihigh iiaccurate iidata
iieven iifrom iithe iiremoteiilocations.iiAiisplitiiisiicreated,
iiin iiterms iiof iiphysical iiconnection, iibetween iithe
iimeasuring, iimonitoring iiand iicontrol iiparts, iimaking
iithe iisystem iiextremely iiflexible. iiThe iidisadvantage iiof
iithis iisystem iiis iiregarding iipoweriiconsumption,iiwhich
iiis iia iikey iifactor iiof iiwireless iisensor iinetworks.
iiTherefore, iithe iisensor iinodes iirequire iia iigood
iiresource iimanagement iiin iinetwork. iiThis iipaper iiuses
iiZig iibee iiprotocol. iiImprovements iiand iifurther
iidevelopments iiof iithis iisystem iipredicts: iialternative
iienergy iiresources, iialgorithms iifor iienergy iisaving,
iiincreased iiconnectivity iiand iireduced iitraffic. iiTo
iimonitor iithe iiparameters iifrom iia iigreater iidistance,
iithis iisystem iicould iibe
supplied iiwith iiGSM iior iiWi-Fi iitransmitters, iito iibe
iiable iito transfer iithe iiinformation iithrough iiexisting
iitelecommunication networks.
iiRachel iiCardell-Oliver ii[19] iidescribed iithe iidesign
iiand iiimplementation iiof iia iireactive iievent iidriven
iinetwork iifor iienvironmental iimonitoring iiof iisoil
iimoisture iiand iievaluates iithe iieffectiveness iiof iithis
iisolution. iiA iinovel iifeature iiis iito iicreate iia iisolution
iiis iiits iireactivity iito iithe iienvironment: iiwhen iirain
iifall iisand iisoil iimoisture iiis iichanging iirapidly,
iimeasurements iiare iicollected iifrequently, iiwhereas
iiduring iidry iiperiods iibetween iirainfall iievent
iimeasurements iiare iicollected iimuch iiless iioften. ii
iiallows iito iifocus iion iidynamic iiresponses iiand iilimit
iithe iiamount iiof iiuseless iidata iigathered, iias iiwell iias
iiimproving iirobustness iiand iinetwork iilifetime. iiThe
iimain iiaim iiof iithis iiexperiment iiis iito iidemonstrate iia
iireactive iisensor iinetwork iithat iican iideliver iiuseful
iidata iion iisoil iimoisture iiresponses iito iirainfall. iiThe
iiPin-jar iinetwork iimeets iithe iigoal iiofiiprovidingiiuseful
iidata iion iidynamic iiresponses iiof iisoil iimoisture iito
iirainfall. iiFuture iiwork iiwill iifocus iion iiaddressing iithe
iilimitations iiof iithe ii ii iiin iirobustness iiof iipacket
iidelivery iiand iinetwork iilongevity, iiand iiin
iiguaranteeing iinetwork iiresponse iito iievents iiof
iiinterest. iiAuthors iiplan iito iigeneralizeiievent-condition-
action iiframework iifor iiprogramming iireactive iisensor
iinetworks. ii
Duan iiYan-e ii[20] iiexplained iithat iiagricultural
iiinformation iitechnology ii(AIT) iiis iiwidely iiapplied iito
iievery iipart iiof iiagriculture iiand iiis iigoing iito iibecome
iithe iimost iiefficient iimeans iiand iitool iifor iienhancing
iiagricultural iiproduction iiand iifor iimaking iiuse iiof
iicomplete iiagricultural iiresources. iiAgriculture
iiInformation iiManagement iiaffects iithe iirange iiof
iiagricultural iiinformation iiand iithe iiefficiency iiof
iiagricultural iiproduction. iiIn iithis iiexperiment, iion iithe
iicount iiof iiintroducing iithe iiconcept iiof iiagricultural
iiinformation iimanagement iiand iianalyzing iisome iiof
iithe iifeatures iiof iiagricultural iidata, iithe iidesign
iimethod iiand iiarchitecture iiof iiIntelligent iiAgriculture
iiMIS iiwere iidesigned iiin iidetail, iifinally, iithe iiproposal
iigives iian iiimplementation iiillustration iiof iithe iisystem
iiin iiagricultural iiproduction. ii
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 327
Fiona iiEdwards iiMurphy ii[21] iiproposed iisystem iiuses
iiWireless iiSensor iiNetwork ii(WSN) iitechnology iito
iimonitor iia iihoneybee iicolony iiand iicollectiiinformation
iiabout iithe iiactivity iiwithin iia iibeehive iiasiiwell iiasiiits
iisurrounding iiarea.iiTheiiprojectiiusesiilow-poweriiWSN
iitechnologies, iiincluding iinovel iisensing iitechniques,
iienergy-neutral iioperation, iiand iimulti-radio
iicommunications iiincluding iicloud iicomputing iito
iimonitor iithe iiconditions iiwithin iithe iicolony. iiWSN iiis
iia iimodern iinew iitechnology, iiit iiis iian iiimportant
iiconcept iiof iithe iiInternet iiof iiThings. iiA iicomplete
iisolution iiis iipresented iiincluding iia iismart iihive
iicommunication iiwith iidata iiaggregation iiand
iivisualization iitools. iiFuture iiwork iiwill iifocus iion
iiimproving iithe iienergy iiperformance iiof iithe iisystem,
iiintroducing iia iimore iispecialized iiset iiof iisensors,
iiimplementing iia iimachine-learning iialgorithm iito
iiextract iimeaning iifrom iithe iidata iiwithout136 iihuman
iisupervision; iiand iisecuring iiadditional iideploymentsiiof
iithe iisystem.
In ii[43], iithe iiauthors iihave iiproposed iian iiirrigation
iisystem iithat iiassists iito iidiminish iiwateriiwastageiiand
iimechanizing iithe iiwater iisystem iistructure iifor iihuge
iiregions iiof iicropland. iiThe iisystem iievaluates iithe
iinecessity iiof iiwater iiin iithe iicrop iibased iion iithe
iibehavior iiof iiatmospheric iitemperature,iihumidity,iiand
iisoil iimoisture. iiThe iiframework iiutilizes iia iimachine
iilearning iitechnique iiand iicontrasts iisensed iivalues
iiacquired iifrom iisensors iiand iilimits iivalues iithatiihave
iibeen iigiven iito iimachine iilearning iifor iifurther
iianalysis. iiAfter iithis iiprocedure, iithe iiML iialgorithm
iicross-checks iithe iioutcome iiacquired iiwith iithe
iiweather iiforecast iiand iiafterwardiiprovidesiia iidecision
iion iiwhether iiwater iisupply iishould iibe iidone iior iinot
ii[44]. iiThe iiuser iigets iian iiimmediate iinotification iion
iihis iimobile iiphone iiand iihe iican iidecide iito iiturn iion
iithe iiwater iisupply iiwith iia iisimple iiclick. iiAlso, iithe
iiframework iihas iia iiweb iiapplication iiand iiis iiuseful iiif
iiat iiany iipoint iithe iiuser iineeds iito iisee iitheiianalytical
iisensor iiinformation iiand iievaluate iithe iichanges iiin
iisensor iireadings iiall iithrough iia iitimeframe.iiMoreover,
iithe iiframework iican iibe iialignediiforiivariousiisorts iiof
iiplants, iithat iiis, iithe iiclient iiis iigiven iia iilist iiof iiplant
iidecisions iiin iihis iiweb iiapplication iiand iimobile
iiapplication ii[45]. iiWith iithis, iithe iifarmer iican iipick
iithe iiparticular iisort iiof iiplant iithat iiis iibeing
iicultivated iiand iiget iian iiincreasingly iiexact iithreshold
iilimit iiand iiin iithis iimanner iia iiprogressively iiprecise
iiirrigation iiprediction. iiIn iiaddition, iian iiSMSiialertiican
iibe iicoordinated iiby iichance iithere iiisiinoiiwebiiaccess.
iiWith iithis, iithe iiclient iiwouldiibeiiinformediiaboutiithe
iipredictions iiutilizing iian iiSMS iiand iiheiicaniidecideiito
iiturn iion iior iioff iithe iiwater iisupply iito iithe iicrop iiby
iianswering iithe iiSMS iithat iithe iiuser iireceived.
In ii[46], iithe iiauthors iihave iiintroduced iiIoT iito iidetect
iithe iiphysical iidata iiand iisend iiit iito iithe iiuser. iiThey
iialso iihighlighted iimethodologies iithat iican iibeiiutilized
iito iiprovide iisolutions iito iidifferent iiproblems iilike
iirecognizing iirodents, iiand iiseveral iirisks iito iicrops.
iiIoT iidevice iiis iideveloped iiusing iipython iiscripts,
iiwhich iican iisend iia iinotification iiwith iino iihuman
iiinterference. ii
In ii[47], iithe iiauthors iihaveiidiscussediitheiiconceptsiiof
iiweb iiservices iiand iiIoT iiwhichiihaveiia iigreatiicapacity
iiin iihandling iitheiihugeiidata iiregardingiitheiicultivation
iifield iiby iiusing iithe iiconcept iiof iithe iiinternet iiof
iithings iiand iiother iiweb iiservices. iiThis iicombination
iiof iicloud iiservices iiand iiIoT iihas iiadvanced iiquickly
iiand iialso iicontributed iia iilotiitoiidevelopingiinumerous
iismart iisolutions iifor iithe iiproblems iiin iiagricultural
iifields iias iiwell iias iiproblems iifaced iiby iithe iifarmers,
iivery iiproductively ii[48]
In ii[49], iithe iiauthors iiproposed iian iiintelligent iiwater
iisystem iithat iiwill iigo iiabout iias iia iibenefit iiby
iioptimizing iithe iiwater iisystem iiwhile iishowing iithe
iiissue iiof iiwater iideficiency iiby iiinitiating iioptimal
iiutilization iiof iiwater iithrough iimodernized iiIoT-based
iiprocedure. iiThe iibrilliant iiirrigation iimodule iican iibe
iialtered iito iithe iiparticular iineed iiof iidifferent iiyields.
iiThis iiinformation iican iibe iiput iiawayiioniitheiiserverii
[50]. iiGiven iithe iiharvest iichosen iiby iithe iifarmer iion
iithe iimobile iiapps, iiinformation iiwould iibe iiretrieved
iifrom iithe iiserversiiandiitheiiframework iiwouldiimodify
iiitself iiaccordingly, iibringing iiabout iian iiefficient
iiirrigation iisystem iiand iiexpanded iiyields
3. iiRESEARCH iiGAP
3.1 iiAgricultural iiAutomation iiAnd iiRobotics:
ii(PRESENT iiAPPLICATIONS)
In iiagriculture, iithe iiautomation iiof iispecific iioperations
iihas iienabled iithe iifarmers iito iimanage iicrop
iiproduction iiefficiently iiwith iiless iienergy iiand iicost.
iiFactors iisuch iias iithe iilack iiof iiagricultural iiworkers
iiin iiaddition iito iithe iiaging iifarmer iipopulation iiand
iithe iiincreasing iiagricultural iiwage iihave iimade iithe
iifarmers iiand iiresearchers iiplay iiinterest iiin iithe
iidevelopment iiof iiautomation iisystems iiin iiagriculture.
iiThe iiimplementationiiandiidevelopmentiiofiiagricultural
iiautomation iihave iibeen iiexecuted iiby iiautonomous
iirobots iiand iiagricultural iitypesiiofiimachineryiisuch iias
iitractors iiwhich iiare iiusually iiattached iiwith
iicultivators, iiplanters, iicultipacker, iiand iichisel iiplows.
iiFigure ii1 iishows iiseveral iiagricultural iirobots iiand
iitypes iiof iimachinery iiwhich iirequire iiautomation iito
iienhance iithe iiefficiency iiofiitheiiagricultural iioperation.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 328
iiBased iion iiFigure ii1, iithe iiapplication iiof iiautomation
iiand iirobotics iiin iiagriculture iican iibe iivaried
iisignificantly. iiThe iiexecution iiof iiagricultural
iioperations iineeds iito iibe iiexecuted iiby iidifferent
iirobotics iiand iivehicle iistructure iibased iion iithe iitype
iiof iiland iiand iioperation iirequirement. iiDifferent iirobot
iiand iivehicle iistructures iihad iiits iilimitation iithatiineed
iito iibe iisolved iiby iiusing iiother iitypes iiof iimachinery.
iiThe iirobotic iistructure iicannot iiexecute iiextreme
iioperations iiin iiagriculture iidue iito iiits iisensitive
iicharacteristic iitoward iiwater iiand iimud. iiTherefore,
iithe iitractor iiis iibeing iiused iito iiexecute iisuch iia iitask
iidue iito iiits iigreat iiability iito iitraverse iiinside iithe
iimuddy iistructure iiand iiless iiprotection iiagainst
iielectronic iicircuits. iiOn iithe iiother iihand, iitractor
iiapplications iiare iionly iilimited iito iia iiwide iiarea iidue
iito iitheir iilarge iistructure. iiThus, iithe iiapplication iiof
iithe iismall iiarea iineeds iito iibe iiexecutediibyiia iimobile
iirobot. iiFor iidrone iiapplication, iiit iiis iionly iiapplicable
iito iiopen iiareas iiand iiits iiapplication iiwould iibe
iiinsignificant iito iia iiclosed iiarea iisuch iias iithe
iigreenhouse iias iithe iiprobability iiof iicollision iiwill iibe
iiincreased. iiTo iiexplore iimore iithe iipresentiiapplication
iiof iiautomation iiand iirobotics iiin iiagriculture, iithe
iicategorization iiwas iimade iibased iion iithe iidifferent
iiagricultural iioperations.
i
i
ii ii ii ii ii ii ii ii ii ii ii
Figure ii1. iiAgriculture iirobot iiand iimachineries ii(a)
iiBoniRob ii[23] ii(b) iiShrimp iirobot ii[24](c) iiChisel
iicultivator ii[25] ii(d) iiDJI iiAGRAS iiMG-1S iiDrone
iisprayer ii[26](e) iiCombined iiharvester ii[27]
3.1.1 iiPlanting
Planting iiis iithe iiprocess iiof iiputting iiseeds iior iiyoung
iiplants iiinto iithe iiground iito iibeginiitheiigrowthiiphase
iiof iithe iiplant. iiThis iiprocedure iinecessitates iia iihigher
iilevel iiof iiprecision iibecause iivarious iiplants iirequire
iivaried iidistances iibetween iithem iito iioptimizeiigrowth
iiand iioutput. iiA iifarmer iimust iiphysically iiinsert iieach
iiseed iiinto iithe iisoil iiin iithe iitraditional iiplanting
iiprocess. iiThis iimethod iinecessitates iia iisignificant
iiamount iiof iitime iiand iieffort iibecause iithe iiprocess
iirequires iia iihigh iilevel iiof iiconsistency iiand iiprecision,
iiand iiit iitypically iispans iia iilargeiiagricultural iiarea.iiAs
iia iiresult, iia iiplanter iimachine iihas iibeen iiinvented, iiin
iiwhich iithe iifarmer iiwill iioperate iithe iimachine iiby
iicontrolling iithe iimachine. iiThe iimachine iiwill iinot iibe
iiin iia iistraight iiline, iiand iithere iiwill iibe iicertain
iiregions iiwhere iithe iiplanter iiwill iibe iiunable iioriimiss
iiplanting iithe iiseed. iiAs iia iiresult, iian iiefficient
iiautonomous iisystem iiis iirequired iithat iiensures iithe
iiproduction iiof iia iistraight-line iiplant iirow iiand iidoes
iinot iimiss iiany iiseed iiplanting. iimotion iiwhile
iisimultaneously iiplanting iithe iiseed iiinto iithe iisoil.
iiFigure ii2 iidepicts iithe iiplanters iithatiihaveiibeeniibuilt
iifor iithe iiplanting iiof iivarious iiplants. iiAs iishown iiin
iiFigure ii2, iithe iidesigned iiplanter iiis iinormally iipulled
iibehind iia iitractor iiand iiused iito iiplant iiseeds iiin iia
iirepetitive iiaction. iiBecause iithe iitractor iiand iiplanter
iiare iioperated iiby iihumans, iithe iirow's iiconsistency
iiwill iibe iiimpacted iibecause iithe iirow iiwill iinot iibe iiin
iia iistraight iiline iiand iithere iiwill iibe iisome iilocations
iiwhere iithe iiplanter iiis iiunable iior iimisses iito iiplant
iithe iiseed. iiAs iia iiresult, iian iiefficient iiautonomous
iisystem iiis iirequired iithat iiwill iiensure iithat iia
iistraight-line iiplant iirow iiis iiproduced iiand iithat iino
iiseed iiplanting iiis iimissed.
Figure ii2. iiPlanters ii(a) iiSingle-seed iicorn iiplanter
ii[28], ii(b) iiMinimum-tillage iiplanter ii[29], ii(c) iiBillet
iiplanter ii[30]
3.1.2 iiInspection
In iiagriculture, iiinspection iirefers iito iithe iiprocess iiof
iiinspecting iior iiobserving iiplants iifor iidiseases iior
iiquality iiflaws. iiPlant iidiseasesiiareiitheiiprimaryiicause
iiof iireduced iiproductivity iiin iiagriculture, iiwhich
iiresults iiin iieconomic iilosses. iiBecauseiitheiiagricultural
iienvironment iiis iiso iidynamic, iiplants iiand iitheir
iiproducts iihave iibeen iiaffected iiby iia iivariety iiof
iiunexpected iiand iitypical iistress iiscenarios iisuch iias
iichanges iiin iitemperature, iihumidity, iiwater iilevels,
iidisease iioutbreaks, iiand iipests. iiFarmers iihave
iitypically iiused iitheir iihuman iivision iisystem iito
iimanually iiinspect iiplant iianomalies iito iicarry iiout iithe
iiinspection. iiFarmers' iiages iihave iirisen iiin iirecent
iiyears, iireducing iithe iiefficiency iiof iiinspection
iioperations iisince iithe iiquality iiof iithe iihuman iivision
iisystem iideteriorates iiwith iiage. iiFurthermore, iithe
iiadoption iiof iiagricultural iiinspection iiautomation
iinecessitates iithe iidevelopment iiof iia iisystem iito
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 329
iireplace iithe iiability iiof iihuman iivision iito iicarry iiout
iithe iiinspection iiprocess. iiAs iia iiresult, iicomputer
iivision iiis iiincreasingly iibeingiiusediitoiireplaceiihuman
iivision iiin iiagricultural iiplant iiinspection.
3.1.3 ii iiSpraying
In iiagriculture, iispraying iiis iia iicommon iiway iiof
iiadministering iipest-control iichemicals, iifertilizers, iior
iigrowing iimedia iito iiplants iiin iithe iiform iiof iia iifine
iimist iifor iidisease iitreatment iiand iiplant iigrowth
iimanagement. iiTo iilimit iithe iispread iiof iiillnesses,iipest
iicontrol iichemicals iiare iinormally iiadministered
iiconsistently iiover iithe iifields iiin iimost iifarming
iioperations. iiEven iithough iiseveral iipestsiiandiiillnesses
iihave iian iiuneven iispatial iidistribution, iiespecially
iiduring iithe iiearly iiphases iiof iidevelopment, iithis
iistrategy iiis iiused.
As iia iiresult, iiin iithe iilast iitwo iidecades, iiselective
iispraying iihas iibeen iideveloped iiand iiexplored iito
iireduce iithe iicost iiof iipest-control iichemicals iiused iiin
iiagricultural iioperations. iiThe iiautomated iiselective
iispraying iitechnique, iiwhich iiis iinormally iicarried iiout
iiby iihighly iiautomated iiequipment iior iimobile iirobots,
iiallows iipesticide iiapplication iito iibe iitargeted iionly
iiwhere iiand iiwhen iiit iiis iineeded. iiThe iimajor iigoal iiof
iithis iitargeted iioperation iiis iito iireduce iipesticide
iiusage iiwhile iialso iiavoiding iithe iidevelopment iiof
iiinfection iiand iisubsequent iiepidemics iiacross iithe
iigreenhouse.
3.1.4 iiHarvesting
Harvesting iiis iithe iiprocess iiof iigathering iiagricultural
iigoods iito iibe iiprocessed iior iisold iiin iiagriculture.iiThe
iifruits iior iivegetables iimust iibe iicollected iiand iistored
iifor iifurther iiprocessing iior iisold iidirectly iito iithe
iibuyers iito iirun iithis iioperation. iiThis iimethod iiis
iirecognized iias iia iitime-consuming iiand iilabor-intensive
iiprocess iisince iiit iinecessitates iiextensive iiobservation
iiand iia iirepeating iioperation.
As iia iiresult, iithroughout iithe iilast iifew iidecades, iithe
iidevelopment iiof iiautonomous iiharvestingiisystemsiihas
iibeen iiextensively iipursued.
Several iiimplementations iifor iivarious iitypes iiof iicrops
iihave iibeen iidone iiin iithe iilast iifew iiyears, iiincluding
iistrawberry, iiapple, iitomato, iikiwi, iicapsicum, iigrape,
iilitchi, iicitrus iipumpkin, iiand iiheavyweight iicrop. iiThe
iimajority iiof iiimplementations iiare iiaimed iiat
iiimproving iithe iiaccuracy iiof iiharvesting iisystems iiby
iiproposing iia iivariety iiof iiapproaches iiand iimethods,
iieach iiwith iiits iisoftware iiand iihardware iiarchitecture.
3.2 iiCommunication iiTechnologies iiIn iiIOT iiBased
iifarms
According iito iia iisurvey iiof iiIoT iicommunication
iitechnologies ii[31,32], iicommunication iitechnologies
iimust iigradually iiimprove iithe iievolution iiof iiIoT
iidevices iito iiincorporate iiIoT iiinto iithe iismart
iiagriculture iisector. iiThey iihave iia iisignificant iiimpact
iion iithe iidevelopment iiof iiIoT iisystems. iiProtocol,
iispectrum, iiand iitopology iiare iithe iithree iitypes iiof
iiextant iicommunication iisystems.
Protocols: iiFor iithe iismart iiagriculture iisector, iiseveral
iiwireless iicommunication iiprotocols iihave iibeen
iideveloped. iiDevices iiin iia iismart iiagricultural iisystem
iican iicommunicate, iiexchange iiinformation, iiand iimake
iidecisions iibased iion iithese iiprotocolsiitoiimonitoriiand
iicontrol iifarming iiconditions iiand iiincrease iiyields iiand
iiproduction iiefficiency. iiBased iion iithe iicommunication
iirange, iithe iicommon iilow-power iicommunication
iiprotocol iinumbers iiused iiin iismart iiagriculture iimay
iibe iisplit iiinto iishort-range iiand iilong-rangeiicategories.
- iiShort-range: iiNFMI ii(near-field iimagnetic iiinduction)
ii[33], iiBluetooth ii[34], iiZigBee ii[35], iiterahertz ii(Z-
Wave) ii[36,37], iiand iiRFID ii[38]. ii
- iiLong-range: iiLoRa ii[39], iiSigfox ii[40], iiand iiNB-IoT
ii(Narrowband iiIoT) ii[41]
Table ii1 iishows iisome iiof iithe iimost iicommon
