SlideShare a Scribd company logo
1 of 250
Automatic Control Has Application In many Areas:
# Mechanical Engg.
* Power Plant
* Engines
* Production
* process Plant
* transportation
* Defense Applications
# Electrical Engg.
# Textile Engg.
# Aerospace Engg.
11/18/2020 DINESH PANCHAL
Main component involved in automatic control may be electrical, mechanical,
hydraulic, pneumatic depending on the application.
Types of control Systems :
Control system controls the energy inputs to a system and gives the desired
output. Control system may be classified as:
1. Open or closed Loop System
2. Analog or Digital Control System
3. Regulators and Servomechanisms
4. Sequence Control
11/18/2020 DINESH PANCHAL
Open Loop System:
In this system output of the system is no measured and output is not
compared with the input value. In this system output value varies as the input
is varied.
11/18/2020 DINESH PANCHAL
Closed Loop System:
In this system , the actual value of the variable being controlled is
measured and compared with the desired value and action is taken to eliminate
the error. This system is also called feedback systems.
11/18/2020 DINESH PANCHAL
Analog Control System:
In this system , an analog signal varies continuously and can have any
value in the given range.
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
Digital Control System:
In this type of control system the signal have discrete values. In this
system a digital computer is used for comparing the actual and desired values
of the controlled variables by using specified control algorithm .It is used for
complex control systems e.g. boiler control system. In this system the control
devices are of analog type but these analog signal are converted in to the digital
signals and vice versa in digital control system.
11/18/2020 DINESH PANCHAL
Digital Control System:
11/18/2020 DINESH PANCHAL
Regulators:
Regulators are the control systems in which the controlled variable in
the system is fixed but in some cases it is not changed much as in voltage
control. Another case is the temp. control system where the temp is to be
maintained constant.
Servomechanism:
This type of control system is employed where the controlled variable
is changing time to time e.g. in case of radar or gun control the position is often
changed and the target may occupy any popsition.
11/18/2020 DINESH PANCHAL
Sequence Control:
it is the type of control system in which the set of operation are to be
performed in a given sequence.
e.g. In a cloth washing machine
- Filling of water in the tub
- Washing
- Draining the tub
- Rinsing
- Spin Drying
In this each operation is controlled by the timer
.
11/18/2020 DINESH PANCHAL
another example of this type of control system is used in production machines
- Job in position
- Guard in position
- tool in position
- tool motion
- Tool withdrawal
- Job withdrawal
This type of control system uses logic control devices.
.
11/18/2020 DINESH PANCHAL
S.NO. OPEN LOOP CLOSED LOOP
1 These are not reliable These are reliable
2 It is easier to build It is difficult to build
3 If calibration is good, they perform
accurately
they are accurately
4 They are more stable They are less stable
5 Optimization is not possible Optimization is possible
6 They are simple They are complex
7 Less maintenance high maintenance
11/18/2020 DINESH PANCHAL
Typical simplified block diagram of closed loop system
is shown in fig.
r : reference input or desired input or set point
c : controlled variable or actual value of controlled
variable or output
. 11/18/2020 DINESH PANCHAL
m : manipulated variable, which is manipulated to control the system
b : disturbance or load input
e : error which is the difference of two signals.
Comparator :
Comparison element like potentiometer or digital computer
Control Elements :
These are the functional elements which modifies the error signals like
differentiating or integrating or amplifying ect. They may also include amplifier
and final control elements.
.
11/18/2020 DINESH PANCHAL
Amplifier:
It magnify the input signals by using external energy. E.g. Hydraulic,
Pneumatic or electrical amplifier.
Final Control Elements :
Elements which are adjacent to the system being controlled e.g.
control valve, servomotor, drive unit
.
11/18/2020 DINESH PANCHAL
System or Process or Plant:
The main element which require control of its variables,
e.g. rotating system, needs speed control, inertia system needs
position control.
Feedback Elements:
Measuring elements or sensor ment for measure the actual
value of controlled variable, for comparison with the desired
input value.
.
11/18/2020 DINESH PANCHAL
 -To find out the performance of control system one has to determine the
error over a period of time to different inputs.
 - Error is the difference between the desired value and the actual value.
 As the system is dynamic in nature so frequency or time domain analysis
is done.
 If the feedback system is not designed properly , it may become unstable
under certain conditions. So system is to be checked for the stability.
 So Routh, Nyquist, Bode, Root Locus techniques are used to check
dynamic performance of system.
11/18/2020 DINESH PANCHAL
 As we know that hardware used in the control system may be electrical,
hydraulic or pneumatic or combination of these.
 The first aim is to find out the governing equitation's or transfer functions
of various element
 After that the overall transfer function of the system is to be found out.
 The overall equitation is to be used to find out the performance of the
system.
11/18/2020 DINESH PANCHAL
 Draw the Block Diagram of the system given below.
11/18/2020 DINESH PANCHAL
1. Mathematical Modeling:
By using the physical laws and governing equations between input
and outputs of a system is derived .The elements in the system may be
electrical, mechanical, pneumatic.
If a function Y is dependent on X which is independent variable
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
Y=F(X)
A small variation ΔY from operating point O is
If the function Y depends on independent variable
Y= F( )
11/18/2020 DINESH PANCHAL
X
dX
dY
Y  0
.........,, ,321 XXX
.........,, ,321 XXX
.................20
2
10
1