iicommunication iitechnologies iiused iiin iismart
iiagriculture. iiShort-range iicommunication iitechnologies
iihave iia iitransmission iidistance iiof iiless iithanii20ii(m),
iia iihigh iienergy iiefficiency, iiand iia iilow iidata iirate,
iiaccording iito iithe iivalues iiin iiTable ii1.
Long-range iicommunication iisystems, iion iithe iiother
iihand, iihave iitransmission iidistances iiof iiup iito iimany
iitens iiof iikilometers, iirequire iimore iienergy, iiand iiare
iiinstalled iifor iibackhaul iidevice-to-device iiconnections.
iiSundaram iiet iial. iigiveiia iidiverseiiassessmentiiofiilow-
power iicommunication iitechnologies iifor iiIoT iithat
iiincludes iisolutions, iiproblems, iiand iisome iioutstanding
iitopics. ii[42]
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 330
Table ii1. ii iiSome iitypical iicommunication iitechnologies
iifor iismart iiagriculture.
4. iiOBJECTIVE
Every iiaspect iiof iitraditional iifarming iiprocesses iican
iibe iisignificantly iitransformed iiby iiincorporating iithe
iilatest iisensor iiand iiIoT iitechnologies iiinto iiagricultural
iipractices. iiCurrently, iithe iiseamless iiintegration iiof
iiwireless iisensors iiand iithe iiInternet iiof iiThings iiin
iismart iiagriculture iicaniitakeiiagricultureiitoiipreviously
iiimagined iiheights. iiIoT iican iihelp iito iienhance iithe
iianswers iito iimany iitraditional iifarming iichallenges,
iisuch iias iidrought iiresponse, iiyield iioptimization, iiland
iiappropriateness, iiirrigation, iiand iiinsect iimanagement,
iiby iiimplementing iismart iiagriculture iimethods. iiA
iihierarchy iiof iiimportant iiapplications, iiservices, iiand
iiwireless iisensors iiutilized iiin iismart iiagriculture
iiapplications iiis iishown iiin iiFigure ii3. iiIntegrating
iiMachine iiLearning iiin iithis iiarchitecture iiwill iinotiijust
iiinform iius iiabout iithe iistated iiproblems iibut iialso
iihelp iius iimonitor iithe iicrop iiand iifollow iithe iidata
iiand iipredict iihow iithe iicrop iiwill iiperform iibut iialso
iiprovide iisolutions iiwhen iiany iiirregularities iioccur. ii
ii ii ii ii ii Figure ii3. ii
ii5. iiIMPLEMENTATION
ii5.1 iiImplementation iiof iiIoT iiEcosystem.
We iipropose iia iicommon iiarchitecture iifor iian iiIoT
iiecosystem iifor iismartiiagricultureiiiniithisiipart,iiwhich
iiis iimade iiup iiof iithree iikeyiicomponents:iiIoTiidevices,
iicommunication iitechnologies, iiand iidata iiprocessing
iiand iistorage iisolutions. iiFigure ii4 iishows iian
iiillustration iiof iithe iiIoT iiecosystem iifor iismart
iiagriculture.
Figure ii4. ii iiAn iiillustration iiof iiIoT iiecosystems’
iiarchitecture iifor iismart iiagriculture
Sensors iito iicollect iidata iifrom iithe iienvironment,
iiactuators iiwith iiwired iior iiwireless iiconnections, iiand
iian iiembedded iisystem iiwith iia iiCPU, iimemory,
iicommunication iimodules, iiinput-outputiiinterfaces,iiand
iibattery iipower iiare iiall iistandard iicomponents iiof iian
iiIoT iidevice. iiFigure ii5 iidepicts iithe iicommon
iiarchitecture iiof iia iitypical iiIoT iidevice iifor iismart
iiagriculture. ii
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 331
Figure ii5. iiAn iiillustration iiof iithe iicommon
iiarchitecture iiof iian iiIoT iidevice
5.2 iiMachine iiLearning
Using iisupervised iiMachine iiLearning iialgorithms,
iipreviously iilabeled iidata iiwith iiknown iiresponses iiare
iisupplied iito iithe iimachine iito iiunderstand iithe
iipatterns iiinvolved. iiIt iiexamines iiseveral iitypes iiof
iidata, iias iiwell iias iithe iianswers iito iivariousiiproblems,
iito iidiscover iia iipattern. iiThis iistage iiis iiknown iias
iidata iitraining. iiThe iimore iidata iithere iiis, iithe iimore
iiprecise iithe iiresults iiwill iibe. iiTesting iithe iidata iiis
iithe iinext iistep iiin iisupervised iimachine iilearning. iiIn
iithis iistep, iithe iimachine iiis iigiven iia iiproblem iito
iisolve, iiand iithe iimachine, iiknowing iithe iipattern iiof
iisolving iithe iiproblem iiand iithe iivarious iireplies,
iiprovides iithe iimost iiappropriate iianswer.
The iiresult's iiaccuracy iiwill iibe iidetermined iiby iithe
iiamount iiof iithe iidata, iithe iialgorithms iiemployed iiin
iithe iidata, iiand iiseveral iiother iiaspects iisuch iias iinoise
iiand iioutliers iiin iithe iidata iiused iias iitraining iiinput.
iiThe iitwo iimost iiimportant iisteps iiiniianyiiclassification
iiare iilearning iiand iiprediction. iiIn iithe iilearning
iiprocess, iithe iimodel iiis iibuiltiiusingiitheiifeediitraining
iidata. iiIn iithe iiprediction iistep, iithe iimodel iishould
iiforecast iithe iiresults iibased iion iithe iitraining iidata. iiA
iidecision iitree iialgorithm, iian iiefficient iicategorization
iisystem, iican iibe iiused iito iiperceive iiand iiinterpret
iidata. ii
ii ii ii ii ii ii ii ii ii ii ii iiFigure ii6. iiData iiFlow iiDiagram
The iidata iiflow iidiagram iirepresents iithe iidirection iiof
iiflow iiof iidata iiregarding iia iisystem. iiIt iiprovides
iiinputs iiand iioutput iiof iithe iientities iipresent iiin iithe
iisystem. iiThe iidata iiflow iimodel iifor iithe iiproposed
iisystem iiis iias iiin iiFigure ii6.
5.2.1 Algorithm
ii iiThe iidecision iitree iialgorithmiiisiioneiiofiitheiimost
iiefficient iiand iisimple iialgorithms iiamong iithe
iisupervised iilearning iifamily iiof iialgorithms. ii
 iiThe iidecision iitree iialgorithm iiis iiused iito iisolve
iiseveral iiregression iiand iiclassification iiproblems,
iiunlike iithe iiother iialgorithms iiin iisupervised iilearning.
ii
 iiThe iimain iiobjectiveiiof iitheiidecisioniitreeiialgorithm
iiis iito iitrain iithe iimodel iiwhich iican iipredict iithe
iivalue iior iiclass iiof iithe iitargetiivariableiibyiigenerating
iiclear iiand iiuncomplicated iidecision iirules iiderived
iifrom iithe iiprevious iidata iii.e., iitraining iidata. ii
 iiTo iipredict iia iiclass iilabel iiof iia iirecord, iiit iiis
iirequired iito iistart iifrom iithe iifirst iinode iiwhich iiis
iiroot iinode iiof iithe iidecision iitree. iiThe iirecord’s
iiattribute iishould iibe iivalidated iiwith iithe iivalues iiof
iievery iiroot iiattribute. ii
 iiBased iion iithe iivalidations, iia iipath iicontaining
iibranches iiis iifollowed iiwith iithe iimatching iivalue iiand
iijumps iito iithe iisucceeding iinode iias iishown iiin iifigure
ii7.
Microcontroller
iito iiBOLT iiIOT
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 332
Terminology iiin iidecision iitrees iiare:
ii iiRoot iinode: iiIt iiis iia iistarting iinode iior iia iiparent
iinode iithat iiis iidivided iiinto iitwo iior iimore iianalogous
iisets.
ii iiLeaf iinode: iiThese iiare iilower-level iinodes iiof iithe
iitree iiwhich iidoesn’t iisplit iifurther. ii
 iiDecision iinode: iiIt iiis iia iisub-node iisplitting iiinto
iimore iisub-nodes.
ii iiSplitting: iiIt iiis iithe iiprocess iiof iisplitting iia iinode
iiinto iimore iinodes.
ii iiPruning: iiremoving iiof iisub-nodes, iireverseiiprocess
iiof iisplitting.
 iiSub-tree/Branch: iiIt iiis iia iipart iiof iian iientire
iidecision iitree. iiChild iinode: iiThe iinode iievolved iifrom
iithe iiparent iinode iiby iisplitting.
ii ii ii ii ii ii ii ii ii ii
ii
ii ii ii ii ii ii Figure ii7. iiSample iiDecision iiTree
5.2.2. iiArchitecture ii
The iimain iicomponents iiof iithe iiproposed iisystem
iiarchitecture iiare iitemperature, iisoil iimoisture,
iihumidity, iilight, iiwater iilevel, iirain iisensors, iiBolt iiIOT
iikit, iiand iiArduino iiUno iimicrocontroller.
ii iiBOLT iiIOT ii iiplays iia iicentral iirole iiin iithe iisystem
iiby iiproviding iistorage iito iithe iidatasets iiand iihosting
iia iiweb iiserver. ii
 iiAll iithe iisensors iiare iideployed iiin iithe iifield iiand
iiare iiconnected iito iiArduino iiUNO iias iishown iiin
iiFigure ii8. ii
 iiThe iidata iisensed iithrough iithese iisensors iiare iisent
iito iiArduino iiUno iiand iiprocessed iiin iiitiiandiitheniivia
iiBolt iiIoT iiWifi iiModule iisent iito iithe iiBolt iiIOT iicloud.
ii iiDecision iitree iialgorithm iiis iiapplied iito iithe
iidatasets iito iipredict iithe iiaccurate iiresults
. ii iiThe iiresult iiis iisent iito iithe iifarmer iithrough iian
iiemail/Sms iicontaining iiall iithe iiupdates iiof iithe iifarm.
ii iiAll iidata iisent iifrom iithe iisensors iito iithe iiArduino
iiUNO iiand iithen iito iithe iiBolt iiIoT ii iiare iistored iiin iia
iicloud iidatabase iifor iifuture iiuse.
5.2.3. iiDataset
iiDatasets iicontainingiivaluesiiofiitemperature,iihumidity
iiand iisoil iimoisture, iiwater iilevel iiareiiloadediiintoiithe
iidecision iitree iialgorithm. iiThese iidatasets iicontain
iivalues iiof iidifferent iiscenarios iiin iithe iifields iito iitrain
iithe iimodel iiaccurately. iiThe iitemperature iiis iiCelsius,
iiand iihumidity iiand iisoil iimoistureiiareiirepresented iiin
iipercentages. iiSample iidatasets iiareas iishow iiin iiTable
ii2.
ii ii ii ii ii iiTable ii2. iiSample iiDatasets
5.3 Anomaly iiDetection
Anomaly iidetection iiis iithe iiprocess iiof iilocating
iiunusual iithings iior iievents iiin iidata iisets iithat iiare
iiout iiof iithe iiordinary.
Anomalies iiin iisimple iigraph iirepresentations iican iibe
iieasily iispotted iiby iisetting iithresholds, iie.g.
But iiwhat iiabout iivisualizations iiin iiwhich iithresholds
iiaren't iipossible iito iiset?
A iitechnique iifor iidetecting iianomalies iiis iiZ-score
iiAnalysis.
Essentially, iithe iiZ-score iiis iiused iito iicompute iilimits,
iior iiupper iiand iilower iibounds, iifor iiplotted iidata.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 333
ii iiFigure ii10. ii iiAn iiillustration iiof iia iifully
iiautomated iiIOT-based iiindoor iifarm iiecosystem.
6. iiDESIGN iiAND iiARCHITECTURE
6.1 iiArduino iiUno
The iiArduino iiUno iiis iia iiMicrochip iiATmega328P-based
iiopen-source iimicrocontroller iiboard iicreated iiby
iiArduino.cc. iiThe iiboard iihas iidigital iiand iianalog
iiinput/output ii(I/O) iipins iithat iican iibe iiused iito
iiconnect iito iidifferent iiexpansioniiboardsii(shields)iiand
iiother iicircuits. iiThe iiboard iicontains ii14 iidigital iiI/O
iipins ii(six iiof iiwhich iican iibe iiused iitoiigenerateiiPWM
iioutput) iiand ii6 iianalog iiI/O iipins, iiand iiit iican iibe
iiprogrammed iiusing iithe iiArduino iiIDE ii(Integrated
iiDevelopment iiEnvironment) iiand iia iitype iiB iiUSB
iiconnector. iiIt iican iibe iipowered iiby iia iiUSB iicable iior
iian iiexternal ii9-volt iibattery, iiand iiit iican iihandle
iivoltages iiranging iifrom ii7 iito ii20 iivolts. iiIt iiresembles
iithe iiArduino iiNano iiand iiLeonardo iiin iiappearance.
The iihardware iireference iidesign iiis iiavailable iion iithe
iiArduino iiwebsite iiunder iia iiCreative iiCommons
iiAttribution-Share-Alike ii2.5iilicense.iiSomeiiversions iiof
iithe iihardware iihave iilayout iiand iiproduction iifiles
iiavailable.
6.2 iiBOLTIOT iikit
For iithe iiBolt iiDevices iiconnected iito iiyour iiaccount,
iithe iiBolt iiCloud iiAPI iiprovides iian iiinterface iifor
iiconnection iibetween iithe iiBolt iidevices iiand iiany ii3rd
iiparty iisystem iicontrol, iimonitoring, iicommunication,
iiand iiutility iiservices. iiThe iiBolt iiCloud iiAPI iimakes
iiuse iiof iimobile iiapps, iiweb iiservers, iiand iiPython
iiprogrammes, iiamong iiother iithings.iiTheiiAPIiiemploys
iithe iiHTTP iiGET iiand iiHTTP iiPOST iimethods iito
iicommunicate iiand iiuses iia iivery iiuser-friendly iiHTTP
iiprotocol. iiAs iia iiresult, iiusers iican iiprogrammatically
iiexecute iioperations iiand iiobtain iidata iifrom iiBolt
iidevices iiusing iistandard iiHTTP iirequests.
Here iiare iia iifew iiexamples iiof iihow iithe iiAPI iican iibe
iiused:
To iicontrol iiand iimonitor iiBolt iidevices iiover iithe
iiInternet, iiuse iithe iiAPI iiin iinative iiiOS iiand iiAndroid
iiapps.
To iiexecute iiyour iiuniqueiiAIiialgorithmsiiandiianalytics,
iipull iisensor iidata iiand iiconnect iiit iito iia iiBolt iidevice
iior iiany iiother iicloud.
Use iiBolt iiCloud iito iiconnect iito iiany iiVPS ii(Virtual
iiPrivate iiServer) iiand iirun iiyour iicode iiin iiany
iilanguage. iiRefer iito iithe iicode iiexamples.
Remote iiOperating iiSystem: iiUsing iithe iiAPI, iiBolt
iidevices iican iifunction iisimilarly iito iia iiboard iiwithiian
iioperating iisystem, iisuch iias iithe iiRaspberry iiPi iior
iiBeagle iiBone, iiwith iitheiiexceptioniithatiitheiioperating
iisystem iiwill iibe iihosted iion iia iiremote iiVPS ii(Virtual
iiPrivate iiServer). iiThe iiBolt iiwill iicollect iidata iifrom
iithe iisensors iiand iisend iiit iito iia iiLinux-based iiVPS.
iiThe iiprocessing iiwill iitake iiplace iion iithe iiVPS,iiwhich
iiwill iisend iicommands iito iithe iiBolt iideviceiitoiicontrol
iimotors, iiLEDs, iiand iiactuators. iiIn iithis iitype iiof
iisystem, iiyou iican iiuse iiall iiof iithe iicapabilities iiof iia
iiLinux iiOS.
6.3 iiLM35 iiTemperature iiSensor
The iisystem's iifunctioning iipremise iiis iistraightforward.
iiAllow iime iito iiexplain.
The iiLM35 iisensor iiin iiour iisystem iidetects iithe
iitemperature iiof iiits iisurroundings iiand iicreates iian
iianalogue iioutput iivoltage iibased iion iiits iivalue. iiThe
iiLM35's iianalogue iivoltage iiis iithen iifed iiintoiitheiiBolt
iiA0 iipin iias iian iiinput. iiThe iiBolt iithen iiconverts iithe
iianalogue iivalue iito iia iiten-bit iidigital iinumber
iibetween ii0 iiand ii1023. iiThe iiBolt iidevice iisends iithis
iidigital iidata iito iithe iicloud.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 334
As iia iiresult, iiwhile iiplotting iithe iitemperature, iithe
iiraw iisensor iiresults iimust iibe iiconverted iiinto iithe
iireal iitemperature iivalue, iiwhich iiis iidone iiusing iithe
iifollowing iiformula:
temp ii= ii(analog_value100)/1023*
The iiconverted iidigital iidata iiis iithen iiplotted iifor
iivisual iirepresentation.
6.3 iiDHT11 iiSensor
6.4 iiWater iiLevel iiSensor
The iiwater iilevel iisensor iiis iia iidevice iithatiidetects iian
iiexcessively iihigh iior iilow iiliquid iilevel iiin iia
iistationary iicontainer. iiIt iican iibe iiclassified iiinto iitwo
iisorts iibased iion iihow iithe iiliquid iilevel iiis iimeasured:
iicontact iitype iiand iinon-contact iitype. iiA iicontact
iimeasurement iiis iian iiinput iitype iiwater iilevel
iitransmitter iithat iiturns iithe iiheight iiof iithe iiliquid
iilevel iiinto iian iielectrical iisignal iifor iioutput. iiIt's iia
iifrequently iiutilised iiwater iilevel iitransmitter iiright
iinow.
6.5 iiServo iiMotor
A iiservo iimotor iiis iian iielectromechanical iidevice iithat
iiuses iicurrent iiand iivoltage iito iiproduce iitorque iiand
iivelocity. iiA iiservo iimotor iiis iipart iiof iia iiclosed iiloop
iisystem iithat iiprovides iitorque iiand iivelocity iias
iidirected iiby iia iiservo iicontroller iiand iiisiiclosediiby iia
iifeedback iidevice. iiThe iifeedback iidevice iiprovides
iiinformation iito iithe iiservo iicontroller,iiwhichiimodifies
iithe iimotor iiaction iibased iion iithe iicommanded
iiparameters, iisuch iias iicurrent, iivelocity, iior iiposition.
6.6 iiLDR iiSensor
An iiLDR's iioperating iiprinciple iiis iiphotoconductivity,
iiwhich iiis iinothingiimoreiithaniianiiopticaliiphenomena.
iiWhen iilight iiis iiabsorbed iiby iithe iisubstance, iithe
iimaterial's iiconductivity iiimproves. iiWhen iilight iishines
iion iithe iiLDR, iithe iielectrons iiin iithe iimaterial's
iivalence iiband iirush iito iithe iiconduction iiband.
iiHowever, iithe iiphotons iiin iithe iiincident iilight iimust
iihave iimore iienergy iithan iithe iimaterial's iibandgap iiin
iiorder iifor iithe iielectrons iito iijump iifrom iione iiband
iito iithe iinext ii(valance iito iiconduction).
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 335
As iia iiresult, iiwhen iilight iihas iia iilot iiof iienergy, iimore
iielectrons iiare iistimulated iito iithe iiconduction iiband,
iiresulting iiin iia iilot iiof iicharge iicarriers. iiThe
iiresistance iiof iithe iidevice iidiminishes iias iithe iieffect
iiof iithis iiprocess iibecomes iimore iiapparent iiand iithe
iicurrent iiflow iiincreases.
6.7 iiSoftware iiImplemented
Arduino iiide ii– iiit iiis iian iiopen iisource iidevelopment
iienvironment iiwhich iihelps iius iiwith iiusing iiArduino
iiuno/ iinano/ iimega iiand iimany iiother iitypes iiof
iiArduino iifor iidifferent iiprojects. iiIt iiprovides iius iiwith
iia iicoding iienvironment iiand iiit iicomes iiwith iipre
iiloaded iilibraries iiand iiother iilibraries iican iialso iibe
iiinstalled. iiIt iihas iia iivery iiuser iifriendly iienvironment.
6.8 iiBoltIOT iiCloud
It iihelps iius iiwith iimanaging iidifferent iiprojectsiiatiithe
iisame iitime iiand iialso iicomes iiwith iireal-time iidata
iimonitoring iisystem. iiIt iialso iiprovides iius iiwith iia
iicoding iienvironment iithat iihelps iius iiin iivisualizing
iithe iidata.
6.9 iiDecision iiTree
The iiDecision iiTree iialgorithm iiis iipart iiof iithe
iisupervised iilearning iialgorithms iifamily. iiThe iidecision
iitree iiapproach, iiunlike iiother iisupervised iilearning
iialgorithms, iimay iialso iibe iiutilized iito iisolve
iiregression iiand iiclassification iiissues.iiTheiipurposeiiof
iiemploying iia iiDecision iiTree iiis iito iidevelop iia
iitraining iimodel iithat iican iibe iiused iito iiforecast iithe
iiclass iior iivalue iiof iithe iitarget iivariable iiby iilearning
iibasic iidecision iirules iiinferred iifrom iiprior iidata
ii(training iidata). iiWe iistart iiat iithe iiroot iiof iithe iitree
iiwhen iipredicting iia iiclass iilabel iifor iia iirecord. iiThe
iivalues iiof iithe iiroot iiattribute iiand iithe iirecord's
iiattribute iiare iicompared.
The iiexamples iiare iiclassified iiusing iidecision iitrees iiby
iisorting iithem iidown iithe iitree iifrom iithe iiroot iito iia
iileaf/terminal iinode, iiwith iithe iileaf/terminal iinode
iiproviding iithe iiclassification.
Each iinode iiin iithe iitree iirepresents iia iitest iicase iifor
iisome iiproperty, iiwith iieach iiedge iidescending iifrom
iithe iinode iicorresponding iito iithe iitest iicase's iipossible
iisolutions. iiThis iiis iia iicyclical iiprocedure iithat iioccurs
iifor iieach iisubtree iirooted iiat iithe iinew iinode.
6.10 iiData iiFlow
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 336
6.11 iiPolynomial iiRegression
Polynomial iiVisualizer iiis iia iipopular iidata
iianalytics/machine iilearning iialgorithm iifor iifitting iia
iinon-linear iicurve iito iia iigiven iidata iicollection. iiThe
iitrend iican iithen iibe iiutilized iito iifigure iiout iiwhere
iifurther iidata iipoints iimay iibe iifound. iiThe iiVisualizer
iiis iidesigned iito iiassist iiyou iiin iidetermining iiwhether
iiPolynomial iiVisualizer iiis iithe iibest iioption iifor iiyour
iiML iisystem, iiand iiif iiit iiis, iithe iiVisualizer iiwill iiassist
iiyou iiin iidetermining iithe iibest iipotential iiparameters
iito iiutilize iiwith iithe iiVisualizer iimodel.
Data ii(t) ii= ii(Cn*tn) ii+ ii(Cn-1*tn-1) ii+ ii(Cn-2*tn-2)
ii+ ii…………… ii(C1*t1) ii+ iiC0
which iimost iiclosely iiresembles iithe iitrend iiin iithe
iiinput iidata. iiThis iinumber iitells iithe iiVisualizer iihow
iimany iielements iishould iibe iipresent iiin iithe iifunction
iii.e. iithe iivalue iiof iin.
6.12Code
6.12.1 iiArduino iicode ii(Data iiCollection)
#include ii"DHT.h"
#include ii<boltiot.h>
#include ii<BoltDeviceCredentials.h>
#define iiDHTPIN ii7
#define iiDHTTYPE iiDHT11
ii
#include ii<Servo.h>
#ifndef iiAPI_KEY
#define iiAPI_KEY ii ii ii"boltcloudAPI"
#endif
#ifndef iiDEVICE_ID
#define iiDEVICE_ID ii"boltdeviceid"
#endif
ii
int iiservoPin ii= ii3;
Servo iiServo1;
DHT iidht11(DHTPIN ii, iiDHTTYPE);
String iigetAnalogData(String ii*data){
ii iiString iiretval="";
ii iiretval=retval+analogRead(A1);
ii iireturn iiretval;
ii ii//Serial.read();
}
String iigetLDR(String ii*data){
ii iiString iiLDR="";
ii iiLDR=LDR+analogRead(A5);
ii iireturn iiLDR;
}
String iigetRain(String ii*data){
ii iiString iir="";
ii iir=r+analogRead(A3);
ii iireturn iir;
}
String iigetTemp(String ii*data){
ii iiString iivalue ii= ii"";
int iichk ii= iidht11.read(DHTPIN);
ii iivalue ii= iivalue+ ii(int)dht11.readTemperature();
ii iireturn iivalue;
ii ii}
String iigetHum(String ii*data){
ii iiString iivalue ii= ii"";
int iichk ii= iidht11.read(DHTPIN);
value ii= iivalue+ ii(int)dht11.readHumidity();
ii iireturn iivalue;
ii ii}
void iisetup ii() ii{
ii iiSerial.begin ii(9600);
ii iiServo1.attach(servoPin);
ii iipinMode(A1,INPUT);
ii iipinMode(A5,INPUT);
ii iipinMode(A3,INPUT);
ii iiSerial.setTimeout(500);
ii iiboltiot.begin(Serial);
ii iiboltiot.setCommandString("Level",getAnalogData);
ii iiboltiot.setCommandString("LDR",getLDR); ii ii
ii iiboltiot.setCommandString("Rain",getRain);
ii iiboltiot.setCommandString("getHum",getHum);
ii iiboltiot.setCommandString("getTemp",getTemp);
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 337
ii ii}
void iiloop() ii{
ii iiboltiot.handleCommand();
}
ii
7. iiRESULTS iiAND iiDISCUSSION
After iiapplying iithe iidecision iitree iialgorithm iito iithe
iisensed iidatasets, iian iioutput iicontaining iithe iidecision
iito iiwater iithe iicrop iiis iimade.iiThisiioutputiicontaining
iithe iidecision iiis iisent iito iithe iiusers iior iifarmers
iithrough iian iiElectronic iimail ii(E-mail) iiusing iithe
iisimple iimail iitransfer iiprotocol. iiT
The iitwo iitypes iiof iidecisions iiare iinamed iiYes iiand
iiNo.
iia) iiIf iithe iialgorithm iipredicts iithe iiresult iias iiyes,
iithen iian iialert iiis iisent iito iithe iifarmer iias iishown iiin
iiFigure ii9. ii
b) iiIf iithe iialgorithm iipredicts iithe iiresult iias iino, iithen
iian iialert iiis iisent iito iithe iifarmer iias iishown iiin
iiFigure ii10.
Figure ii9. iiE-mail iialert iifor iiWater iirequirement
ii Figure ii10. iiE-mail iialert iifor iiNo iiWater
iirequirement
Prediction iipoints: iiThis iinumber iitells iithe iiVisualizer
iihow iimany iifuture iidata iipoints iineed iito iibe
iipredicted.
No. iiPolynomial iicoefficients: iiPolynomial iiVisualizer
iiprocesses iithe iigiveniiinputiitime-dependentiidata,iiand
iioutputs iithe iicoefficients iiof iithe iifunction iiof iithe
iiform:
Frame iiSize: iiThese iiare iithe iinumber iiof iiprevious
iidata iipoints iithe iiVisualizer iiwill iiuse iito iipredict iithe
iitrend iiof iithe iidata. iiFor iiexample, iiif iiyou iiset iithis
iivalue iito ii5, iithe iiVisualizer iiwill iiuseiitheiiprevious ii5
iipoints iito iipredict iithe iitrend
Figure ii11. iidepicts iithe iiprediction, iiactual iiand
iipredicted iihistory iiof iithe iiinput iidata iiand iioutput
iiof iiML iialgorithm.
Following iidata iiwill iibe iiutilized iias iia iiprediction iifor
iifuture iianamoly iiand iiirregularities iiiniitheiicropiiyield
iiand iithus iiwill iibe iihelpful iiin iitaking iiearly
iiprecautions iiaccordingly.
Hence iisaving iitime ii, iienergy, iimoney iiand iilabor iiof
iithe iifarmer
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 338
8. iiCONCLUSION
We iioffered iian iioverview iiof iiindoor iifarming iiutilizing
iiIoT iiand iimachine iilearning iiin iithis iipaper. iiSeveral
iitopics iirelevant iito iiboosting iiIoT iideployment iiin
iiagriculture iihave iibeen iithoroughly iiexamined. iiMany
iiresearch iihas iibeen iiconducted iito iiutilize iiIoT iifor
iismart iiagriculture, iito iiincrease iioutput, iireduce
iihuman iilabor, iiand iiimprove iiproduction iiefficiency,
iiaccording iito iisurvey iiresults. iiIt iihighlighted iithe
iiadvantages iiof iiusing iiIoT iiand iibig iidata iiin
iiagriculture. iiWe iialso iidiscussed iithe iiobstacles iithat
iimust iibe iisolved iito iiexpedite iithe iiuse iiof iiIoT iiin
iismart iiagriculture. iiHowever, iisignificant iiobstacles
iimust iibe iiovercome iibefore iiIoT iisolutions iican iibe
iimade iicheap iifor iithe iimajority iiofiifarmers,iiespecially
iismall iiand iimedium-scale iifarms. iiFurthermore,
iisecurity iitechnologies iimust iibe iiupgraded iiregularly,
iibut iiwe iibelieve iithat iithe iiuse iiof iiIoT iisolutions iiand
iimachine iilearning iiin iismart iiagriculture iiis
iiunavoidable iiand iiwill iiincrease iiproductivity, iisupply
iiclean iiand iigreen iifoods, iipromote iifood iitraceability,
iiminimize iihuman iilabor, iiand iiimprove iiproduction
iiefficiency. iiOn iithe iiother iihand, iiThe iisystem iiwas
iidesigned iito iilearn iifrom iithe iidata iiprovided.
The iifile iicontains iiall iiof iithe iidata iithat iihas iibeen
iisensed iiby iithe iiSensors. iiBy iiutilizing iithe iidecision
iitree iilearning iialgorithm iiisiia iimemberiiofiitheiifamily
iiof iithe iireal-world iiapplicationiiofiisupervisediimachine
iilearning iimethods.
It iianalyses iitime iidata ii iiand iiupdates iithe iifarmer
iiwith iithe iidecision. ii
REFERENCES
[1] Balaji iiBhanu, iiRaghava iiRao, iiJ.V.N. iiRamesh, iiand
iiMohammed iiAli iiHussain, ii“Agriculture iiField
iiMonitoring iiand iiAnalysis iiusing iiWireless iiSensor
iiNetworks iifor iiimproving iiCropiiProduction”,ii2014
iiEleventh iiInternational iiConference iion iiWireless
iiand iiOptical iiCommunications iiNetworks ii(WOCN)
[2] LIU iiDan, iiCao iiXin, iiHuang iiChongwei, iiJI iiLiang
iiLiang, ii“Intelligent iiagentiigreenhouseiienvironment
iimonitoring iisystem iibased iion iiIOT iitechnology”,
ii2015 iiInternational iiConference iion iiIntelligent
iiTransportation, iiBig iiData ii& iiSmart iiCity
[3] Joseph iiHaule, iiKisangiri iiMichael, ii“Deployment iiof
iiwireless iisensor iinetworks ii(WSN) iiin iiautomated
iiirrigation iimanagement iiand iischeduling iisystems:
iia iireview”, iiScience, iiComputing iiand
iiTelecommunications ii(PACT), ii2014, iiPan iiAfrican
iiConference
[4] hi, iiX.; iiAn, iiX.; iiZhao, iiQ.; iiLiu, iiH.; iiXia, iiL.; iiSun,
iiX.; iiGuo, iiY., ii"State-of-the-Art iiInternet iiof iiThings
iiin iiProtected iiAgriculture", iiSensors ii2019, ii19,
ii1833.M. iiYoung, iiThe iiTechnical iiWriter’s
iiHandbook. iiMill iiValley, iiCA: iiUniversity iiScience,
ii1989.
[5] iiZ. iiNurazwin, iiH. iiNorhashila, iiA. iiKhalina,iiandiiH.
iiMarsyita, iiApplication iiof iilaser-induced
iibackscattering iiimaging iifor iipredicting iiand
iiclassifying iiripening iistages iiof ii“Berangan”
iibananas, iiComputers iiand iiElectronics iiin
iiAgriculture, ii160, ii2019, ii100-107. ii
[6] Meng iiJi-Hua, iiWu iiBing-fang, iiLi iiQiang-zi, ii“A
iiGlobal iiCrop iiGrowth iiMonitoring iiSystem iiBased
iion iiRemote iiSensing”, ii2006 iiIEEE iiInternational
iiSymposium iion iiGeoscience iiand iiRemote iiSensing.
ii
[7] Alan iiMainwaring, iiJoseph iiPolastre, iiRobert
iiSzewczyk, iiDavid iiCuller, iiJohn iiAnderson,
ii“Wireless iiSensor iiNetworks iifor iiHabitat
iiMonitoring”, iiInternational iiConference.
[8] ii iiLei iiXiao, iiLejiang iiGuo, ii“The iiRealization iiof
iiPrecision iiAgriculture iiMonitoring iiSystem iiBased
iion iiWireless iiSensor iiNetwork”, ii2010
iiInternational iiConference iion iiComputer iiand
iiCommunication iiTechnologies iiin iiAgriculture
iiEngineering. ii
[9] iiLing-ling iiLI, iiShi-feng iiYANG, iiLi-yan iiWANG,
iiXiang-ming iiGAO, ii“TheGreenhouse iiEnvironment
iiMonitoring iiSystem iiBased iion iiWireless
iiSensorNetwork iiTechnology”, iiProceedings iiof iithe
ii2011 iiIEEE iiInternational iiConference iion iiCyber
iiTechnologyiiiniiAutomation,iiControl,iiandIntelligent
iiSystems, iiMarch ii20-23, ii2011, iiKunming, iiChina. ii
[10] iiChun-ling iiFan, iiYuan iiGuo, ii“The iiApplication iiof
iia iiZigBee iiBasedWireless iiSensor iiNetwork iiiniithe
iiLED iiStreet iiLamp iiControl iiSystem”, ii2013,
iiCollege iiof iiAutomation ii& iiElectronic iiEngineering,
iiQingdaoUniversity iiof iiScientific ii& iiTechnology,
iiQingdao, iiChina iiembeddedtechnology, iiConsumer
iiElectronics ii- iiChina, ii2014 iiIEEE iiInternational
iiConference.
[11] iiAgricultural iiRobots iiMarket iiby iiOffering, iiType
ii(UAVs, iiMilking iiRobots, iiDriverless iiTractors,
iiAutomated iiHarvesting iiSystems), iiFarming
iiEnvironment, iifarm iiProduce,iiApplicationii(Harvest
iiManagement, iiField iiFarming, iiGeographyii-iiGlobal
iiForecast iito ii2025.
iihttps://www.marketsandmarkets.com/Market-
Reports/agricultural-robot-market-173601759.html,
ii2020 ii(accessed ii07.03.2020). ii
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 339
[12] iiM. iiVega-Heredia, iiR. iiE. iiMohan, iiY. iiW. iiTan, iiJ.
iiS. iiAisyah, iiA. iiVengedesh, iiS. iiGhanta iiand iiS.
iiVinu, iiDesign iiand iimodelling iiof iia iimodular
iiwindow iicleaning iirobot, iiAutomation iiin
iiConstruction, ii103, ii2019, ii268-278.
[13] iiL. iiBarbieri, iiF. iiBruno, iiA. iiGallo,iiM.iiMuzzupappa
iiand iiM. iiL. iiRusso, iiDesign, iiprototyping iiand
iitesting iiof iia iimodular iismall sized iiunderwater
iirobotic iiarm iicontrolled iithrough iia iimaster-slave
iiapproach, iiOcean iiEngineering, ii158, ii2018, ii253-
262. ii
[14] 14. iiYunseop iiKim, iiMember, iiIEEE, iiRobert iiG.
iiEvans, iiand iiWilliam iiM. iiIversen, ii“Remote
iiSensing iiand iiControl iiof iian iiIrrigation iiSystem
iiUsing iiaDistributed iiWireless iiSensor iiNetwork”,
iiIeee iitransactions iioninstrumentation iiand
iimeasurement, iivol. ii57, iino. ii7, iiJuly ii2008. ii
[15] R. iiBalamurali, iiK. iiKathiravan, ii“An iiAnalysis iiof
iiVarious iiRoutingProtocols iifor iiPrecision
iiAgriculture iiusing iiWireless iiSensor iiNetwork”,
ii2015, iiIEEE iiInternational iiConference iion
iiTechnological iiInnovations iiinICT iifor iiAgriculture
iiand iiRural iiDevelopment ii(TIAR ii2015). ii
[16] iiGiuseppe iiAnastasi, iiOrazio iiFarruggia, iiGiuseppe
iiLo iiRe§, iiand iiMarcoOrtolani, ii“Monitoring iiHigh-
Quality iiWine iiProduction iiusing iiWirelessSensor
iiNetworks”, iiProceedings iiof iithe ii42 iiHawaii
iiInternational iiConference iion iiSystem iiSciences ii–
ii2009.
[17] iiRwan iiMahmoud, iiTasneem iiYousuf, iiFadi iiAloul,
ii“Internet iiof iiThings ii(IoT)Security: iiCurrent
iiStatus, iiChallenges iiand iiProspective iiMeasures'',
iiInternet iiTechnology iiand iiSecured iiTransactions
ii(ICITST), ii2015 ii10th iiInternational iiConference.
[18] iiDragoş iiMihai iiOfrim, iiBogdan iiAlexandru iiOfrim
iiand iiDragoş iiIoanSăcăleanu, ii“Improved
iienvironmental iimonitor iiand iicontrol iiusing
iiawireless iiintelligent iisensor iinetwork”, iiElectrical
iiand iiElectronicsEngineering ii(ISEEE), ii2010, ii3rd
iiInternational iiSymposium.
[19] iiRachel iiCardell-Oliver, iiKeith iiSmettem, iiMark
iiKranz iiand iiKevin iiMayer, ii“Field iiTesting iia
iiWireless iiSensor iiNetwork iifor iiReactive
iiEnvironmental iiMonitoring”, ii2004 iiIEEE
iiInternational iiConference. ii
[20] iiDuan iiYan-e, ii“Design iiof iiIntelligent iiAgriculture
iiManagement iiInformation iiSystemiiBasediioniiIoT”,
ii2011 iiFourth iiInternational iiConference iion
iiIntelligent iiComputation iiTechnology iiand
iiAutomation. ii
[21] Fiona iiEdwards iiMurphy, iiEmanuel iiPopovici, iiP
iiadraig iiWhelan,iiandMicheleiiMagno,ii“Development
iiof iiHeterogeneous iiWireless iiSensorNetwork iifor
iiInstrumentation iiand iiAnalysis iiof iiBeehives”,
iiInstrumentationand iiMeasurement iiTechnology
iiConference ii(I2MTC), ii2015 iiIEEEInternational
iiConference.
[22] iiT. iiMilan, iiB. iiAdam iiand iiJ. iiSlavka, iiDesign iiof iia
iiprototype iifor iia iimodular iimobile iirobotic
iiplatform, iiIFAC-PapersOnLine, ii52(27),ii2019,ii192-
197.
[23] iiA. iiRuckelshausen, iiP. iiBiber, iiM. iiDorna, iiH.
iiGremmes, iiR. iiKlose, iiA. iiLinz, iiet iial., iiBoniRob:
iiAn iiautonomous iifield iirobot iiplatform iifor
iiindividual iiplant iiphenotyping, iiPrecision
iiAgriculture, ii9(841), ii2009, ii841-847.
[24] ii iiM. iiStein, iiS. iiBargoti iiand iiJ. iiUnderwood,
iiImage iibased iimango iifruit iidetection, iilocalization
iiand iiyield iiestimation iiusing iimultiple iiview
iigeometry, iiSensors, ii16(11), ii2016, ii1-25. ii
[25] J. iiRoca, iiM. iiComellas, iiJ. iiPijuan iiand iiM. iiNogues,
iiDevelopment iiof iian iieasily iiadaptable iithree-point
iihitch iidynamometer iifor iiagricultural iitractors.
iiAnalysis iiof iithe iidisruptive iieffects iion iithe
iimeasurements, iiSoil iiand iiTillage iiResearch, ii194,
ii2019, ii1-11. ii
[26] iiAgras iiMG-1S iiSeries. iihttps://www.dji.com/mg-1s,
ii2020 ii(accessed ii07.03.2020). ii
[27] iiC. iiReza iiKarmulla, iiK. iiSeyyed iiHossein, iiR-K.
iiHossein, iiM. iiAlireza iiand iiM. iiMotjaba, iiPredicting
iiheader iiwheat iiloss iiin iia iicombine iiharvester, iia
iinew iiapproach, iiJournal iiof iithe iiSaudi iiSociety iiof
iiAgricultural iiSciences, ii19, ii2020, ii179-184.
[28] C. iiAnil, iiK. iiHabib iiand iiM. iiSahin,iiDevelopmentiiof
iian iielectro-mechanic iicontrol iisystem iifor iiseed-
metering iiunit iiof iisingle iiseed iicorn iiplanters iiPart
iiII: iiField iiperformance, iiComputers iiand
iiElectronics iiin iiAgriculture, ii145, ii2018, ii11-17.
[29] Y. iiShi, iiS. iiXin, iiX. iiWang, iiZ. iiHu, iiN. iiDavid iiand
iiW. iiDing, iiNumerical iisimulation iiand iifield iitests
iiof iiminimum-tillage iiplanteriiwithiistrawiismashing
iiand iistrip iilaying iibased iion iiEDEM iisoftware,
iiComputers iiand iiElectronics iiin iiAgriculture, ii166,
ii2019, ii105021
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 340
[30] S. iiKhwantri, iiC. iiChoochart, iiK. iiKhanita, iiK.
iiPornnapa, iiC. iiSomchai iiand iiT. iiEizo, iiEffect iiof
iimetering iidevice iiarrangement iito iidischarge
iiconsistency iiof iisugarcane iibillet iiplanter,
iiEngineering iiin iiAgriculture, iiEnvironment iiand
iiFood, ii11(3), ii2018, ii139- ii144
[31] Alam, iiM.M.; iiMalik, iiH.; iiKhan, iiM.I.; iiPardy, iiT.;
iiKuusik, iiA.; iiLe iiMoullec, iiY. iiA iiSurvey iion iithe
iiRoles iiof iiCommunication iiTechnologies iiin iiIoT-
Based iiPersonalized iiHealthcare iiApplications. iiIEEE
iiAccess ii2018, ii6, ii36611–36631. ii[CrossRef] ii
[32] Chettri, iiL.; iiBera, iiR. iiA iiComprehensiveiiSurveyiion
iiInternet iiof iiThings ii(IoT) iiToward ii5G iiWireless
iiSystems. iiIEEE iiInternet iiThings iiJ. ii2020, ii7, ii16–
32. ii[CrossRef]
[33] iiPal, iiA.; iiKant, iiK. iiNFMI: iiConnectivity iiforiiShort-
Range iiIoT iiApplications. iiComputerii2019,ii52,ii63–
67. ii[CrossRef] ii
[34] Collotta, iiM.; iiPau, iiG.; iiTalty, iiT.; iiTonguz, iiO.K.
iiBluetooth ii5: iiA iiConcrete iiStep iiForward iitoward
iithe iiIoT. iiIEEE iiCommun. iiMag. ii2018, ii56, ii125–
131. ii[CrossRef] ii
[35] Bacco, iiM.; iiBerton, iiA.; iiGotta, iiA.; iiCaviglione, iiL.
iiIEEE ii802.15.4 iiAir-Ground iiUAV iiCommunications
iiin iiSmart iiFarming iiScenarios. iiIEEE iiCommun.
iiLett. ii2018, ii22, ii1910–1913. ii[CrossRef] ii
[36] iiGente, iiR.; iiBusch, iiS.F.; iiStubling, iiE.-M.;
iiSchneider, iiL.M.; iiHirschmann, iiC.B.; iiBalzer, iiJ.C.;
iiKoch, iiM. iiQuality iiControl iiof iiSugar iiBeet iiSeeds
iiWith iiTHz iiTime-Domain iiSpectroscopy. iiIEEE
iiTrans. iiTerahertz iiSci. iiTechnol. ii2016, ii6, ii754–
756. ii[CrossRef] ii
[37] .Afsharinejad, iiA.; iiDavy, iiA.; iiNaftaly, iiM.iiVariability
iiof iiTerahertz iiTransmission iiMeasured iiin iiLive
iiPlant iiLeaves. iiIEEE iiGeosci. iiRemote iiSens. iiLett.
ii2017, ii14, ii636–638. ii[CrossRef] ii
[38] iiWang, iiX.; iiZhang, iiJ.; iiYu, iiZ.; iiMao, iiS.;
iiPeriaswamy, iiS.C.G.; iiPatton, iiJ. iiOn iiRemote
iiTemperature iiSensing iiUsing iiCommercial iiUHF
iiRFID iiTags. iiIEEE iiInternet iiThings iiJ. ii2019, ii6,
ii10715–10727. ii[CrossRef]
[39] iiAli, iiS.; iiGlass, iiT.; iiParr, iiB.; iiPotgieter, iiJ.; iiAlam,
iiF. iiLow iiCost iiSensor iiwith iiIoT iiLoRaWAN
iiConnectivity iiand iiMachine iiLearning-Based
iiCalibration iifor iiAir iiPollution iiMonitoring. iiIEEE
iiTrans. iiInstrum. iiMeas. ii2021, ii70, ii5500511.
ii[CrossRef
[40] iiJoris, iiL.; iiDupont, iiF.; iiLaurent, iiP.; iiBellier, iiP.;
iiStoukatch, iiS.;iiRedouté,iiJ.iiAniiAutonomous iiSigfox
iiWireless iiSensor iiNode iifor iiEnvironmental
iiMonitoring. iiIEEE iiSens. iiLett. ii2019, ii3, ii5500604.
ii[CrossRef]
[41] iiPopli, iiS.; iiJha, iiR.K.; iiJain, iiS. iiA iiSurvey iion
iiEnergy iiEfficient iiNarrowband iiInternet iiofiiThings
ii(NBIoT): iiArchitecture, iiApplication ii& iiChallenges.
iiIEEE iiAccess ii2019, ii7, ii16739–16776. ii[CrossRef]
[42] Sundaram, iiJ.P.S.; iiDu, iiW.; iiZhao, iiZ. iiA iiSurvey iion
iiLoRa iiNetworking: iiResearch iiProblems, iiCurrent
iiSolutions, iiand iiOpen iiIssues. iiIEEE iiCommun.
iiSurv. iiTutor. ii2020, ii22, ii371–388
[43] iiDishay iiKissoon, iiHinouccha iiDeerpaul iiand
iiAvinash iiMungur, ii“A iiSmart iiIrrigation iiand
iiMonitoring iiSystem”,iiThe iiInternational iiJournal iiof
iiComputer iiApplications, iivol. ii163, iiNo. ii8, iiApr.
ii2017
[44] Sanyam iiGupta iiSukriti, iiK. iiIndumathy, ii"IoTiibased
iismart iiirrigation iiand iitank iimonitoring
iisystem",International iiJournal iiof iiInnovative
iiResearch iiin iiComputer iiand iiCommunication
iiEngineering, iivol. ii4, iino. ii9, iiSeptember ii2016.
[45] Anuja iiChandgude, iiNikita iiHarpale, iiDiksha iiJadhav,
iiPunam iiPawar iiand iiSuhas iiM. iiPatil, ii“A iiReview
iion iiMachine iiLearning iiAlgorithm iiUsed iifor iiCrop
iiMonitoring iiSystem iiin iiAgriculture”, iiInternational
iiResearch iijournal iiofiiEngineeringiiandiiTechnology
ii(IRJET), iivol. ii05, iiIssue ii4, iiApr. ii2018
[46] T. iiBaranwal, iiN. iiand iiP. iiK. iiPateriya,
ii“Development iiof iiIoT iibased iiSmart iiSecurityiiand
iiMonitoring iiDevices iifor iiAgriculture”, ii6th
iiInternational iiConference ii- iiCloud iiSystem iiand
iiBig iiData iiEngineering ii(Confluence), ii14-15 iiJan.
ii2016.
[47] ii iiM. iiK. iiGayatri, iiJ. iiJayasakthi iiandG.S.Anandha
iiMala, ii“Providing iiSmart iiAgriculture iiSolutions iito
iiFarmers iifor iibetter iiyielding iiusing iiIoT”, iiIEEE
iiTechnological iiInnovation iiin iiICT iifor iiAgriculture
iiand iiRural iiDevelopment ii(TIAR), ii10-12 iiJul.
ii2015.
[48] Decision iiTree iiFor iiClassification: iiA iiMachine
iiLearning iiAlgorithm, iiAvailable iifrom:
iihttps://www.xoriant.com/blog/product-
engineering/decision trees-machine-learning-
algorithm.html ii
ii
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 341
[49] ii iiY. iiMohana iiRoopa, iiet.al,”A iiSurvey iiof iiFog
iiComputing: iiFundamental, iiArchitecture,
iiApplications iiand iiChallenges” ii,IEEE iiInternational
iiconference iion iiIoT iiin iiSocial, iiMobile, iianalytics
iiand iiCloudiiISMAC-19,Decemberii12-14,ii2019.ISBN:
ii978-1-7281- ii4364-4, iiPage iiNo: ii498-502.
[50] iiY. iiMohana iiRoopa, iiet.al,”A iiSurvey iiof iiFog
iiComputing: iiFundamental, iiArchitecture,
iiApplications iiand iiChallenges” ii,IEEE iiInternational
iiconference iion iiIoT iiin iiSocial, iiMobile, iianalytics
iiand iiCloudiiISMAC-19,Decemberii12-14,ii2019.ISBN:
ii978-1-7281- ii4364-4, iiPage iiNo: ii498-502