 X
X
Y
X
X
Y
Y
2. Block Diagram Representation:
(A) Transfer Function
y= Ax
A= y/x
= Output/Input Where A is the transfer
Function
11/18/2020 DINESH PANCHAL
(B) Summing Junction:
Summing Junction is used to represent the addition or
subtraction of signals
c = a + d – b
Sum of variable leaving the Junction = Some of variable entering the
Junction
11/18/2020 DINESH PANCHAL
( C) Comparison Element:
This is used to compare the desired output to the actual output
e = Input – Output = r - c
11/18/2020 DINESH PANCHAL
Representation of Spring Mass System:
Which may be written as D
11/18/2020 DINESH PANCHAL
D
dt
d
isdotBut
tfkxxcxm
tfkxxcxm



).(
)(
)(
...
...
11/18/2020 DINESH PANCHAL
 
   
Kcsmssf
sx
KcDmDtf
tx
tfKcDmDtx
tftKxtcDxtxmD
tfKxcDxxmD







2
2
2
2
2
1
)(
)(
1
)(
)(
sbyreplacedisDtionTransformaLaplaceAfter
)(
)()()()(
)(
isFunctiontransferDomainTime
1. Liquid, Gas, Thermal System:
These systems are analogous to electrical system
Level, Pressure, Temp. = Potential
liquid or gas flow rate, heat flow rate = current
Tank =Capacitance
These analogy is useful for driving the governing equations.
11/18/2020 DINESH PANCHAL
Suppose a tank of capacity C to which there is a inflow of liquid at a rate qi
at a pressure pi and outflow rate q0 from the tank. There is a pressure
drop at inlet due to resistance R .If the level of the liquid in the tank is h
11/18/2020 DINESH PANCHAL
Pressure at the bottom of tank is
As per Electrical Analogy
As
……………(1)
As CV=Q As per Electrical Analogy
…………….(2)
11/18/2020 DINESH PANCHAL
ghp 
i
i
q
pp
R


I
VV
R 21 

0
0So
qrateflow
toanalogusiscurrentandpressuretoanalogusisVAs
Currenti
dt
dQ
QCV
qqCDp
qq
dt
dp
C
dt
dV
C
dt
dV
C
CVQ
i
i




Now Substituting the value of qi from eq. 1 to eq. 2
………………………(3)
11/18/2020 DINESH PANCHAL
)1(
)1(
0
0
0
0
0
0











RCD
Rqp
p
RqpRCDp
RqppRCDp
ppRqRCDp
R
pp
qCDp
q
R
pp
CDp
i
i
i
i
i
i
Vol. of liquid accumulated in the tank is
This increase in vol. increase the height (h) of water in the tank of area A
Increase in Vol. =
So ………………………..(4)
And p=hρg …………………………………..(5)
11/18/2020 DINESH PANCHAL
0qqi 
dt
dh
A
oi qq
dt
dh
A 
=
11/18/2020 DINESH PANCHAL
4
128
RisResistanceBut
eq.aboveinhofvaluePut this
g
p
h
4and2eq.From
d
L
g
A
C
g
ADp
CDp
ghp
ADh
dt
dh
ACDp











Gas Pressure System:
11/18/2020 DINESH PANCHAL)1(1(
)1(
)1(
)(
)(
1noeq.inofvalueput theNow
andSoVBut
1...................................qrateflowso
CDVcurrent
0
0
0
0
0
0
21
i
RCD
Rq
RCD
p
p
RCD
Rqp
p
RCDpRqp
pRCDpRqp
RCDpRqpp
CDpq
R
pp
q
R
pp
q
RqppiRV
CDpq
i
dt
dv
C
dt
dq
CVq
i
i
i
i
i
i
i
i
i
ii
o


