More Related Content

Similar to Development iiand iidesign iiof iifully iiautomated iiIndoor iiFarm/Gardening ii iiWith iiIOT iiand iiMachine iiLearning

Biomanufacturing complexity
Biomanufacturing complexityBiomanufacturing complexity
Biomanufacturing complexity
GBX Summits
 

Similar to Development iiand iidesign iiof iifully iiautomated iiIndoor iiFarm/Gardening ii iiWith iiIOT iiand iiMachine iiLearning (20)

P0174299111
P0174299111P0174299111
P0174299111
 
Biomanufacturing complexity
Biomanufacturing complexityBiomanufacturing complexity
Biomanufacturing complexity
 
IRJET- Design and Development of Automatic Drip Irrigation System
IRJET- Design and Development of Automatic Drip Irrigation SystemIRJET- Design and Development of Automatic Drip Irrigation System
IRJET- Design and Development of Automatic Drip Irrigation System
 
Covid Hazardous Waste Management System
Covid Hazardous Waste Management SystemCovid Hazardous Waste Management System
Covid Hazardous Waste Management System
 
Mobile Vaccination Web Application
Mobile Vaccination Web ApplicationMobile Vaccination Web Application
Mobile Vaccination Web Application
 
Internet of Things Hydroponics Agriculture (IoTHA) Using Web/Mobile Applications
Internet of Things Hydroponics Agriculture (IoTHA) Using Web/Mobile ApplicationsInternet of Things Hydroponics Agriculture (IoTHA) Using Web/Mobile Applications
Internet of Things Hydroponics Agriculture (IoTHA) Using Web/Mobile Applications
 
Food Image to the Recipe Generator
Food Image to the Recipe GeneratorFood Image to the Recipe Generator
Food Image to the Recipe Generator
 
IRJET- A Survey on IoT based Real Time Healthcare Emergency System by using B...
IRJET- A Survey on IoT based Real Time Healthcare Emergency System by using B...IRJET- A Survey on IoT based Real Time Healthcare Emergency System by using B...
IRJET- A Survey on IoT based Real Time Healthcare Emergency System by using B...
 
IRJET - A Study on Smart Irrigation System using IoT & Machine Learning
IRJET -  	  A Study on Smart Irrigation System using IoT & Machine LearningIRJET -  	  A Study on Smart Irrigation System using IoT & Machine Learning
IRJET - A Study on Smart Irrigation System using IoT & Machine Learning
 
STRENGTHENING OF RC BEAMS USING GLASSFIBRE REINFORCED POLYMER SHEETS AND COMP...
STRENGTHENING OF RC BEAMS USING GLASSFIBRE REINFORCED POLYMER SHEETS AND COMP...STRENGTHENING OF RC BEAMS USING GLASSFIBRE REINFORCED POLYMER SHEETS AND COMP...
STRENGTHENING OF RC BEAMS USING GLASSFIBRE REINFORCED POLYMER SHEETS AND COMP...
 
IoT BASED AUTOMATED PESTICIDE SPRAYER FOR DWARF PLANTS
IoT BASED AUTOMATED PESTICIDE SPRAYER FOR DWARF PLANTSIoT BASED AUTOMATED PESTICIDE SPRAYER FOR DWARF PLANTS
IoT BASED AUTOMATED PESTICIDE SPRAYER FOR DWARF PLANTS
 
IRJET - Farm Field Monitoring Using IoT-A Survey Paper
IRJET - Farm Field Monitoring Using IoT-A Survey PaperIRJET - Farm Field Monitoring Using IoT-A Survey Paper
IRJET - Farm Field Monitoring Using IoT-A Survey Paper
 
Use of IoT technologies for irrigation and plant protection: the case for Cyp...
Use of IoT technologies for irrigation and plant protection: the case for Cyp...Use of IoT technologies for irrigation and plant protection: the case for Cyp...
Use of IoT technologies for irrigation and plant protection: the case for Cyp...
 
Smart irrigation system and plant disease detection
Smart irrigation system and plant disease detectionSmart irrigation system and plant disease detection
Smart irrigation system and plant disease detection
 
IRJET- End to End Analysis of Agronomy using IoT and Bigdata
IRJET-  	  End to End Analysis of Agronomy using IoT and BigdataIRJET-  	  End to End Analysis of Agronomy using IoT and Bigdata
IRJET- End to End Analysis of Agronomy using IoT and Bigdata
 
Integrated Android App for Dairy Farmers
Integrated Android App for Dairy FarmersIntegrated Android App for Dairy Farmers
Integrated Android App for Dairy Farmers
 
IRJET- А Survеy on Dаtа Аggrеgаtion Protocols for Wirеlеss Sеnsor Nеtworks
IRJET- А Survеy on Dаtа Аggrеgаtion Protocols for Wirеlеss Sеnsor NеtworksIRJET- А Survеy on Dаtа Аggrеgаtion Protocols for Wirеlеss Sеnsor Nеtworks
IRJET- А Survеy on Dаtа Аggrеgаtion Protocols for Wirеlеss Sеnsor Nеtworks
 
IRJET- Smart Agriculture System using Thingspeak and Mobile Notification
IRJET- Smart Agriculture System using Thingspeak and Mobile NotificationIRJET- Smart Agriculture System using Thingspeak and Mobile Notification
IRJET- Smart Agriculture System using Thingspeak and Mobile Notification
 
A Survey on Solar Based Smart Antibiotic Sprinkler System Using Internet of T...
A Survey on Solar Based Smart Antibiotic Sprinkler System Using Internet of T...A Survey on Solar Based Smart Antibiotic Sprinkler System Using Internet of T...
A Survey on Solar Based Smart Antibiotic Sprinkler System Using Internet of T...
 
“Plant Disease Detection by Using Deep LearningAlgorithm with Product, Price ...
“Plant Disease Detection by Using Deep LearningAlgorithm with Product, Price ...“Plant Disease Detection by Using Deep LearningAlgorithm with Product, Price ...
“Plant Disease Detection by Using Deep LearningAlgorithm with Product, Price ...
 

More from IRJET Journal

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
Madan Karki
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
benjamincojr
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdf
Kamal Acharya
 

Recently uploaded (20)

21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
Low Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s HandbookLow Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s Handbook
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdf
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesLinux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdf
 

Development iiand iidesign iiof iifully iiautomated iiIndoor iiFarm/Gardening ii iiWith iiIOT iiand iiMachine iiLearning