C is the capacitance of the system
As we know gas eq. pV=m R T
From eq. no. 1
=dm/dt Rate of accumulation of mass
=Dm
So
From eq. p V= m R T , Now put the value of
m/p in above eq.
And
11/18/2020 DINESH PANCHAL
CDpqqi  0
p
m
C
Cpm


RT
V
p
m

RT
V
C 
52
8
d
fl
R


Mechanical Rotating System:
Here we have to determine the governing equation of the
rotating system
Torque developed by Motor = u
Load Torque =
Speed of Rotation= ω
Moment of Inertia of Rotating Mass = I
Viscous damping Coefficient = B
Total Torque=Load Torque + Torque for Inertia +
Damping Torque
So Governing Eq. is
11/18/2020 DINESH PANCHAL
Lu
 BIDuu L 
Geared System:
Torque developed by Motor =
Load Torque =
Inertia =
Speed of Rotation=
Gears are used between motor and load for different speed and torque. So
torque and rotation are different at the two ends.
11/18/2020 DINESH PANCHAL
MU
LU
21, JJ
21,
11/18/2020 DINESH PANCHAL
























1
2
...
1
2
21
2
2
2
1
1
22
2
2
1
1
2
2
2
2
22
2
11
2
2
2
22
2
11
eq
3...................................................
Similarly
2.................................................
bysidebothDivide
1.....................................
2
1
2
1
2
1
JissystemtheofInertiaTotal











LMeqeqM
eq
EQ
EQ
EQ
EQ
UBJU
BBB
JJJ
JJJ
JJJ
JJJ
11/18/2020 DINESH PANCHAL
Fig. shows hydraulic control system. This is used
to controlling heavy loads, with application of
small force. It may be used in machine tools,
governing of turbine, ship steering system . High
pressure pump supplies oil to hydraulic unit.
Input motion given to system = x
Output motion given by system is = y
When x motion is given to the end A then upper
port is uncovered and high pressure oil flow
through upper port and moves the power piston
in downward direction by an amount of y. The
piston valve moves by an amount e
From the diagram
…………………………….1
21 eee 
11/18/2020 DINESH PANCHAL
From similar triangle ACX and Bce
From similar triangle ACy and Bcy
Now put the value if e1 and e2 in eq .1
………..2
ba
xb
e
AC
xBC
e
AC
x
BC
e




1
1
1
ba
ya
e
AC
yAB
e
AC
y
AB
e




2
2
2
2
yx
e
bifa
ba
ay
ba
bx
e







11/18/2020 DINESH PANCHAL
diagramblockdrawcanweequatationtheFrom
abovetheFrom
pistontheofareatheisAWhereAq
tCoefficienPortCeWherCqSo
movementpistonthetoalproportiondirectlyisflowoilofRate
a
bx
y
2no.eq.fromThen.conditionstatesteadyunderissystemthen0eWhen
1
1
11
11
11
DA
eC
y
DyAeC
Dy
e






11/18/2020 DINESH PANCHAL
A control valve is the final control element in a fluid
Process system and control the flow rate of the
system
From the fig pressure applied to the diaphragm is p
Spring constant of Diaphragm = K
Moving mass of valve = m
Damping Constant = B
Force Applied by Diaphragm on Valve= F = p(t) A…..1
For a spring Mass system eq. is given as
 
   
KBDmD
A
tp
tx
KBDmDtxF
tKxtBDxtxmDF
KxxBxmF





2
2
2
)(
)(
2and1no.eq.From
2.......................)(
)()()(

Comparison elements or comparator find out the difference between the input
and actual value of the controlled variable and gives a signal proportional
to the error or difference
1. Potentiometer type :
This is the simplest type of error detector, which produces a signal voltage
which us proportional to the error signal.
Potentiometer may be rotary or linear
Suppose Input =
Output =
Two identical rotary potentiometer are
Connected as shown in fig and the
voltage e(t) depend on the difference
Of position i.e.
And it will be zero if position of these
Two are same.
11/18/2020 DINESH PANCHAL
r
c
crand cr  
11/18/2020 DINESH PANCHAL
Block Diagram and Transfer Function Representation
11/18/2020 DINESH PANCHAL
ABC
r
q
ABC
r
q
r
p
p
m
m
q
r
q
m
q
C
p
m
B
r
p
A




**
**
FunctionTransferOverall
,,
FunctionTransfer
From the above given Fig.
Input = r
Output = c
Disturbance = b
Transfer Function are A, G1, G2 and H
11/18/2020 DINESH PANCHAL
 bcHrAGGc
mGc
bcHrAGm
bmm
cHrAGm
eGm
cHrAe







)(
)(
)(
12
12
11
1
1
1
11/18/2020 DINESH PANCHAL
 
 
b
HGG
G
r
HGG
AGG
c
HGG
bGrAGG
c
bGrAGGHGGc
bGrAGGcHGGc
bGcHGGrAGGc
bcHGrAGGc
bcHrAGGc
)1()1(
)1(
)1(
)(
12
2
12
12
12
212
21212
21212
21212
112
12












11/18/2020 DINESH PANCHAL
Fig. shows the temp. control
System Thermal capacitance = C
Actual value of temp. at any time =ϴ
The disturbance is due to the heat
loss to the surrounding and temp
is controlled by transferring the heat
To the chamber .
Heat Inflow =
Suppose to set the temp of chamber
by moving the input lever by z upward .
As the lever Pivots about P .So the
movement Of piston valve by z/2 The
piston covers both ports under Steady
state condition. Due to upward motion
of piston power piston moves y amount
in
inq
r
This apply force on rheostat contact point and rheostat put the smaller
resistance. Hence voltage increases across the heater and gives more heat
and increase the temp of chamber.Due to increase in temp. liquid in
feedback bellow expand and moves the lever by x. Due to x point p moves
downward. Hence piston moves x/2 in downward.
Lever input Z is proportional to
Flow rate of oil through port = be = Ady ……………………… 3
Where b is the port coefficient A is the area of the piston
Heat input is proportional to the y
net heat accumulate in the chamber and increase the temp of
chamber
11/18/2020 DINESH PANCHAL
1............................................
22
xz
e 
r
2................................................1 rCz 
4.........................................2 yCqin 
oin qq 
So
C is the thermal capacitance of the chamber and is the rate of heat loss to
the surrounding
Heat Loss =
Where R is the resistance to heat loss
X is directly proportional to the temp of the chamber
From eq. 5 and 6 eliminate
11/18/2020 DINESH PANCHAL
5..................................CDqq oin 
oq
6...........................
R
q a
o
 


7..........................................4Cx 
oq
8............................
1
1
















 













R
CDR
R
q
R
CD
R
q
R
CD
R
q
CD
RR
q
CD
R
q
a
in
a
in
a
in
a
in
a
in
From the above eq.
11/18/2020 DINESH PANCHAL































 






 






 






 












 






 






 

AD
bCC
R
RCD
RAD
bCC
AD
bCC
R
RCD
RAD
bCC
R
RCD
RAD
bCC
AD
bCC
R
RCD
RAD
bxC
AD
bzC
R
RCD
R
xz
AD
bC
R
RCD
RAD
be
C
R
RCD
R
yC
R
RCD
R
q
ar
ar
ar
a
a
a
a
a
in
2
1
2
2
1
2
1
22
1
22
1
22
1
1
1
4212
4212
4212
22
2
2
2
11/18/2020 DINESH PANCHAL
    bCRCRCDAD
AD
bCRCRCDAD
RbCC
bCRCARCDAD
AD
bCRCARCDAD
RbCC
bCRCARCDAD
ADR
RbCRCARCDAD
ADR
AD
bCC
bCRCARCDAD
ADR
RbCRCARCDAD
ADR
AD
bCC
ADR
bCRCARCDAD
RAD
bCC
AD
bCC
R
RCD
RAD
bCC
ar
ar
ar
ar
ar
ar
4242
12
42
2
42
2
12
42
2
42
2
12
42
2
42
2
12
42
2
12
4212
12
2
12
22
2
22
22
2
*
22
2
*
2
22
2
*
22
2
*
2
2
22
2
2
1
2





















 






















11/18/2020 DINESH PANCHAL
It is the another way to represent the system by network. As we are representing the
system by block diagrams.
# In signal flow graph junction is called Node
# Node are connected by path called Branches.
# Direction of signal is shown by an arrow.
# Value of variable is indicated at nodes.
# Gain is shown in the center of path.
Fro the fig.
11/18/2020 DINESH PANCHAL
12
112
3 xGx
xGx