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 323 DevelopmentiiandiidesigniiofiifullyiiautomatediiIndooriiFarm/Gardeningii iiWithiiIOTiiandiiMachineiiLearning RachitiiSinghiiPawar1,iiAyushiiNagaria2,iiYashiiJaiswal3,iiDr.iiHarminderiiSinghiiSaggu4ii ii 1,2,3 iUndergraduateiiStudent,iiSchooliiofiiMechanicaliiEngineering,iiLovelyiiProfessionaliiUniversity,iiPhagwara, iiPunjab,iiIndia 4iiAssistantiiProfessor,iiSchooliiofiiMechanicaliiEngineering,iiLovelyiiProfessionaliiUniversity,iiPhagwara,iiPunjab, iiIndia ---------------------------------------------------------------------***------------------------------------------------------------------ Abstract ii- iiSmart iifarming iitechniques iiusing iithe iiInternet iiOf iiThings(IOT) iiare iiarisingiiconceptsiibecause iielectronic iisensors iiare iicapable iiof iiproviding iiinformation iiabout iihumidity, iiph, iitemperature, iisoil iimoisture, iiwater iilevel, iietc, iiand iiother iinecessities iifor iifarming iithen iiact iiupon iibased iion iithe iisensor'siiinput. iiThis iipaper iifocuses iion iithe iidevelopment iiof iiaiisystem iithat iican iimonitor iitemperature, iilevel iiof iiwater, iimoisture, iiph, ii iiand iieven iiweather iiconditions iisoiithat iiwe iican iiprepare iifor iiprecautions iiwhen iinecessary iithrough iisensors iiusing iiArduino iiUNO iimicrocontroller iiand iia iiMachine iiLearning iiAlgorithm. iiThis iiproject iiaims iiat iimaking iiuse iiof iievolving iitechnology iii.e. iiInternet iiOf iiThings iiand iiMachine iiLearning. iiOnce iithe iihardware iihas iibeen iideveloped iidepending iion iithe iichange iiin iirequirements iiand iitechnology iithe iisoftware iiand iihardware iineed iito iibe iiupdated. iiThis iinew iiversion iirequires iirelentless iitesting iito iiensure iichanges iiare iidone iiin iithe iiold iiversion iiso iithat iiit iiworks iicorrectly iiwithout iiany iibugs iiin iiother iiparts iiof iithe iisystem. iiThis iiis iinecessary iibecause iiupdating iione iipart iiof iithe iihardware iimay iibring iisome iiicky iieffects iion iiother iiparts iiof iithe iihardware. Key iiWords: ii iiInternet iiof iiThings ii(IOT), iiMachine iiLearning, iiSmart iiFaming, iiIndoor iiFarming, iiArduino iiUNO, iiSoil iiMoisture iiSensor, iiWater iilevel iiSensor, iiTemperature iiSensor. 1.INTRODUCTION ii The iiSmart iiFarming iiSystem iiis iian iiInternet iiOf iiThings iiandiiMachineiiLearning-basediideviceiiwhichiiis iicapable iiof iiautomating iithe iiirrigation iiprocess iiby iianalyzing iithe iimoisture iiof iisoil iiand iithe iiclimate iicondition ii(like iirain). iiSoil iiParameters iilike iisoil iimoisture, iipH, iiand iiHumidity iiare iimeasurediiandiithe iiPressure iisensor iiand iithe iisensed iivalues iiare iidisplayed iion iian iiOLED iipanel iiand iialso iion iia iimobile iiapplication. The iineed iifor iian iiautomated iifarming iisystem iiis iito iiovercome iiover-irrigation iiand iiunder iiirrigation. iiThe iipurpose iiof iia iismart iifarming iisystem iiis iito iidefeat iithe iiconventional iimethods iiof iifarming iidone iiby iifarmers. iiThe iiconventional iimethods iiwere iithe iiones iiin iiwhich iithe iifarmer iidid iieverything iimanually iiby iiuser iiinteraction iiwith iitheiimotors,iipump,iietc.iiThisii iiwas iitime-consuming iiand iihad iiunpredictable iioutput. iiConditions iisuch iias iiunexpected iiweather, iiunder iiirrigation, iiand iiover-irrigation iiimpacted iitraditional iimethods iias iiwell ii.The iifarmer iiwas iinot iiable iito iicomplete iieverything iiat iia iiparticular iitime iiand iiusually, iithis iiled iito iidecreased iioutput iiand iipoor iimanagement. The iigoal iiof iismart iifarming iiis iito iiground iia iidecision-making iisupport iisystem iifor iifarm iimanagement. iiSmart iifarming iideems iiit iinecessary iito iiaddress iithe iiissues iiof iipopulation iigrowth, iiclimate iichange, iiand iilabor iithat iihave iigained iia iilot iiof iitechnological iiattention, iifrom iiplanting iiand iiwatering iiof iicrops iito iihealth iiand iiharvesting Thus iithere iicame iithe iineed iito iiautomate iiit iiand iimake iia iiSmart iisystem iiso iithat iiall iithe iiprocesses iican iibe iiimproved. Hence iiwe iiare iire-engineering iithe iisystem iias iiAdvanced iiIrrigation iiSystem iiwhich iiwould iibe iivery iiaccurate iiin iinature iidue iito iithe iivarious iimachine iilearning iitechniques iiwhich iihave iibeen iiapplied iitoiiit iito iimake iithe iisystem iipossibly iiefficient iiin iinature. Thus, iiwe iiaim iito iiachieve iian iiAdvance iifarming iisystem iithat iioffers iicomplete iiautomation iiby iitaking iiin iiparameters iilike iitemperature, iiwater iicontent, iihumidity, iilight, iietc, iiand iithen iipredicting iitheiifuture iivalues iiand iiaccording iito iithese iipredictions iicontrolling iithe iientire iiprocess iion iiits iiown iiand iihence iimaking iithe iiprocess iifully iiautomated iiin iinature. The iifollowing iitechniques iiare iiamong iithe iicurrent iitrends iiin iithe iismart iiirrigation iimarket:
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 324 1. iiDrip iiIrrigation: iiThis iienables iiexact iicontrol iiof iiwater iiand iifertiliser ii iiapplication, iiresulting iiin iia iisignificant iireduction iiin iithe iiamount iiof iiwater iirequired iifor iiagricultural iiirrigation. 2. iiWater iiFlow iiMeasuring: iiUsing iiwater iiflow iimeters iito iiprecisely iimeasure iiwater iiusageiicaniihelp iifarmers iiavoid iioverwatering iiand iisave iimoney. 3. iiData iiAnalytics: iiNew iisoftware iisolutions iithat iicrunch iivast iivolumes iiof iidata iican iisupply iifarmers iiwith iicritical iiknowledge iithey iididn't iihave iibefore. 4. iiDrilling iiMore iiWells: iiAs iithe iiwater iitableiidrops iidue iito iiunsustainable iipumping iilevels, iifarmers iiare iirelying iimore iion iigroundwater iisupplies iifor iiirrigation. 1.1 iiProblem iiDefinition Collecting iiInformation iirelated iito iithe iifarm iienvironment iiviz iisoil iimoisture, iihumidity, iietc ii, iiand iiproviding iiadequate iisupport iitoiitheiisystemiiwithiithe iiuse iiof iiMachineiiLearningiiAlgorithmiiandiiputtingiithe iifarmer iiat iiease. It iican iibe iimonitored iiusing iian iiapplication iithat iiwill iibe iidesigned iion iitheiiMachineiiLearningiiPlatform iiand iicreating iia iinetwork iibetween iithe iisensors, iiand iia iimicroprocessor, iiHence iiovercoming iithe iimanual iioperations iirequired iito iimonitor iiand iimaintain iithe iiagricultural iifarms iiandiisavingiiaiilotiiofiitimeiiforiithe iifarmer. 2. iiLITERATURE iiREVIEW Balaji iiBanu ii[1] iidesigned iia iiwireless iisensoriinetwork iito iiobserve iithe iiconditions iiof iifarming iiand iiincrease iicrop iiyield iiand iiquality. iiSensors iiare iiused iito iimonitor iidifferent iiconditions iiof iithe iienvironment iilike iiwater iilevel, iihumidity, iitemperature, iietc., iiThe iiprocessors iiATMEGA8535 iiand iiIC S8817 iiBS, iianalog iito iidigital iiconversion, iiand iiwireless iisensor iinodes iiwith iiwireless iitransceiveriimoduleiibasediioniiZigiibee iiprotocol iiare iiused iiin iithe iidesigning iithe iisystem. iiDatabase iiand iiweb iiapplication iiis iiused iito iiretrieve iiand iistore iidata. iiIn iithis iiExperiment, iithe iisensor iinode iifailure iiand iienergy iiefficiency iiare iimanaged. Liu iiDan ii[2], iiJoseph iiHaule, iiKisangiri iiMichael ii[3] iiand iiWangWeihong, iiCao iiShuntian ii iicarried iiout iiexperiments iion iiintelligent iiagriculture iigreenhouse iimonitoring iisystem iibased iion iiZig iiBee iitechnology. iiThe iisystem iiperforms iidata iiacquisition, iiprocessing, iitransmission, iiand iireception iifunctions. iiTheir iiexperiments iiaim iito iirealize iia iigreenhouse iienvironment iisystem,iiwhereiitheiisystemiiefficiencyiito iimanage iithe iienvironment iiare iia iiand iireduce iithe iimoney iiand iifarming iicost iiand iialso iisave iienergy. iiIoT iitechnology iihere iiis iibasediioniitheiiB-Siistructure iiandcc2530 iiused iilike iia iiprocessing iichip iito iiwork iifor iiwireless iisensor iinode iiand iicoordinator. iiThe iigateway iihas iiLinux iioperating iisystem iiana iid iicortex iiA8 iiprocessor iiactthe ii iias iicore. iiOverall iithe iidesign iirealizes iiremote iiintelligent iimonitoring iiand iicontrolgreenhouseen iihouse iiand iialso iireplaces iithe iitraditional iiwired iitechnology iitwithwireless, iialso iireduces iimanpower iicost. Joseph iihaule ii[3], iiDragoş iiMihai iiOfrim, iiBogdan iiAlexandruOfrim, iiand iiDragoş iiIoan iiSăcăleanu iihave iiproposed iian iiexperiment iithat iiexplains iithe iiuse iiof iiwsn iiused iiin iiautomatic iiirrigation. iiIrrigationiicontrol iiand iirescheduling iibased iion iiwsn iiare iipowerful iisolutions iifor iioptimum iiwater iimanagement iithrough iiautomatic iicommunication iito iiknow iithe iisoil iimoisture iiconditions iiof iiirrigation iidesign. iiThe iiprocess iiused iihere iiis iito iidetermine iithe iiproper iifrequency iiand iitime iiof iiwatering iiare iiimportant iito iiensure iithe iiefficient iiuse iiofiiwater,iihigh-qualityiicrop iidetection iidelay iithroughput, iiand iiload. iiSimulation iiis iidonefor iiagriculture iiby iiOPNET. iiAnother iidesign iiof iiwsn iiis iideployed iifor iiirrigation iisystems iiusing iiZig iibee iiprotocol iiwhich iiwill iiimpact iibattery iilife. iiThere iiare iisome iidrawbacks iias iiwsn iiis iistill iiunder iidevelopment iistage iiwith iiunreliable iicommunication iitimes, iifragile, iipower iiconsumption iiand iicommunication iicaniibeiilostiiiniitheiiagricultural iifield. iiso iiautomated iiirrigation iisystems iiand iischeduling iibased iion iiwireless iisensor iinetworksiiareiiused.iiWSN iiuses iilow iipower iiand iia iilow iidata iirate iiand iihence iienergy-efficienttechnology. iiAll iithe iidevices iiand iimachines iiare iicontrolled iiwith iithe iihelp iiof iiinputs iireceived iivia iisensors iithat iiare iimixed iiwith iisoil. iiFarmers iican iianalyze iiwhether iithe iisystem iiperforms iiin iinormally iior iisome iiactions iineed iito iibe iiperformed. Vijay iiKumar ii[4], iiLin iiZhang, iiMin iiyuan, iiDeyi iiTai, iiXia iiOweixu, iiXiang iiZhan, iiYuanyuan iiZhang iistudied iithe iiwork iiof iirural iifarming iicommunities iithat iireplaces iisome iiof iithe iitraditional iitechniques. iiThe iisensor iinodes iihave iiseveral iiexternal iisensorsiinamely iileaf iiwetness, iisoil iimoisture iisensor, iisoil iipH, iiatmospheric iipressure iisensors iiattached iito iiit.iiBased iion iithe iisoil iimoisture iisensor iithe iimoteiitriggersiithe iiwater iisprinkling iiduring iithe iiperiod iiof iiwater iiscarcity iiand iiswitches iioff iiafter iiadequate iiwater iiis iisprinkled. iiThis iiresults iiin iiwater iiconservation iiand iisoil iipH iiis iisent iito iithe iibase iistation iiand iiin iiturn iibase iistation iiintimates iithe iifarmer iiabout iisoil iipH iivia iiSMS iiusing iiGSM iimodel. iiThis iiinformation iihelps iithe iifarmers iito iireduce iiquantity iiof iifertilizers iiused.
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 325 iiA iidevelopment iiof iirice iicropiimonitoringiiusingiiWSN iiis iiproposed iito iiprovide iia iihelping iihandiitoiifarmers iiin iireal iitime iimonitoring iiand iiincreasing iithe iirice iiproduction. iiThe iiautomated iicontrol iiof iiwater iisprinkling iiand iiultimate iisupply iiof iiinformation iiis iiimplemented iiusing iiwireless iisensor iinetwork. iiG. iiNisha ii[5], iiChun-lingiiFan,iiYuaniiGuoiiproposed iia iiwireless iisensor-based iiautomated iiirrigation iisystem iito iioptimize iiwater iiuse iifor iiagricultural iipurpose. iiThe iisystem iiconsists iiof iidistributed iiwireless iisensor iinetwork iiof iisoil iimoisture, iiand iitemperature iisensors iimounted iiin iithe iicropiifield.iiZigbeeiiprotocol iiisiiused iito iihandle iithe iisensor iiinformation iiand iiwater iiquantity iiprogramming iiusing iialgorithm iiwith iithreshold iivalues iiof iithe iisensors iisent iito iia iimicro iicontroller iifor iiirrigation iisystem. iiData iiinspection iiis iidone iiusing iiby iiusing iisolar iipanel iiand iicellular iiinternet iiinterface. iiA iiwireless iicamera iiis iifixed iiin iicrop iifield iito iimonitor iithe iidisease iiarea iiusing iiimage iiprocessing iitechnique. Meng iiJi-hua ii[6] iiconductediia iiresearchiioniigrowthiiof iicereal iicrop iiseedlings, iias iiwell iias iithe iistatus iiand iitrend iiof iitheir iigrowth. iiThis iipaper iiintroduced iithe iidesign, iimethods iiused iiand iiimplementation iiof iia iiglobal iicrop iigrowth iimonitoring iisystem, iiwhich iisatisfies iithe iineed iiof iithe iiglobal iicrop iimonitoring iiin iithe iiworld. iiThe iisystem iiuses iitwo iimethods iiof iimonitoring, iiwhich iiare iireal-time iicrop iigrowth iimonitoring iiand iicrop iigrowing iiprocess iimonitoring. iiReal-time iicrop iigrowth iimonitoring iicould iiget iithe iicrop iigrowing iistatus iifor iicertain iiperiod iiby iicomparing iithe iiremote iisensed iidata ii(NDVI, iifor iiexample) iiof iithe iiperiod iiwith iithe iidata iiof iithe iiperiod iiin iithe iihistory ii(last iiyear, iimostly). iiThe iidifferential iiresult iiwas iiclassified iiinto iiseveral iicategories iito iireflect iithe iicondition iiat iidifference iilevel iiof iicrop iigrowing. iiIn iithis iisystem, iiboth iireal- time iicrop iigrowth iimonitoring iiand iicrop iigrowing iiprocess iimonitoring iiare iicarriediioutiiatiithreeiiscales, iiwhich iiare iistate ii(province)iiscale,iicountryiiscaleiiand iicontinent iiscale. iiGlobal iicrop iigrowth iimonitoring iisystem iiwas iifound iiin iithis iidesign iiand iibuilt iia iisystem iithat iican iimonitor iithe iiglobal iicrop iigrowth iiwith iiremote iisensing iidata. iiThe iisystemiishowediithe iicharacteristics iiof iifast, iieffective,iihighiicredibilityiiand iioperational iiin iiits iirun. ii Alan iiMain-waring ii[7], iiA. iiSivasankari,iiS.iiGandhimathi iihave iiprovided iian iiin-depth iistudy iiof iiapplying iiwireless iisensor iinetworks iito iireal-world iihabitat iimonitoring. iiA iiset iiof iisystem iidesign iirequirements iiare iideveloped iithat iicover iithe iihardware iidesign iiof iithe iinodes, iithe iidesign iiof iithe iisensor iinetwork, iiand iithe iicapabilities iifor iiremote iidata iiaccess iiand iimanagement. iiTo iievaluate iithis iiimplementation,iihave iideployed iian iiinitial iiprototype iinetwork iiat iithe iiJames iiSan iiJacinto iiMountains iiReserve ii(JMR) iiin iiIdyllwild, iiCalifornia. iiJMR iiis iia ii29-acreecological iipreserve, iirepresenting iijust iione iiof iithe iiUniversity iiof iiCalifornia iiSystem iiNatural iiReserve iiSystem’s ii34 iiland iiholdings. iiJMR iiclimate iiis iidifferent iifrom iiGD iiand iiweather iichanges iican iiexists iifor iilong iitime. iiThe iidata iicollection iican iibe iimade iieasy iifrom iipreviously iiinaccessible iiusing iia iimicro-measurement iiscale. ii iiXiao ii[8] iiFiona iiEdwards iiMurphy, iiEmanuel iiPopovici, ii iiWhelan, iiand iiMichele iiMagno ii iiProposed iiagriculture iimonitoring iisystem iiusing iiwireless iisensor iinetwork(WSN). iiTheiiconditionsiicaniibeiimonitored iiin iireal iitime iiare iitemperature, iilight iiintensity, iiand iihumidity. iiThe iiexperiment iiinvolves iithe iihardware iiand iisoftware iidesign iiof iitheiibuiltiimodules,iinetwork iitopology iiand iinetwork ii ii iiwith iithe iichallenges. iiDesign iiexplains iihow iithe iinode iican iiachieve iiagricultural iicondition iiinformation iicollection iiand iitransmission. iiThe iisystem iiis iicompact iiin iiframe iiwork, iilightweight, iigood iiin iiperformance iiand iioperation. iiIt iiimproves iithe iiagricultural iiproduction iiefficiency iiautomatically. ii Ling-ling iiLI ii[9], iiWen-Yao iiZhuang, iiMiguel iiCosta iiJunior, iiPedro iiCheong, iiKam-Weng iiTam ii[12] iihave iiproposed iisystem iiuses iiZigBee iitechnology. iiThis iiresearch iideals iiwith iihardware iiand iithe iisoftwareiiof iithe iinetwork iicoordinator iinode iiand iithe iisensor iinodes. iiThe iitheoretical iiand iipractical iiresults iishow iithat iithe iisystem iican iiefficiently iicapture iigreenhouse iienvironmental iiparameters, iiincluding iitemperature, iihumidity, iiand iicarbon iidioxide iiconcentration iiand iialso iiclears iithe iinormal iicommunication iibetween iinodes iiand iithe iinetwork iicoordinator, iigood iinetwork iistability. iiThe iiimplementation iiexplored iivalues iiused iiin iithe iicomplex iigreenhouse iienvironmental iimonitoring. Yunseop iiKim ii[14], iiR.iiBalamurali,iiK.iiKathiravanii[15] iihave iiproposed iithe iidesign iifor iiwireless iisensor iinetwork ii(WSN) iifor iia iiwater iiirrigation iicontrol iiand iimonitoring iithat iiis iicomposed iiof iia iinumber iiof iisensor iinodes iiwith iia iinetworking iicapability iithat iiis iideployed iifor iian iiad-hoc iifor iithe iipurpose iiof iiongoing iimonitoring. iiThe iiparameters iiused iiin iithe iiwater iireservation iicontrol iiare iiwater iilevels iiand iimotor iimovement iiof iithe iigate iicontrolling iithe iiflow iiof iiwater iiwhich iiis iimeasured iiby iithe iisensors, iiwhich iiwill iisense iithe iicondition iiand iiforward iiit iito iibase iistation iior iicontrol iiroom. iiThis iiproposed iisystem iioffers iia iilow iipower iiconsumptioniiwithiihigh iireliability iibased iion iithe iiresult. iiThe iiuse iiof iihigh
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 326 iipower iiWSN iiis iisuitable iifor iitasks iiin iiindustries iiinvolving iihuge iiarea iimonitoring iilike iimanufacturing, iimining iiconstructing, iietc., iiThe iisystem iidiscussed iihere iiis iivery iieasy iito iiinstall iiand iithe iibase iistation iican iibe iiplaced iiat iithe iilocal iiresidence iiclose iito iithe iiarea iiof iimonitoring iiwhere iia iiperson iirequires iiminimal iitraining iiat iithe iibeginning iiof iithe iisystem iiinstallation. ii Giuseppe iiAnastasi ii[16] iidesigned iia iiWSN-based iisystem iito iimonitor iithe iiproductive iicycle iiof iihigh- quality iiwine iiin iia iisicilian iiwinery. iiThis iiproject iiaimed iito iiensure iioverall iigood iiquality iiof iithe iiproduction. iiThe iidesign iiincorporates iiaccurate iiplanning iiin iifield, iithe iistored iiproduct iipreservation. iiWireless iiSensor iiNetworks iiare iideployed iias iithe iisensing iiinfrastructure iiof iidistributed iisystem iito iicontrol iiprototype iiproductive iichain, iinodes iihave iibeen iideployed iiboth iiin iitheiifieldiiandiiiniitheiicellar, iiwhere iiwine iiaging iiis iiproduced. iiThe iidata iiis iicollected iiat iia iimain iiunit iiin iiorder iito iiprocess iiinferences iithat iisuggest iitimely iiinterventions iithat iipreserve iithe iigrapes iiquality. iiRwan iiMahmoud ii[17], iiChen iiXianYi, iiJin iiZhi iiGang, iiYang iiXiong ii[33] iidescribes iithe iisecurity iiissues iiof iiInternet iiof iiThings iiwhich iiare iidirectly iirelated iito iithe iiwide iiapplication iiofiitheiisystem.iiBeginningiiwith iithe iiarchitecture iiand iifeatures iiof iiIOT, iiexpands iimany iisecurity iiissues iithat iiexist iiin iithree iilayered iiarchitectures, iiand iicame iiup iiwith iisolutions iito iithe iiissues. iiThe iisafety iimeasures iiconcernediiwithiiit,iithe iiones iiabout iiperception iilayer iiare iiparticularly iiviewed, iiincluding iialgorithm iiand iikey iimanagement, iisecurity iirouting iiprotocol iiand iidata iifusion iitechnology, iias iiwell iias iiauthentication iiand iiaccess iicontrol, iietc. iiDragoş iiMihai iiOfrim ii[18], iiZulhani ii iiRasin, iiHizzi iiHamzah iiMohd, iiShahrieel iiMohd iiAras ii[24] iidesigned iian iiimproved iisystem iifor iienvironmental iimonitoring iiand iicontrolling iiin iiterms iiof iiefficiency, iiflexibility iiand iiperformance. iiSome iiparameters iithatiihaveiibeen iitaken iiinto iiconsideration iiare iiresolution, iiaccuracy, iiacquisition iirate, iienergy iiconsumption, iiflexibilityiietc., iiThe iidesigned iisystem iiallows iimulti-point iimonitoring iiat iiany iilocation, iiwithout iiany iineed iiof iiwired iiconnection iiand iihave iiintelligent iisensors. iiThe iimeasuring iipoint iidensity iioffers iihigh iiaccurate iidata iieven iifrom iithe iiremoteiilocations.iiAiisplitiiisiicreated, iiin iiterms iiof iiphysical iiconnection, iibetween iithe iimeasuring, iimonitoring iiand iicontrol iiparts, iimaking iithe iisystem iiextremely iiflexible. iiThe iidisadvantage iiof iithis iisystem iiis iiregarding iipoweriiconsumption,iiwhich iiis iia iikey iifactor iiof iiwireless iisensor iinetworks. iiTherefore, iithe iisensor iinodes iirequire iia iigood iiresource iimanagement iiin iinetwork. iiThis iipaper iiuses iiZig iibee iiprotocol. iiImprovements iiand iifurther iidevelopments iiof iithis iisystem iipredicts: iialternative iienergy iiresources, iialgorithms iifor iienergy iisaving, iiincreased iiconnectivity iiand iireduced iitraffic. iiTo iimonitor iithe iiparameters iifrom iia iigreater iidistance, iithis iisystem iicould iibe supplied iiwith iiGSM iior iiWi-Fi iitransmitters, iito iibe iiable iito transfer iithe iiinformation iithrough iiexisting iitelecommunication networks. iiRachel iiCardell-Oliver ii[19] iidescribed iithe iidesign iiand iiimplementation iiof iia iireactive iievent iidriven iinetwork iifor iienvironmental iimonitoring iiof iisoil iimoisture iiand iievaluates iithe iieffectiveness iiof iithis iisolution. iiA iinovel iifeature iiis iito iicreate iia iisolution iiis iiits iireactivity iito iithe iienvironment: iiwhen iirain iifall iisand iisoil iimoisture iiis iichanging iirapidly, iimeasurements iiare iicollected iifrequently, iiwhereas iiduring iidry iiperiods iibetween iirainfall iievent iimeasurements iiare iicollected iimuch iiless iioften. ii iiallows iito iifocus iion iidynamic iiresponses iiand iilimit iithe iiamount iiof iiuseless iidata iigathered, iias iiwell iias iiimproving iirobustness iiand iinetwork iilifetime. iiThe iimain iiaim iiof iithis iiexperiment iiis iito iidemonstrate iia iireactive iisensor iinetwork iithat iican iideliver iiuseful iidata iion iisoil iimoisture iiresponses iito iirainfall. iiThe iiPin-jar iinetwork iimeets iithe iigoal iiofiiprovidingiiuseful iidata iion iidynamic iiresponses iiof iisoil iimoisture iito iirainfall. iiFuture iiwork iiwill iifocus iion iiaddressing iithe iilimitations iiof iithe ii ii iiin iirobustness iiof iipacket iidelivery iiand iinetwork iilongevity, iiand iiin iiguaranteeing iinetwork iiresponse iito iievents iiof iiinterest. iiAuthors iiplan iito iigeneralizeiievent-condition- action iiframework iifor iiprogramming iireactive iisensor iinetworks. ii Duan iiYan-e ii[20] iiexplained iithat iiagricultural iiinformation iitechnology ii(AIT) iiis iiwidely iiapplied iito iievery iipart iiof iiagriculture iiand iiis iigoing iito iibecome iithe iimost iiefficient iimeans iiand iitool iifor iienhancing iiagricultural iiproduction iiand iifor iimaking iiuse iiof iicomplete iiagricultural iiresources. iiAgriculture iiInformation iiManagement iiaffects iithe iirange iiof iiagricultural iiinformation iiand iithe iiefficiency iiof iiagricultural iiproduction. iiIn iithis iiexperiment, iion iithe iicount iiof iiintroducing iithe iiconcept iiof iiagricultural iiinformation iimanagement iiand iianalyzing iisome iiof iithe iifeatures iiof iiagricultural iidata, iithe iidesign iimethod iiand iiarchitecture iiof iiIntelligent iiAgriculture iiMIS iiwere iidesigned iiin iidetail, iifinally, iithe iiproposal iigives iian iiimplementation iiillustration iiof iithe iisystem iiin iiagricultural iiproduction. ii
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 327 Fiona iiEdwards iiMurphy ii[21] iiproposed iisystem iiuses iiWireless iiSensor iiNetwork ii(WSN) iitechnology iito iimonitor iia iihoneybee iicolony iiand iicollectiiinformation iiabout iithe iiactivity iiwithin iia iibeehive iiasiiwell iiasiiits iisurrounding iiarea.iiTheiiprojectiiusesiilow-poweriiWSN iitechnologies, iiincluding iinovel iisensing iitechniques, iienergy-neutral iioperation, iiand iimulti-radio iicommunications iiincluding iicloud iicomputing iito iimonitor iithe iiconditions iiwithin iithe iicolony. iiWSN iiis iia iimodern iinew iitechnology, iiit iiis iian iiimportant iiconcept iiof iithe iiInternet iiof iiThings. iiA iicomplete iisolution iiis iipresented iiincluding iia iismart iihive iicommunication iiwith iidata iiaggregation iiand iivisualization iitools. iiFuture iiwork iiwill iifocus iion iiimproving iithe iienergy iiperformance iiof iithe iisystem, iiintroducing iia iimore iispecialized iiset iiof iisensors, iiimplementing iia iimachine-learning iialgorithm iito iiextract iimeaning iifrom iithe iidata iiwithout136 iihuman iisupervision; iiand iisecuring iiadditional iideploymentsiiof iithe iisystem. In ii[43], iithe iiauthors iihave iiproposed iian iiirrigation iisystem iithat iiassists iito iidiminish iiwateriiwastageiiand iimechanizing iithe iiwater iisystem iistructure iifor iihuge iiregions iiof iicropland. iiThe iisystem iievaluates iithe iinecessity iiof iiwater iiin iithe iicrop iibased iion iithe iibehavior iiof iiatmospheric iitemperature,iihumidity,iiand iisoil iimoisture. iiThe iiframework iiutilizes iia iimachine iilearning iitechnique iiand iicontrasts iisensed iivalues iiacquired iifrom iisensors iiand iilimits iivalues iithatiihave iibeen iigiven iito iimachine iilearning iifor iifurther iianalysis. iiAfter iithis iiprocedure, iithe iiML iialgorithm iicross-checks iithe iioutcome iiacquired iiwith iithe iiweather iiforecast iiand iiafterwardiiprovidesiia iidecision iion iiwhether iiwater iisupply iishould iibe iidone iior iinot ii[44]. iiThe iiuser iigets iian iiimmediate iinotification iion iihis iimobile iiphone iiand iihe iican iidecide iito iiturn iion iithe iiwater iisupply iiwith iia iisimple iiclick. iiAlso, iithe iiframework iihas iia iiweb iiapplication iiand iiis iiuseful iiif iiat iiany iipoint iithe iiuser iineeds iito iisee iitheiianalytical iisensor iiinformation iiand iievaluate iithe iichanges iiin iisensor iireadings iiall iithrough iia iitimeframe.iiMoreover, iithe iiframework iican iibe iialignediiforiivariousiisorts iiof iiplants, iithat iiis, iithe iiclient iiis iigiven iia iilist iiof iiplant iidecisions iiin iihis iiweb iiapplication iiand iimobile iiapplication ii[45]. iiWith iithis, iithe iifarmer iican iipick iithe iiparticular iisort iiof iiplant iithat iiis iibeing iicultivated iiand iiget iian iiincreasingly iiexact iithreshold iilimit iiand iiin iithis iimanner iia iiprogressively iiprecise iiirrigation iiprediction. iiIn iiaddition, iian iiSMSiialertiican iibe iicoordinated iiby iichance iithere iiisiinoiiwebiiaccess. iiWith iithis, iithe iiclient iiwouldiibeiiinformediiaboutiithe iipredictions iiutilizing iian iiSMS iiand iiheiicaniidecideiito iiturn iion iior iioff iithe iiwater iisupply iito iithe iicrop iiby iianswering iithe iiSMS iithat iithe iiuser iireceived. In ii[46], iithe iiauthors iihave iiintroduced iiIoT iito iidetect iithe iiphysical iidata iiand iisend iiit iito iithe iiuser. iiThey iialso iihighlighted iimethodologies iithat iican iibeiiutilized iito iiprovide iisolutions iito iidifferent iiproblems iilike iirecognizing iirodents, iiand iiseveral iirisks iito iicrops. iiIoT iidevice iiis iideveloped iiusing iipython iiscripts, iiwhich iican iisend iia iinotification iiwith iino iihuman iiinterference. ii In ii[47], iithe iiauthors iihaveiidiscussediitheiiconceptsiiof iiweb iiservices iiand iiIoT iiwhichiihaveiia iigreatiicapacity iiin iihandling iitheiihugeiidata iiregardingiitheiicultivation iifield iiby iiusing iithe iiconcept iiof iithe iiinternet iiof iithings iiand iiother iiweb iiservices. iiThis iicombination iiof iicloud iiservices iiand iiIoT iihas iiadvanced iiquickly iiand iialso iicontributed iia iilotiitoiidevelopingiinumerous iismart iisolutions iifor iithe iiproblems iiin iiagricultural iifields iias iiwell iias iiproblems iifaced iiby iithe iifarmers, iivery iiproductively ii[48] In ii[49], iithe iiauthors iiproposed iian iiintelligent iiwater iisystem iithat iiwill iigo iiabout iias iia iibenefit iiby iioptimizing iithe iiwater iisystem iiwhile iishowing iithe iiissue iiof iiwater iideficiency iiby iiinitiating iioptimal iiutilization iiof iiwater iithrough iimodernized iiIoT-based iiprocedure. iiThe iibrilliant iiirrigation iimodule iican iibe iialtered iito iithe iiparticular iineed iiof iidifferent iiyields. iiThis iiinformation iican iibe iiput iiawayiioniitheiiserverii [50]. iiGiven iithe iiharvest iichosen iiby iithe iifarmer iion iithe iimobile iiapps, iiinformation iiwould iibe iiretrieved iifrom iithe iiserversiiandiitheiiframework iiwouldiimodify iiitself iiaccordingly, iibringing iiabout iian iiefficient iiirrigation iisystem iiand iiexpanded iiyields 3. iiRESEARCH iiGAP 3.1 iiAgricultural iiAutomation iiAnd iiRobotics: ii(PRESENT iiAPPLICATIONS) In iiagriculture, iithe iiautomation iiof iispecific iioperations iihas iienabled iithe iifarmers iito iimanage iicrop iiproduction iiefficiently iiwith iiless iienergy iiand iicost. iiFactors iisuch iias iithe iilack iiof iiagricultural iiworkers iiin iiaddition iito iithe iiaging iifarmer iipopulation iiand iithe iiincreasing iiagricultural iiwage iihave iimade iithe iifarmers iiand iiresearchers iiplay iiinterest iiin iithe iidevelopment iiof iiautomation iisystems iiin iiagriculture. iiThe iiimplementationiiandiidevelopmentiiofiiagricultural iiautomation iihave iibeen iiexecuted iiby iiautonomous iirobots iiand iiagricultural iitypesiiofiimachineryiisuch iias iitractors iiwhich iiare iiusually iiattached iiwith iicultivators, iiplanters, iicultipacker, iiand iichisel iiplows. iiFigure ii1 iishows iiseveral iiagricultural iirobots iiand iitypes iiof iimachinery iiwhich iirequire iiautomation iito iienhance iithe iiefficiency iiofiitheiiagricultural iioperation.
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 328 iiBased iion iiFigure ii1, iithe iiapplication iiof iiautomation iiand iirobotics iiin iiagriculture iican iibe iivaried iisignificantly. iiThe iiexecution iiof iiagricultural iioperations iineeds iito iibe iiexecuted iiby iidifferent iirobotics iiand iivehicle iistructure iibased iion iithe iitype iiof iiland iiand iioperation iirequirement. iiDifferent iirobot iiand iivehicle iistructures iihad iiits iilimitation iithatiineed iito iibe iisolved iiby iiusing iiother iitypes iiof iimachinery. iiThe iirobotic iistructure iicannot iiexecute iiextreme iioperations iiin iiagriculture iidue iito iiits iisensitive iicharacteristic iitoward iiwater iiand iimud. iiTherefore, iithe iitractor iiis iibeing iiused iito iiexecute iisuch iia iitask iidue iito iiits iigreat iiability iito iitraverse iiinside iithe iimuddy iistructure iiand iiless iiprotection iiagainst iielectronic iicircuits. iiOn iithe iiother iihand, iitractor iiapplications iiare iionly iilimited iito iia iiwide iiarea iidue iito iitheir iilarge iistructure. iiThus, iithe iiapplication iiof iithe iismall iiarea iineeds iito iibe iiexecutediibyiia iimobile iirobot. iiFor iidrone iiapplication, iiit iiis iionly iiapplicable iito iiopen iiareas iiand iiits iiapplication iiwould iibe iiinsignificant iito iia iiclosed iiarea iisuch iias iithe iigreenhouse iias iithe iiprobability iiof iicollision iiwill iibe iiincreased. iiTo iiexplore iimore iithe iipresentiiapplication iiof iiautomation iiand iirobotics iiin iiagriculture, iithe iicategorization iiwas iimade iibased iion iithe iidifferent iiagricultural iioperations. i i ii ii ii ii ii ii ii ii ii ii ii Figure ii1. iiAgriculture iirobot iiand iimachineries ii(a) iiBoniRob ii[23] ii(b) iiShrimp iirobot ii[24](c) iiChisel iicultivator ii[25] ii(d) iiDJI iiAGRAS iiMG-1S iiDrone iisprayer ii[26](e) iiCombined iiharvester ii[27] 3.1.1 iiPlanting Planting iiis iithe iiprocess iiof iiputting iiseeds iior iiyoung iiplants iiinto iithe iiground iito iibeginiitheiigrowthiiphase iiof iithe iiplant. iiThis iiprocedure iinecessitates iia iihigher iilevel iiof iiprecision iibecause iivarious iiplants iirequire iivaried iidistances iibetween iithem iito iioptimizeiigrowth iiand iioutput. iiA iifarmer iimust iiphysically iiinsert iieach iiseed iiinto iithe iisoil iiin iithe iitraditional iiplanting iiprocess. iiThis iimethod iinecessitates iia iisignificant iiamount iiof iitime iiand iieffort iibecause iithe iiprocess iirequires iia iihigh iilevel iiof iiconsistency iiand iiprecision, iiand iiit iitypically iispans iia iilargeiiagricultural iiarea.iiAs iia iiresult, iia iiplanter iimachine iihas iibeen iiinvented, iiin iiwhich iithe iifarmer iiwill iioperate iithe iimachine iiby iicontrolling iithe iimachine. iiThe iimachine iiwill iinot iibe iiin iia iistraight iiline, iiand iithere iiwill iibe iicertain iiregions iiwhere iithe iiplanter iiwill iibe iiunable iioriimiss iiplanting iithe iiseed. iiAs iia iiresult, iian iiefficient iiautonomous iisystem iiis iirequired iithat iiensures iithe iiproduction iiof iia iistraight-line iiplant iirow iiand iidoes iinot iimiss iiany iiseed iiplanting. iimotion iiwhile iisimultaneously iiplanting iithe iiseed iiinto iithe iisoil. iiFigure ii2 iidepicts iithe iiplanters iithatiihaveiibeeniibuilt iifor iithe iiplanting iiof iivarious iiplants. iiAs iishown iiin iiFigure ii2, iithe iidesigned iiplanter iiis iinormally iipulled iibehind iia iitractor iiand iiused iito iiplant iiseeds iiin iia iirepetitive iiaction. iiBecause iithe iitractor iiand iiplanter iiare iioperated iiby iihumans, iithe iirow's iiconsistency iiwill iibe iiimpacted iibecause iithe iirow iiwill iinot iibe iiin iia iistraight iiline iiand iithere iiwill iibe iisome iilocations iiwhere iithe iiplanter iiis iiunable iior iimisses iito iiplant iithe iiseed. iiAs iia iiresult, iian iiefficient iiautonomous iisystem iiis iirequired iithat iiwill iiensure iithat iia iistraight-line iiplant iirow iiis iiproduced iiand iithat iino iiseed iiplanting iiis iimissed. Figure ii2. iiPlanters ii(a) iiSingle-seed iicorn iiplanter ii[28], ii(b) iiMinimum-tillage iiplanter ii[29], ii(c) iiBillet iiplanter ii[30] 3.1.2 iiInspection In iiagriculture, iiinspection iirefers iito iithe iiprocess iiof iiinspecting iior iiobserving iiplants iifor iidiseases iior iiquality iiflaws. iiPlant iidiseasesiiareiitheiiprimaryiicause iiof iireduced iiproductivity iiin iiagriculture, iiwhich iiresults iiin iieconomic iilosses. iiBecauseiitheiiagricultural iienvironment iiis iiso iidynamic, iiplants iiand iitheir iiproducts iihave iibeen iiaffected iiby iia iivariety iiof iiunexpected iiand iitypical iistress iiscenarios iisuch iias iichanges iiin iitemperature, iihumidity, iiwater iilevels, iidisease iioutbreaks, iiand iipests. iiFarmers iihave iitypically iiused iitheir iihuman iivision iisystem iito iimanually iiinspect iiplant iianomalies iito iicarry iiout iithe iiinspection. iiFarmers' iiages iihave iirisen iiin iirecent iiyears, iireducing iithe iiefficiency iiof iiinspection iioperations iisince iithe iiquality iiof iithe iihuman iivision iisystem iideteriorates iiwith iiage. iiFurthermore, iithe iiadoption iiof iiagricultural iiinspection iiautomation iinecessitates iithe iidevelopment iiof iia iisystem iito
  • 7. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 329 iireplace iithe iiability iiof iihuman iivision iito iicarry iiout iithe iiinspection iiprocess. iiAs iia iiresult, iicomputer iivision iiis iiincreasingly iibeingiiusediitoiireplaceiihuman iivision iiin iiagricultural iiplant iiinspection. 3.1.3 ii iiSpraying In iiagriculture, iispraying iiis iia iicommon iiway iiof iiadministering iipest-control iichemicals, iifertilizers, iior iigrowing iimedia iito iiplants iiin iithe iiform iiof iia iifine iimist iifor iidisease iitreatment iiand iiplant iigrowth iimanagement. iiTo iilimit iithe iispread iiof iiillnesses,iipest iicontrol iichemicals iiare iinormally iiadministered iiconsistently iiover iithe iifields iiin iimost iifarming iioperations. iiEven iithough iiseveral iipestsiiandiiillnesses iihave iian iiuneven iispatial iidistribution, iiespecially iiduring iithe iiearly iiphases iiof iidevelopment, iithis iistrategy iiis iiused. As iia iiresult, iiin iithe iilast iitwo iidecades, iiselective iispraying iihas iibeen iideveloped iiand iiexplored iito iireduce iithe iicost iiof iipest-control iichemicals iiused iiin iiagricultural iioperations. iiThe iiautomated iiselective iispraying iitechnique, iiwhich iiis iinormally iicarried iiout iiby iihighly iiautomated iiequipment iior iimobile iirobots, iiallows iipesticide iiapplication iito iibe iitargeted iionly iiwhere iiand iiwhen iiit iiis iineeded. iiThe iimajor iigoal iiof iithis iitargeted iioperation iiis iito iireduce iipesticide iiusage iiwhile iialso iiavoiding iithe iidevelopment iiof iiinfection iiand iisubsequent iiepidemics iiacross iithe iigreenhouse. 3.1.4 iiHarvesting Harvesting iiis iithe iiprocess iiof iigathering iiagricultural iigoods iito iibe iiprocessed iior iisold iiin iiagriculture.iiThe iifruits iior iivegetables iimust iibe iicollected iiand iistored iifor iifurther iiprocessing iior iisold iidirectly iito iithe iibuyers iito iirun iithis iioperation. iiThis iimethod iiis iirecognized iias iia iitime-consuming iiand iilabor-intensive iiprocess iisince iiit iinecessitates iiextensive iiobservation iiand iia iirepeating iioperation. As iia iiresult, iithroughout iithe iilast iifew iidecades, iithe iidevelopment iiof iiautonomous iiharvestingiisystemsiihas iibeen iiextensively iipursued. Several iiimplementations iifor iivarious iitypes iiof iicrops iihave iibeen iidone iiin iithe iilast iifew iiyears, iiincluding iistrawberry, iiapple, iitomato, iikiwi, iicapsicum, iigrape, iilitchi, iicitrus iipumpkin, iiand iiheavyweight iicrop. iiThe iimajority iiof iiimplementations iiare iiaimed iiat iiimproving iithe iiaccuracy iiof iiharvesting iisystems iiby iiproposing iia iivariety iiof iiapproaches iiand iimethods, iieach iiwith iiits iisoftware iiand iihardware iiarchitecture. 3.2 iiCommunication iiTechnologies iiIn iiIOT iiBased iifarms According iito iia iisurvey iiof iiIoT iicommunication iitechnologies ii[31,32], iicommunication iitechnologies iimust iigradually iiimprove iithe iievolution iiof iiIoT iidevices iito iiincorporate iiIoT iiinto iithe iismart iiagriculture iisector. iiThey iihave iia iisignificant iiimpact iion iithe iidevelopment iiof iiIoT iisystems. iiProtocol, iispectrum, iiand iitopology iiare iithe iithree iitypes iiof iiextant iicommunication iisystems. Protocols: iiFor iithe iismart iiagriculture iisector, iiseveral iiwireless iicommunication iiprotocols iihave iibeen iideveloped. iiDevices iiin iia iismart iiagricultural iisystem iican iicommunicate, iiexchange iiinformation, iiand iimake iidecisions iibased iion iithese iiprotocolsiitoiimonitoriiand iicontrol iifarming iiconditions iiand iiincrease iiyields iiand iiproduction iiefficiency. iiBased iion iithe iicommunication iirange, iithe iicommon iilow-power iicommunication iiprotocol iinumbers iiused iiin iismart iiagriculture iimay iibe iisplit iiinto iishort-range iiand iilong-rangeiicategories. - iiShort-range: iiNFMI ii(near-field iimagnetic iiinduction) ii[33], iiBluetooth ii[34], iiZigBee ii[35], iiterahertz ii(Z- Wave) ii[36,37], iiand iiRFID ii[38]. ii - iiLong-range: iiLoRa ii[39], iiSigfox ii[40], iiand iiNB-IoT ii(Narrowband iiIoT) ii[41] Table ii1 iishows iisome iiof iithe iimost iicommon iicommunication iitechnologies iiused iiin iismart iiagriculture. iiShort-range iicommunication iitechnologies iihave iia iitransmission iidistance iiof iiless iithanii20ii(m), iia iihigh iienergy iiefficiency, iiand iia iilow iidata iirate, iiaccording iito iithe iivalues iiin iiTable ii1. Long-range iicommunication iisystems, iion iithe iiother iihand, iihave iitransmission iidistances iiof iiup iito iimany iitens iiof iikilometers, iirequire iimore iienergy, iiand iiare iiinstalled iifor iibackhaul iidevice-to-device iiconnections. iiSundaram iiet iial. iigiveiia iidiverseiiassessmentiiofiilow- power iicommunication iitechnologies iifor iiIoT iithat iiincludes iisolutions, iiproblems, iiand iisome iioutstanding iitopics. ii[42]
  • 8. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 330 Table ii1. ii iiSome iitypical iicommunication iitechnologies iifor iismart iiagriculture. 4. iiOBJECTIVE Every iiaspect iiof iitraditional iifarming iiprocesses iican iibe iisignificantly iitransformed iiby iiincorporating iithe iilatest iisensor iiand iiIoT iitechnologies iiinto iiagricultural iipractices. iiCurrently, iithe iiseamless iiintegration iiof iiwireless iisensors iiand iithe iiInternet iiof iiThings iiin iismart iiagriculture iicaniitakeiiagricultureiitoiipreviously iiimagined iiheights. iiIoT iican iihelp iito iienhance iithe iianswers iito iimany iitraditional iifarming iichallenges, iisuch iias iidrought iiresponse, iiyield iioptimization, iiland iiappropriateness, iiirrigation, iiand iiinsect iimanagement, iiby iiimplementing iismart iiagriculture iimethods. iiA iihierarchy iiof iiimportant iiapplications, iiservices, iiand iiwireless iisensors iiutilized iiin iismart iiagriculture iiapplications iiis iishown iiin iiFigure ii3. iiIntegrating iiMachine iiLearning iiin iithis iiarchitecture iiwill iinotiijust iiinform iius iiabout iithe iistated iiproblems iibut iialso iihelp iius iimonitor iithe iicrop iiand iifollow iithe iidata iiand iipredict iihow iithe iicrop iiwill iiperform iibut iialso iiprovide iisolutions iiwhen iiany iiirregularities iioccur. ii ii ii ii ii ii Figure ii3. ii ii5. iiIMPLEMENTATION ii5.1 iiImplementation iiof iiIoT iiEcosystem. We iipropose iia iicommon iiarchitecture iifor iian iiIoT iiecosystem iifor iismartiiagricultureiiiniithisiipart,iiwhich iiis iimade iiup iiof iithree iikeyiicomponents:iiIoTiidevices, iicommunication iitechnologies, iiand iidata iiprocessing iiand iistorage iisolutions. iiFigure ii4 iishows iian iiillustration iiof iithe iiIoT iiecosystem iifor iismart iiagriculture. Figure ii4. ii iiAn iiillustration iiof iiIoT iiecosystems’ iiarchitecture iifor iismart iiagriculture Sensors iito iicollect iidata iifrom iithe iienvironment, iiactuators iiwith iiwired iior iiwireless iiconnections, iiand iian iiembedded iisystem iiwith iia iiCPU, iimemory, iicommunication iimodules, iiinput-outputiiinterfaces,iiand iibattery iipower iiare iiall iistandard iicomponents iiof iian iiIoT iidevice. iiFigure ii5 iidepicts iithe iicommon iiarchitecture iiof iia iitypical iiIoT iidevice iifor iismart iiagriculture. ii
  • 9. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 331 Figure ii5. iiAn iiillustration iiof iithe iicommon iiarchitecture iiof iian iiIoT iidevice 5.2 iiMachine iiLearning Using iisupervised iiMachine iiLearning iialgorithms, iipreviously iilabeled iidata iiwith iiknown iiresponses iiare iisupplied iito iithe iimachine iito iiunderstand iithe iipatterns iiinvolved. iiIt iiexamines iiseveral iitypes iiof iidata, iias iiwell iias iithe iianswers iito iivariousiiproblems, iito iidiscover iia iipattern. iiThis iistage iiis iiknown iias iidata iitraining. iiThe iimore iidata iithere iiis, iithe iimore iiprecise iithe iiresults iiwill iibe. iiTesting iithe iidata iiis iithe iinext iistep iiin iisupervised iimachine iilearning. iiIn iithis iistep, iithe iimachine iiis iigiven iia iiproblem iito iisolve, iiand iithe iimachine, iiknowing iithe iipattern iiof iisolving iithe iiproblem iiand iithe iivarious iireplies, iiprovides iithe iimost iiappropriate iianswer. The iiresult's iiaccuracy iiwill iibe iidetermined iiby iithe iiamount iiof iithe iidata, iithe iialgorithms iiemployed iiin iithe iidata, iiand iiseveral iiother iiaspects iisuch iias iinoise iiand iioutliers iiin iithe iidata iiused iias iitraining iiinput. iiThe iitwo iimost iiimportant iisteps iiiniianyiiclassification iiare iilearning iiand iiprediction. iiIn iithe iilearning iiprocess, iithe iimodel iiis iibuiltiiusingiitheiifeediitraining iidata. iiIn iithe iiprediction iistep, iithe iimodel iishould iiforecast iithe iiresults iibased iion iithe iitraining iidata. iiA iidecision iitree iialgorithm, iian iiefficient iicategorization iisystem, iican iibe iiused iito iiperceive iiand iiinterpret iidata. ii ii ii ii ii ii ii ii ii ii ii ii iiFigure ii6. iiData iiFlow iiDiagram The iidata iiflow iidiagram iirepresents iithe iidirection iiof iiflow iiof iidata iiregarding iia iisystem. iiIt iiprovides iiinputs iiand iioutput iiof iithe iientities iipresent iiin iithe iisystem. iiThe iidata iiflow iimodel iifor iithe iiproposed iisystem iiis iias iiin iiFigure ii6. 5.2.1 Algorithm ii iiThe iidecision iitree iialgorithmiiisiioneiiofiitheiimost iiefficient iiand iisimple iialgorithms iiamong iithe iisupervised iilearning iifamily iiof iialgorithms. ii  iiThe iidecision iitree iialgorithm iiis iiused iito iisolve iiseveral iiregression iiand iiclassification iiproblems, iiunlike iithe iiother iialgorithms iiin iisupervised iilearning. ii  iiThe iimain iiobjectiveiiof iitheiidecisioniitreeiialgorithm iiis iito iitrain iithe iimodel iiwhich iican iipredict iithe iivalue iior iiclass iiof iithe iitargetiivariableiibyiigenerating iiclear iiand iiuncomplicated iidecision iirules iiderived iifrom iithe iiprevious iidata iii.e., iitraining iidata. ii  iiTo iipredict iia iiclass iilabel iiof iia iirecord, iiit iiis iirequired iito iistart iifrom iithe iifirst iinode iiwhich iiis iiroot iinode iiof iithe iidecision iitree. iiThe iirecord’s iiattribute iishould iibe iivalidated iiwith iithe iivalues iiof iievery iiroot iiattribute. ii  iiBased iion iithe iivalidations, iia iipath iicontaining iibranches iiis iifollowed iiwith iithe iimatching iivalue iiand iijumps iito iithe iisucceeding iinode iias iishown iiin iifigure ii7. Microcontroller iito iiBOLT iiIOT
  • 10. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 332 Terminology iiin iidecision iitrees iiare: ii iiRoot iinode: iiIt iiis iia iistarting iinode iior iia iiparent iinode iithat iiis iidivided iiinto iitwo iior iimore iianalogous iisets. ii iiLeaf iinode: iiThese iiare iilower-level iinodes iiof iithe iitree iiwhich iidoesn’t iisplit iifurther. ii  iiDecision iinode: iiIt iiis iia iisub-node iisplitting iiinto iimore iisub-nodes. ii iiSplitting: iiIt iiis iithe iiprocess iiof iisplitting iia iinode iiinto iimore iinodes. ii iiPruning: iiremoving iiof iisub-nodes, iireverseiiprocess iiof iisplitting.  iiSub-tree/Branch: iiIt iiis iia iipart iiof iian iientire iidecision iitree. iiChild iinode: iiThe iinode iievolved iifrom iithe iiparent iinode iiby iisplitting. ii ii ii ii ii ii ii ii ii ii ii ii ii ii ii ii ii Figure ii7. iiSample iiDecision iiTree 5.2.2. iiArchitecture ii The iimain iicomponents iiof iithe iiproposed iisystem iiarchitecture iiare iitemperature, iisoil iimoisture, iihumidity, iilight, iiwater iilevel, iirain iisensors, iiBolt iiIOT iikit, iiand iiArduino iiUno iimicrocontroller. ii iiBOLT iiIOT ii iiplays iia iicentral iirole iiin iithe iisystem iiby iiproviding iistorage iito iithe iidatasets iiand iihosting iia iiweb iiserver. ii  iiAll iithe iisensors iiare iideployed iiin iithe iifield iiand iiare iiconnected iito iiArduino iiUNO iias iishown iiin iiFigure ii8. ii  iiThe iidata iisensed iithrough iithese iisensors iiare iisent iito iiArduino iiUno iiand iiprocessed iiin iiitiiandiitheniivia iiBolt iiIoT iiWifi iiModule iisent iito iithe iiBolt iiIOT iicloud. ii iiDecision iitree iialgorithm iiis iiapplied iito iithe iidatasets iito iipredict iithe iiaccurate iiresults . ii iiThe iiresult iiis iisent iito iithe iifarmer iithrough iian iiemail/Sms iicontaining iiall iithe iiupdates iiof iithe iifarm. ii iiAll iidata iisent iifrom iithe iisensors iito iithe iiArduino iiUNO iiand iithen iito iithe iiBolt iiIoT ii iiare iistored iiin iia iicloud iidatabase iifor iifuture iiuse. 5.2.3. iiDataset iiDatasets iicontainingiivaluesiiofiitemperature,iihumidity iiand iisoil iimoisture, iiwater iilevel iiareiiloadediiintoiithe iidecision iitree iialgorithm. iiThese iidatasets iicontain iivalues iiof iidifferent iiscenarios iiin iithe iifields iito iitrain iithe iimodel iiaccurately. iiThe iitemperature iiis iiCelsius, iiand iihumidity iiand iisoil iimoistureiiareiirepresented iiin iipercentages. iiSample iidatasets iiareas iishow iiin iiTable ii2. ii ii ii ii ii iiTable ii2. iiSample iiDatasets 5.3 Anomaly iiDetection Anomaly iidetection iiis iithe iiprocess iiof iilocating iiunusual iithings iior iievents iiin iidata iisets iithat iiare iiout iiof iithe iiordinary. Anomalies iiin iisimple iigraph iirepresentations iican iibe iieasily iispotted iiby iisetting iithresholds, iie.g. But iiwhat iiabout iivisualizations iiin iiwhich iithresholds iiaren't iipossible iito iiset? A iitechnique iifor iidetecting iianomalies iiis iiZ-score iiAnalysis. Essentially, iithe iiZ-score iiis iiused iito iicompute iilimits, iior iiupper iiand iilower iibounds, iifor iiplotted iidata.
  • 11. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 333 ii iiFigure ii10. ii iiAn iiillustration iiof iia iifully iiautomated iiIOT-based iiindoor iifarm iiecosystem. 6. iiDESIGN iiAND iiARCHITECTURE 6.1 iiArduino iiUno The iiArduino iiUno iiis iia iiMicrochip iiATmega328P-based iiopen-source iimicrocontroller iiboard iicreated iiby iiArduino.cc. iiThe iiboard iihas iidigital iiand iianalog iiinput/output ii(I/O) iipins iithat iican iibe iiused iito iiconnect iito iidifferent iiexpansioniiboardsii(shields)iiand iiother iicircuits. iiThe iiboard iicontains ii14 iidigital iiI/O iipins ii(six iiof iiwhich iican iibe iiused iitoiigenerateiiPWM iioutput) iiand ii6 iianalog iiI/O iipins, iiand iiit iican iibe iiprogrammed iiusing iithe iiArduino iiIDE ii(Integrated iiDevelopment iiEnvironment) iiand iia iitype iiB iiUSB iiconnector. iiIt iican iibe iipowered iiby iia iiUSB iicable iior iian iiexternal ii9-volt iibattery, iiand iiit iican iihandle iivoltages iiranging iifrom ii7 iito ii20 iivolts. iiIt iiresembles iithe iiArduino iiNano iiand iiLeonardo iiin iiappearance. The iihardware iireference iidesign iiis iiavailable iion iithe iiArduino iiwebsite iiunder iia iiCreative iiCommons iiAttribution-Share-Alike ii2.5iilicense.iiSomeiiversions iiof iithe iihardware iihave iilayout iiand iiproduction iifiles iiavailable. 6.2 iiBOLTIOT iikit For iithe iiBolt iiDevices iiconnected iito iiyour iiaccount, iithe iiBolt iiCloud iiAPI iiprovides iian iiinterface iifor iiconnection iibetween iithe iiBolt iidevices iiand iiany ii3rd iiparty iisystem iicontrol, iimonitoring, iicommunication, iiand iiutility iiservices. iiThe iiBolt iiCloud iiAPI iimakes iiuse iiof iimobile iiapps, iiweb iiservers, iiand iiPython iiprogrammes, iiamong iiother iithings.iiTheiiAPIiiemploys iithe iiHTTP iiGET iiand iiHTTP iiPOST iimethods iito iicommunicate iiand iiuses iia iivery iiuser-friendly iiHTTP iiprotocol. iiAs iia iiresult, iiusers iican iiprogrammatically iiexecute iioperations iiand iiobtain iidata iifrom iiBolt iidevices iiusing iistandard iiHTTP iirequests. Here iiare iia iifew iiexamples iiof iihow iithe iiAPI iican iibe iiused: To iicontrol iiand iimonitor iiBolt iidevices iiover iithe iiInternet, iiuse iithe iiAPI iiin iinative iiiOS iiand iiAndroid iiapps. To iiexecute iiyour iiuniqueiiAIiialgorithmsiiandiianalytics, iipull iisensor iidata iiand iiconnect iiit iito iia iiBolt iidevice iior iiany iiother iicloud. Use iiBolt iiCloud iito iiconnect iito iiany iiVPS ii(Virtual iiPrivate iiServer) iiand iirun iiyour iicode iiin iiany iilanguage. iiRefer iito iithe iicode iiexamples. Remote iiOperating iiSystem: iiUsing iithe iiAPI, iiBolt iidevices iican iifunction iisimilarly iito iia iiboard iiwithiian iioperating iisystem, iisuch iias iithe iiRaspberry iiPi iior iiBeagle iiBone, iiwith iitheiiexceptioniithatiitheiioperating iisystem iiwill iibe iihosted iion iia iiremote iiVPS ii(Virtual iiPrivate iiServer). iiThe iiBolt iiwill iicollect iidata iifrom iithe iisensors iiand iisend iiit iito iia iiLinux-based iiVPS. iiThe iiprocessing iiwill iitake iiplace iion iithe iiVPS,iiwhich iiwill iisend iicommands iito iithe iiBolt iideviceiitoiicontrol iimotors, iiLEDs, iiand iiactuators. iiIn iithis iitype iiof iisystem, iiyou iican iiuse iiall iiof iithe iicapabilities iiof iia iiLinux iiOS. 6.3 iiLM35 iiTemperature iiSensor The iisystem's iifunctioning iipremise iiis iistraightforward. iiAllow iime iito iiexplain. The iiLM35 iisensor iiin iiour iisystem iidetects iithe iitemperature iiof iiits iisurroundings iiand iicreates iian iianalogue iioutput iivoltage iibased iion iiits iivalue. iiThe iiLM35's iianalogue iivoltage iiis iithen iifed iiintoiitheiiBolt iiA0 iipin iias iian iiinput. iiThe iiBolt iithen iiconverts iithe iianalogue iivalue iito iia iiten-bit iidigital iinumber iibetween ii0 iiand ii1023. iiThe iiBolt iidevice iisends iithis iidigital iidata iito iithe iicloud.
  • 12. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 334 As iia iiresult, iiwhile iiplotting iithe iitemperature, iithe iiraw iisensor iiresults iimust iibe iiconverted iiinto iithe iireal iitemperature iivalue, iiwhich iiis iidone iiusing iithe iifollowing iiformula: temp ii= ii(analog_value100)/1023* The iiconverted iidigital iidata iiis iithen iiplotted iifor iivisual iirepresentation. 6.3 iiDHT11 iiSensor 6.4 iiWater iiLevel iiSensor The iiwater iilevel iisensor iiis iia iidevice iithatiidetects iian iiexcessively iihigh iior iilow iiliquid iilevel iiin iia iistationary iicontainer. iiIt iican iibe iiclassified iiinto iitwo iisorts iibased iion iihow iithe iiliquid iilevel iiis iimeasured: iicontact iitype iiand iinon-contact iitype. iiA iicontact iimeasurement iiis iian iiinput iitype iiwater iilevel iitransmitter iithat iiturns iithe iiheight iiof iithe iiliquid iilevel iiinto iian iielectrical iisignal iifor iioutput. iiIt's iia iifrequently iiutilised iiwater iilevel iitransmitter iiright iinow. 6.5 iiServo iiMotor A iiservo iimotor iiis iian iielectromechanical iidevice iithat iiuses iicurrent iiand iivoltage iito iiproduce iitorque iiand iivelocity. iiA iiservo iimotor iiis iipart iiof iia iiclosed iiloop iisystem iithat iiprovides iitorque iiand iivelocity iias iidirected iiby iia iiservo iicontroller iiand iiisiiclosediiby iia iifeedback iidevice. iiThe iifeedback iidevice iiprovides iiinformation iito iithe iiservo iicontroller,iiwhichiimodifies iithe iimotor iiaction iibased iion iithe iicommanded iiparameters, iisuch iias iicurrent, iivelocity, iior iiposition. 6.6 iiLDR iiSensor An iiLDR's iioperating iiprinciple iiis iiphotoconductivity, iiwhich iiis iinothingiimoreiithaniianiiopticaliiphenomena. iiWhen iilight iiis iiabsorbed iiby iithe iisubstance, iithe iimaterial's iiconductivity iiimproves. iiWhen iilight iishines iion iithe iiLDR, iithe iielectrons iiin iithe iimaterial's iivalence iiband iirush iito iithe iiconduction iiband. iiHowever, iithe iiphotons iiin iithe iiincident iilight iimust iihave iimore iienergy iithan iithe iimaterial's iibandgap iiin iiorder iifor iithe iielectrons iito iijump iifrom iione iiband iito iithe iinext ii(valance iito iiconduction).
  • 13. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 335 As iia iiresult, iiwhen iilight iihas iia iilot iiof iienergy, iimore iielectrons iiare iistimulated iito iithe iiconduction iiband, iiresulting iiin iia iilot iiof iicharge iicarriers. iiThe iiresistance iiof iithe iidevice iidiminishes iias iithe iieffect iiof iithis iiprocess iibecomes iimore iiapparent iiand iithe iicurrent iiflow iiincreases. 6.7 iiSoftware iiImplemented Arduino iiide ii– iiit iiis iian iiopen iisource iidevelopment iienvironment iiwhich iihelps iius iiwith iiusing iiArduino iiuno/ iinano/ iimega iiand iimany iiother iitypes iiof iiArduino iifor iidifferent iiprojects. iiIt iiprovides iius iiwith iia iicoding iienvironment iiand iiit iicomes iiwith iipre iiloaded iilibraries iiand iiother iilibraries iican iialso iibe iiinstalled. iiIt iihas iia iivery iiuser iifriendly iienvironment. 6.8 iiBoltIOT iiCloud It iihelps iius iiwith iimanaging iidifferent iiprojectsiiatiithe iisame iitime iiand iialso iicomes iiwith iireal-time iidata iimonitoring iisystem. iiIt iialso iiprovides iius iiwith iia iicoding iienvironment iithat iihelps iius iiin iivisualizing iithe iidata. 6.9 iiDecision iiTree The iiDecision iiTree iialgorithm iiis iipart iiof iithe iisupervised iilearning iialgorithms iifamily. iiThe iidecision iitree iiapproach, iiunlike iiother iisupervised iilearning iialgorithms, iimay iialso iibe iiutilized iito iisolve iiregression iiand iiclassification iiissues.iiTheiipurposeiiof iiemploying iia iiDecision iiTree iiis iito iidevelop iia iitraining iimodel iithat iican iibe iiused iito iiforecast iithe iiclass iior iivalue iiof iithe iitarget iivariable iiby iilearning iibasic iidecision iirules iiinferred iifrom iiprior iidata ii(training iidata). iiWe iistart iiat iithe iiroot iiof iithe iitree iiwhen iipredicting iia iiclass iilabel iifor iia iirecord. iiThe iivalues iiof iithe iiroot iiattribute iiand iithe iirecord's iiattribute iiare iicompared. The iiexamples iiare iiclassified iiusing iidecision iitrees iiby iisorting iithem iidown iithe iitree iifrom iithe iiroot iito iia iileaf/terminal iinode, iiwith iithe iileaf/terminal iinode iiproviding iithe iiclassification. Each iinode iiin iithe iitree iirepresents iia iitest iicase iifor iisome iiproperty, iiwith iieach iiedge iidescending iifrom iithe iinode iicorresponding iito iithe iitest iicase's iipossible iisolutions. iiThis iiis iia iicyclical iiprocedure iithat iioccurs iifor iieach iisubtree iirooted iiat iithe iinew iinode. 6.10 iiData iiFlow
  • 14. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 336 6.11 iiPolynomial iiRegression Polynomial iiVisualizer iiis iia iipopular iidata iianalytics/machine iilearning iialgorithm iifor iifitting iia iinon-linear iicurve iito iia iigiven iidata iicollection. iiThe iitrend iican iithen iibe iiutilized iito iifigure iiout iiwhere iifurther iidata iipoints iimay iibe iifound. iiThe iiVisualizer iiis iidesigned iito iiassist iiyou iiin iidetermining iiwhether iiPolynomial iiVisualizer iiis iithe iibest iioption iifor iiyour iiML iisystem, iiand iiif iiit iiis, iithe iiVisualizer iiwill iiassist iiyou iiin iidetermining iithe iibest iipotential iiparameters iito iiutilize iiwith iithe iiVisualizer iimodel. Data ii(t) ii= ii(Cn*tn) ii+ ii(Cn-1*tn-1) ii+ ii(Cn-2*tn-2) ii+ ii…………… ii(C1*t1) ii+ iiC0 which iimost iiclosely iiresembles iithe iitrend iiin iithe iiinput iidata. iiThis iinumber iitells iithe iiVisualizer iihow iimany iielements iishould iibe iipresent iiin iithe iifunction iii.e. iithe iivalue iiof iin. 6.12Code 6.12.1 iiArduino iicode ii(Data iiCollection) #include ii"DHT.h" #include ii<boltiot.h> #include ii<BoltDeviceCredentials.h> #define iiDHTPIN ii7 #define iiDHTTYPE iiDHT11 ii #include ii<Servo.h> #ifndef iiAPI_KEY #define iiAPI_KEY ii ii ii"boltcloudAPI" #endif #ifndef iiDEVICE_ID #define iiDEVICE_ID ii"boltdeviceid" #endif ii int iiservoPin ii= ii3; Servo iiServo1; DHT iidht11(DHTPIN ii, iiDHTTYPE); String iigetAnalogData(String ii*data){ ii iiString iiretval=""; ii iiretval=retval+analogRead(A1); ii iireturn iiretval; ii ii//Serial.read(); } String iigetLDR(String ii*data){ ii iiString iiLDR=""; ii iiLDR=LDR+analogRead(A5); ii iireturn iiLDR; } String iigetRain(String ii*data){ ii iiString iir=""; ii iir=r+analogRead(A3); ii iireturn iir; } String iigetTemp(String ii*data){ ii iiString iivalue ii= ii""; int iichk ii= iidht11.read(DHTPIN); ii iivalue ii= iivalue+ ii(int)dht11.readTemperature(); ii iireturn iivalue; ii ii} String iigetHum(String ii*data){ ii iiString iivalue ii= ii""; int iichk ii= iidht11.read(DHTPIN); value ii= iivalue+ ii(int)dht11.readHumidity(); ii iireturn iivalue; ii ii} void iisetup ii() ii{ ii iiSerial.begin ii(9600); ii iiServo1.attach(servoPin); ii iipinMode(A1,INPUT); ii iipinMode(A5,INPUT); ii iipinMode(A3,INPUT); ii iiSerial.setTimeout(500); ii iiboltiot.begin(Serial); ii iiboltiot.setCommandString("Level",getAnalogData); ii iiboltiot.setCommandString("LDR",getLDR); ii ii ii iiboltiot.setCommandString("Rain",getRain); ii iiboltiot.setCommandString("getHum",getHum); ii iiboltiot.setCommandString("getTemp",getTemp);
  • 15. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 337 ii ii} void iiloop() ii{ ii iiboltiot.handleCommand(); } ii 7. iiRESULTS iiAND iiDISCUSSION After iiapplying iithe iidecision iitree iialgorithm iito iithe iisensed iidatasets, iian iioutput iicontaining iithe iidecision iito iiwater iithe iicrop iiis iimade.iiThisiioutputiicontaining iithe iidecision iiis iisent iito iithe iiusers iior iifarmers iithrough iian iiElectronic iimail ii(E-mail) iiusing iithe iisimple iimail iitransfer iiprotocol. iiT The iitwo iitypes iiof iidecisions iiare iinamed iiYes iiand iiNo. iia) iiIf iithe iialgorithm iipredicts iithe iiresult iias iiyes, iithen iian iialert iiis iisent iito iithe iifarmer iias iishown iiin iiFigure ii9. ii b) iiIf iithe iialgorithm iipredicts iithe iiresult iias iino, iithen iian iialert iiis iisent iito iithe iifarmer iias iishown iiin iiFigure ii10. Figure ii9. iiE-mail iialert iifor iiWater iirequirement ii Figure ii10. iiE-mail iialert iifor iiNo iiWater iirequirement Prediction iipoints: iiThis iinumber iitells iithe iiVisualizer iihow iimany iifuture iidata iipoints iineed iito iibe iipredicted. No. iiPolynomial iicoefficients: iiPolynomial iiVisualizer iiprocesses iithe iigiveniiinputiitime-dependentiidata,iiand iioutputs iithe iicoefficients iiof iithe iifunction iiof iithe iiform: Frame iiSize: iiThese iiare iithe iinumber iiof iiprevious iidata iipoints iithe iiVisualizer iiwill iiuse iito iipredict iithe iitrend iiof iithe iidata. iiFor iiexample, iiif iiyou iiset iithis iivalue iito ii5, iithe iiVisualizer iiwill iiuseiitheiiprevious ii5 iipoints iito iipredict iithe iitrend Figure ii11. iidepicts iithe iiprediction, iiactual iiand iipredicted iihistory iiof iithe iiinput iidata iiand iioutput iiof iiML iialgorithm. Following iidata iiwill iibe iiutilized iias iia iiprediction iifor iifuture iianamoly iiand iiirregularities iiiniitheiicropiiyield iiand iithus iiwill iibe iihelpful iiin iitaking iiearly iiprecautions iiaccordingly. Hence iisaving iitime ii, iienergy, iimoney iiand iilabor iiof iithe iifarmer
  • 16. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 338 8. iiCONCLUSION We iioffered iian iioverview iiof iiindoor iifarming iiutilizing iiIoT iiand iimachine iilearning iiin iithis iipaper. iiSeveral iitopics iirelevant iito iiboosting iiIoT iideployment iiin iiagriculture iihave iibeen iithoroughly iiexamined. iiMany iiresearch iihas iibeen iiconducted iito iiutilize iiIoT iifor iismart iiagriculture, iito iiincrease iioutput, iireduce iihuman iilabor, iiand iiimprove iiproduction iiefficiency, iiaccording iito iisurvey iiresults. iiIt iihighlighted iithe iiadvantages iiof iiusing iiIoT iiand iibig iidata iiin iiagriculture. iiWe iialso iidiscussed iithe iiobstacles iithat iimust iibe iisolved iito iiexpedite iithe iiuse iiof iiIoT iiin iismart iiagriculture. iiHowever, iisignificant iiobstacles iimust iibe iiovercome iibefore iiIoT iisolutions iican iibe iimade iicheap iifor iithe iimajority iiofiifarmers,iiespecially iismall iiand iimedium-scale iifarms. iiFurthermore, iisecurity iitechnologies iimust iibe iiupgraded iiregularly, iibut iiwe iibelieve iithat iithe iiuse iiof iiIoT iisolutions iiand iimachine iilearning iiin iismart iiagriculture iiis iiunavoidable iiand iiwill iiincrease iiproductivity, iisupply iiclean iiand iigreen iifoods, iipromote iifood iitraceability, iiminimize iihuman iilabor, iiand iiimprove iiproduction iiefficiency. iiOn iithe iiother iihand, iiThe iisystem iiwas iidesigned iito iilearn iifrom iithe iidata iiprovided. The iifile iicontains iiall iiof iithe iidata iithat iihas iibeen iisensed iiby iithe iiSensors. iiBy iiutilizing iithe iidecision iitree iilearning iialgorithm iiisiia iimemberiiofiitheiifamily iiof iithe iireal-world iiapplicationiiofiisupervisediimachine iilearning iimethods. It iianalyses iitime iidata ii iiand iiupdates iithe iifarmer iiwith iithe iidecision. ii REFERENCES [1] Balaji iiBhanu, iiRaghava iiRao, iiJ.V.N. iiRamesh, iiand iiMohammed iiAli iiHussain, ii“Agriculture iiField iiMonitoring iiand iiAnalysis iiusing iiWireless iiSensor iiNetworks iifor iiimproving iiCropiiProduction”,ii2014 iiEleventh iiInternational iiConference iion iiWireless iiand iiOptical iiCommunications iiNetworks ii(WOCN) [2] LIU iiDan, iiCao iiXin, iiHuang iiChongwei, iiJI iiLiang iiLiang, ii“Intelligent iiagentiigreenhouseiienvironment iimonitoring iisystem iibased iion iiIOT iitechnology”, ii2015 iiInternational iiConference iion iiIntelligent iiTransportation, iiBig iiData ii& iiSmart iiCity [3] Joseph iiHaule, iiKisangiri iiMichael, ii“Deployment iiof iiwireless iisensor iinetworks ii(WSN) iiin iiautomated iiirrigation iimanagement iiand iischeduling iisystems: iia iireview”, iiScience, iiComputing iiand iiTelecommunications ii(PACT), ii2014, iiPan iiAfrican iiConference [4] hi, iiX.; iiAn, iiX.; iiZhao, iiQ.; iiLiu, iiH.; iiXia, iiL.; iiSun, iiX.; iiGuo, iiY., ii"State-of-the-Art iiInternet iiof iiThings iiin iiProtected iiAgriculture", iiSensors ii2019, ii19, ii1833.M. iiYoung, iiThe iiTechnical iiWriter’s iiHandbook. iiMill iiValley, iiCA: iiUniversity iiScience, ii1989. [5] iiZ. iiNurazwin, iiH. iiNorhashila, iiA. iiKhalina,iiandiiH. iiMarsyita, iiApplication iiof iilaser-induced iibackscattering iiimaging iifor iipredicting iiand iiclassifying iiripening iistages iiof ii“Berangan” iibananas, iiComputers iiand iiElectronics iiin iiAgriculture, ii160, ii2019, ii100-107. ii [6] Meng iiJi-Hua, iiWu iiBing-fang, iiLi iiQiang-zi, ii“A iiGlobal iiCrop iiGrowth iiMonitoring iiSystem iiBased iion iiRemote iiSensing”, ii2006 iiIEEE iiInternational iiSymposium iion iiGeoscience iiand iiRemote iiSensing. ii [7] Alan iiMainwaring, iiJoseph iiPolastre, iiRobert iiSzewczyk, iiDavid iiCuller, iiJohn iiAnderson, ii“Wireless iiSensor iiNetworks iifor iiHabitat iiMonitoring”, iiInternational iiConference. [8] ii iiLei iiXiao, iiLejiang iiGuo, ii“The iiRealization iiof iiPrecision iiAgriculture iiMonitoring iiSystem iiBased iion iiWireless iiSensor iiNetwork”, ii2010 iiInternational iiConference iion iiComputer iiand iiCommunication iiTechnologies iiin iiAgriculture iiEngineering. ii [9] iiLing-ling iiLI, iiShi-feng iiYANG, iiLi-yan iiWANG, iiXiang-ming iiGAO, ii“TheGreenhouse iiEnvironment iiMonitoring iiSystem iiBased iion iiWireless iiSensorNetwork iiTechnology”, iiProceedings iiof iithe ii2011 iiIEEE iiInternational iiConference iion iiCyber iiTechnologyiiiniiAutomation,iiControl,iiandIntelligent iiSystems, iiMarch ii20-23, ii2011, iiKunming, iiChina. ii [10] iiChun-ling iiFan, iiYuan iiGuo, ii“The iiApplication iiof iia iiZigBee iiBasedWireless iiSensor iiNetwork iiiniithe iiLED iiStreet iiLamp iiControl iiSystem”, ii2013, iiCollege iiof iiAutomation ii& iiElectronic iiEngineering, iiQingdaoUniversity iiof iiScientific ii& iiTechnology, iiQingdao, iiChina iiembeddedtechnology, iiConsumer iiElectronics ii- iiChina, ii2014 iiIEEE iiInternational iiConference. [11] iiAgricultural iiRobots iiMarket iiby iiOffering, iiType ii(UAVs, iiMilking iiRobots, iiDriverless iiTractors, iiAutomated iiHarvesting iiSystems), iiFarming iiEnvironment, iifarm iiProduce,iiApplicationii(Harvest iiManagement, iiField iiFarming, iiGeographyii-iiGlobal iiForecast iito ii2025. iihttps://www.marketsandmarkets.com/Market- Reports/agricultural-robot-market-173601759.html, ii2020 ii(accessed ii07.03.2020). ii
  • 17. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 339 [12] iiM. iiVega-Heredia, iiR. iiE. iiMohan, iiY. iiW. iiTan, iiJ. iiS. iiAisyah, iiA. iiVengedesh, iiS. iiGhanta iiand iiS. iiVinu, iiDesign iiand iimodelling iiof iia iimodular iiwindow iicleaning iirobot, iiAutomation iiin iiConstruction, ii103, ii2019, ii268-278. [13] iiL. iiBarbieri, iiF. iiBruno, iiA. iiGallo,iiM.iiMuzzupappa iiand iiM. iiL. iiRusso, iiDesign, iiprototyping iiand iitesting iiof iia iimodular iismall sized iiunderwater iirobotic iiarm iicontrolled iithrough iia iimaster-slave iiapproach, iiOcean iiEngineering, ii158, ii2018, ii253- 262. ii [14] 14. iiYunseop iiKim, iiMember, iiIEEE, iiRobert iiG. iiEvans, iiand iiWilliam iiM. iiIversen, ii“Remote iiSensing iiand iiControl iiof iian iiIrrigation iiSystem iiUsing iiaDistributed iiWireless iiSensor iiNetwork”, iiIeee iitransactions iioninstrumentation iiand iimeasurement, iivol. ii57, iino. ii7, iiJuly ii2008. ii [15] R. iiBalamurali, iiK. iiKathiravan, ii“An iiAnalysis iiof iiVarious iiRoutingProtocols iifor iiPrecision iiAgriculture iiusing iiWireless iiSensor iiNetwork”, ii2015, iiIEEE iiInternational iiConference iion iiTechnological iiInnovations iiinICT iifor iiAgriculture iiand iiRural iiDevelopment ii(TIAR ii2015). ii [16] iiGiuseppe iiAnastasi, iiOrazio iiFarruggia, iiGiuseppe iiLo iiRe§, iiand iiMarcoOrtolani, ii“Monitoring iiHigh- Quality iiWine iiProduction iiusing iiWirelessSensor iiNetworks”, iiProceedings iiof iithe ii42 iiHawaii iiInternational iiConference iion iiSystem iiSciences ii– ii2009. [17] iiRwan iiMahmoud, iiTasneem iiYousuf, iiFadi iiAloul, ii“Internet iiof iiThings ii(IoT)Security: iiCurrent iiStatus, iiChallenges iiand iiProspective iiMeasures'', iiInternet iiTechnology iiand iiSecured iiTransactions ii(ICITST), ii2015 ii10th iiInternational iiConference. [18] iiDragoş iiMihai iiOfrim, iiBogdan iiAlexandru iiOfrim iiand iiDragoş iiIoanSăcăleanu, ii“Improved iienvironmental iimonitor iiand iicontrol iiusing iiawireless iiintelligent iisensor iinetwork”, iiElectrical iiand iiElectronicsEngineering ii(ISEEE), ii2010, ii3rd iiInternational iiSymposium. [19] iiRachel iiCardell-Oliver, iiKeith iiSmettem, iiMark iiKranz iiand iiKevin iiMayer, ii“Field iiTesting iia iiWireless iiSensor iiNetwork iifor iiReactive iiEnvironmental iiMonitoring”, ii2004 iiIEEE iiInternational iiConference. ii [20] iiDuan iiYan-e, ii“Design iiof iiIntelligent iiAgriculture iiManagement iiInformation iiSystemiiBasediioniiIoT”, ii2011 iiFourth iiInternational iiConference iion iiIntelligent iiComputation iiTechnology iiand iiAutomation. ii [21] Fiona iiEdwards iiMurphy, iiEmanuel iiPopovici, iiP iiadraig iiWhelan,iiandMicheleiiMagno,ii“Development iiof iiHeterogeneous iiWireless iiSensorNetwork iifor iiInstrumentation iiand iiAnalysis iiof iiBeehives”, iiInstrumentationand iiMeasurement iiTechnology iiConference ii(I2MTC), ii2015 iiIEEEInternational iiConference. [22] iiT. iiMilan, iiB. iiAdam iiand iiJ. iiSlavka, iiDesign iiof iia iiprototype iifor iia iimodular iimobile iirobotic iiplatform, iiIFAC-PapersOnLine, ii52(27),ii2019,ii192- 197. [23] iiA. iiRuckelshausen, iiP. iiBiber, iiM. iiDorna, iiH. iiGremmes, iiR. iiKlose, iiA. iiLinz, iiet iial., iiBoniRob: iiAn iiautonomous iifield iirobot iiplatform iifor iiindividual iiplant iiphenotyping, iiPrecision iiAgriculture, ii9(841), ii2009, ii841-847. [24] ii iiM. iiStein, iiS. iiBargoti iiand iiJ. iiUnderwood, iiImage iibased iimango iifruit iidetection, iilocalization iiand iiyield iiestimation iiusing iimultiple iiview iigeometry, iiSensors, ii16(11), ii2016, ii1-25. ii [25] J. iiRoca, iiM. iiComellas, iiJ. iiPijuan iiand iiM. iiNogues, iiDevelopment iiof iian iieasily iiadaptable iithree-point iihitch iidynamometer iifor iiagricultural iitractors. iiAnalysis iiof iithe iidisruptive iieffects iion iithe iimeasurements, iiSoil iiand iiTillage iiResearch, ii194, ii2019, ii1-11. ii [26] iiAgras iiMG-1S iiSeries. iihttps://www.dji.com/mg-1s, ii2020 ii(accessed ii07.03.2020). ii [27] iiC. iiReza iiKarmulla, iiK. iiSeyyed iiHossein, iiR-K. iiHossein, iiM. iiAlireza iiand iiM. iiMotjaba, iiPredicting iiheader iiwheat iiloss iiin iia iicombine iiharvester, iia iinew iiapproach, iiJournal iiof iithe iiSaudi iiSociety iiof iiAgricultural iiSciences, ii19, ii2020, ii179-184. [28] C. iiAnil, iiK. iiHabib iiand iiM. iiSahin,iiDevelopmentiiof iian iielectro-mechanic iicontrol iisystem iifor iiseed- metering iiunit iiof iisingle iiseed iicorn iiplanters iiPart iiII: iiField iiperformance, iiComputers iiand iiElectronics iiin iiAgriculture, ii145, ii2018, ii11-17. [29] Y. iiShi, iiS. iiXin, iiX. iiWang, iiZ. iiHu, iiN. iiDavid iiand iiW. iiDing, iiNumerical iisimulation iiand iifield iitests iiof iiminimum-tillage iiplanteriiwithiistrawiismashing iiand iistrip iilaying iibased iion iiEDEM iisoftware, iiComputers iiand iiElectronics iiin iiAgriculture, ii166, ii2019, ii105021
  • 18. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 340 [30] S. iiKhwantri, iiC. iiChoochart, iiK. iiKhanita, iiK. iiPornnapa, iiC. iiSomchai iiand iiT. iiEizo, iiEffect iiof iimetering iidevice iiarrangement iito iidischarge iiconsistency iiof iisugarcane iibillet iiplanter, iiEngineering iiin iiAgriculture, iiEnvironment iiand iiFood, ii11(3), ii2018, ii139- ii144 [31] Alam, iiM.M.; iiMalik, iiH.; iiKhan, iiM.I.; iiPardy, iiT.; iiKuusik, iiA.; iiLe iiMoullec, iiY. iiA iiSurvey iion iithe iiRoles iiof iiCommunication iiTechnologies iiin iiIoT- Based iiPersonalized iiHealthcare iiApplications. iiIEEE iiAccess ii2018, ii6, ii36611–36631. ii[CrossRef] ii [32] Chettri, iiL.; iiBera, iiR. iiA iiComprehensiveiiSurveyiion iiInternet iiof iiThings ii(IoT) iiToward ii5G iiWireless iiSystems. iiIEEE iiInternet iiThings iiJ. ii2020, ii7, ii16– 32. ii[CrossRef] [33] iiPal, iiA.; iiKant, iiK. iiNFMI: iiConnectivity iiforiiShort- Range iiIoT iiApplications. iiComputerii2019,ii52,ii63– 67. ii[CrossRef] ii [34] Collotta, iiM.; iiPau, iiG.; iiTalty, iiT.; iiTonguz, iiO.K. iiBluetooth ii5: iiA iiConcrete iiStep iiForward iitoward iithe iiIoT. iiIEEE iiCommun. iiMag. ii2018, ii56, ii125– 131. ii[CrossRef] ii [35] Bacco, iiM.; iiBerton, iiA.; iiGotta, iiA.; iiCaviglione, iiL. iiIEEE ii802.15.4 iiAir-Ground iiUAV iiCommunications iiin iiSmart iiFarming iiScenarios. iiIEEE iiCommun. iiLett. ii2018, ii22, ii1910–1913. ii[CrossRef] ii [36] iiGente, iiR.; iiBusch, iiS.F.; iiStubling, iiE.-M.; iiSchneider, iiL.M.; iiHirschmann, iiC.B.; iiBalzer, iiJ.C.; iiKoch, iiM. iiQuality iiControl iiof iiSugar iiBeet iiSeeds iiWith iiTHz iiTime-Domain iiSpectroscopy. iiIEEE iiTrans. iiTerahertz iiSci. iiTechnol. ii2016, ii6, ii754– 756. ii[CrossRef] ii [37] .Afsharinejad, iiA.; iiDavy, iiA.; iiNaftaly, iiM.iiVariability iiof iiTerahertz iiTransmission iiMeasured iiin iiLive iiPlant iiLeaves. iiIEEE iiGeosci. iiRemote iiSens. iiLett. ii2017, ii14, ii636–638. ii[CrossRef] ii [38] iiWang, iiX.; iiZhang, iiJ.; iiYu, iiZ.; iiMao, iiS.; iiPeriaswamy, iiS.C.G.; iiPatton, iiJ. iiOn iiRemote iiTemperature iiSensing iiUsing iiCommercial iiUHF iiRFID iiTags. iiIEEE iiInternet iiThings iiJ. ii2019, ii6, ii10715–10727. ii[CrossRef] [39] iiAli, iiS.; iiGlass, iiT.; iiParr, iiB.; iiPotgieter, iiJ.; iiAlam, iiF. iiLow iiCost iiSensor iiwith iiIoT iiLoRaWAN iiConnectivity iiand iiMachine iiLearning-Based iiCalibration iifor iiAir iiPollution iiMonitoring. iiIEEE iiTrans. iiInstrum. iiMeas. ii2021, ii70, ii5500511. ii[CrossRef [40] iiJoris, iiL.; iiDupont, iiF.; iiLaurent, iiP.; iiBellier, iiP.; iiStoukatch, iiS.;iiRedouté,iiJ.iiAniiAutonomous iiSigfox iiWireless iiSensor iiNode iifor iiEnvironmental iiMonitoring. iiIEEE iiSens. iiLett. ii2019, ii3, ii5500604. ii[CrossRef] [41] iiPopli, iiS.; iiJha, iiR.K.; iiJain, iiS. iiA iiSurvey iion iiEnergy iiEfficient iiNarrowband iiInternet iiofiiThings ii(NBIoT): iiArchitecture, iiApplication ii& iiChallenges. iiIEEE iiAccess ii2019, ii7, ii16739–16776. ii[CrossRef] [42] Sundaram, iiJ.P.S.; iiDu, iiW.; iiZhao, iiZ. iiA iiSurvey iion iiLoRa iiNetworking: iiResearch iiProblems, iiCurrent iiSolutions, iiand iiOpen iiIssues. iiIEEE iiCommun. iiSurv. iiTutor. ii2020, ii22, ii371–388 [43] iiDishay iiKissoon, iiHinouccha iiDeerpaul iiand iiAvinash iiMungur, ii“A iiSmart iiIrrigation iiand iiMonitoring iiSystem”,iiThe iiInternational iiJournal iiof iiComputer iiApplications, iivol. ii163, iiNo. ii8, iiApr. ii2017 [44] Sanyam iiGupta iiSukriti, iiK. iiIndumathy, ii"IoTiibased iismart iiirrigation iiand iitank iimonitoring iisystem",International iiJournal iiof iiInnovative iiResearch iiin iiComputer iiand iiCommunication iiEngineering, iivol. ii4, iino. ii9, iiSeptember ii2016. [45] Anuja iiChandgude, iiNikita iiHarpale, iiDiksha iiJadhav, iiPunam iiPawar iiand iiSuhas iiM. iiPatil, ii“A iiReview iion iiMachine iiLearning iiAlgorithm iiUsed iifor iiCrop iiMonitoring iiSystem iiin iiAgriculture”, iiInternational iiResearch iijournal iiofiiEngineeringiiandiiTechnology ii(IRJET), iivol. ii05, iiIssue ii4, iiApr. ii2018 [46] T. iiBaranwal, iiN. iiand iiP. iiK. iiPateriya, ii“Development iiof iiIoT iibased iiSmart iiSecurityiiand iiMonitoring iiDevices iifor iiAgriculture”, ii6th iiInternational iiConference ii- iiCloud iiSystem iiand iiBig iiData iiEngineering ii(Confluence), ii14-15 iiJan. ii2016. [47] ii iiM. iiK. iiGayatri, iiJ. iiJayasakthi iiandG.S.Anandha iiMala, ii“Providing iiSmart iiAgriculture iiSolutions iito iiFarmers iifor iibetter iiyielding iiusing iiIoT”, iiIEEE iiTechnological iiInnovation iiin iiICT iifor iiAgriculture iiand iiRural iiDevelopment ii(TIAR), ii10-12 iiJul. ii2015. [48] Decision iiTree iiFor iiClassification: iiA iiMachine iiLearning iiAlgorithm, iiAvailable iifrom: iihttps://www.xoriant.com/blog/product- engineering/decision trees-machine-learning- algorithm.html ii ii
  • 19. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 341 [49] ii iiY. iiMohana iiRoopa, iiet.al,”A iiSurvey iiof iiFog iiComputing: iiFundamental, iiArchitecture, iiApplications iiand iiChallenges” ii,IEEE iiInternational iiconference iion iiIoT iiin iiSocial, iiMobile, iianalytics iiand iiCloudiiISMAC-19,Decemberii12-14,ii2019.ISBN: ii978-1-7281- ii4364-4, iiPage iiNo: ii498-502. [50] iiY. iiMohana iiRoopa, iiet.al,”A iiSurvey iiof iiFog iiComputing: iiFundamental, iiArchitecture, iiApplications iiand iiChallenges” ii,IEEE iiInternational iiconference iion iiIoT iiin iiSocial, iiMobile, iianalytics iiand iiCloudiiISMAC-19,Decemberii12-14,ii2019.ISBN: ii978-1-7281- ii4364-4, iiPage iiNo: ii498-502