Fig.
Fig.
11/18/2020 DINESH PANCHAL
22113 xHxHx 
23214 xGGGx 
Some Important points.
# Input node have only outgoing branches
# output node have only incoming branch.
# Forward path is a path from input to output node.
# Feedback is a path which start and ends at the same node .
Fig.
11/18/2020 DINESH PANCHAL
PROBLEM : Draw signal flow graph for following equitations.
11/18/2020 DINESH PANCHAL
56
345
324
423
512
xx
gxfxx
exdxx
cxbxx
axxx





PROBLEM : Draw signal flow graph for following equitation.
11/18/2020 DINESH PANCHAL
4453355
4443344
2233
5524423321122
xaxax
xaxax
xax
xaxaxaxax




Meson’s Formula gives the overall gain M of the system, which is the ratio of output
to input
# = 1- (sum of all individual loop gain)+(sum of product of gains of all
possible combinations of two non touching loops) – (sum of
product of gains of all possible combinations of three non
touching loops) + …………………..
# = value of for that part of the signal flow graph not touching the
forward path.
11/18/2020 DINESH PANCHAL



k
kkM
M

k 
th
k
A signal flow graph shown for a system (a) Derive overall transfer function c/r using
Mason’s formula and draw block diagram
Sol. : There is only one forward path
total gain of forward path=
No. of feed back loop system = 3 with gains =
There is one combination of two non – touching loops
Product of gains of these non touching loops=
There is no combination of three or more non touching loops
11/18/2020 DINESH PANCHAL
cxxrx 321
43211 YYYYM 
342321 ,, YYYYYY 
3412 YYYY



k
kkM
M
11/18/2020 DINESH PANCHAL
# = 1- (sum of all individual loop gain)+(sum of product of gains of all possible
combinations of two non touching loops) – (sum of product of gains of all possible
combinations of three non touching loops) + …………………..
# = value of for that part of the signal flow graph not touching the
forward path.
= 1+
= 1 Since there is no part of graph not touching the first forward path
So M =c/r =
For Block diagram governing eq. are
k


 3412432321 YYYYYYYYYY 
1
4231432321
4231
1 YYYYYYYYYY
YYYY

 
 
  323
2312
121
Ycxx
Yxxx
Yxrx



 Block Diagram:
11/18/2020 DINESH PANCHAL
For the block diagram shown in fig. draw signal flow graph and overall
transfer function
Sol. :
Signal Flow Graph
11/18/2020 DINESH PANCHAL
From signal flow graph r is input and c is output
There are two forward path and
Gain of 1st forward path =
Gain of 2nd Forward Path =
There are three feed back loop with gains
There are no non touching loop and all loops touch both forward path
11/18/2020 DINESH PANCHAL
cGGrG 321 cGGrG 421
321 GGG
421 GGG
2421232121 ,,1 HGGGHGGGHGG 
24212321121
421321
2211
24212321121
21
1
1
1
HGGGHGGGHGG
GGGGGG
MM
r
c
M
HGGGHGGGHGG








 For given block diagram draw signal flow graph and find out overall
transfer function
11/18/2020 DINESH PANCHAL
 For given block diagram draw signal flow graph and find out overall
transfer function
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
#Controller may be hydraulic, pneumatic or electrical.
1. Hydraulic Controller
# they modify the error signal to suitable form
# Hydraulic control system needs high pressure fluid and may be used in ships,
machines tools, aircraft control
#hydraulic control system gives higher torque/inertia ratio, high power to size ratio
# They can withstand shock and vibrations
# They have sealing difficulties
# Hydraulic fluids are generally inflammable.
2. Pneumatic Controller :
# these are suitable where the compressed air is easily available
# They are suitable where fire – hazard are important.
# Proper sealing is required
11/18/2020 DINESH PANCHAL
3. Electrical Controller :
# these are good for remote positioning. Where signals are transmitted
through wires or microwaves
# They have a drawback of fire – hazards .
# Generally they are used for position and speed control.
11/18/2020 DINESH PANCHAL
1. Proportional Control :
# this type of control action is used in level process
# controlled variable is level of the liquid
# x is the change in the level or error.
# y is the movement of the valve.
We cannot use any types of controllers at anywhere, with each type controller,
there are certain conditions that must be fulfilled. With proportional controllers
there are two conditions and these are written below:
(a) Deviation should not be large, it means there should be less deviation
between the input and output.
(b)Deviation should not be sudden.
If the level of the tank increases to the set level then due to lever valve moves y
distance in the downward direction and closes the valve and reduces the flow
rate . Hence decrease in the level of liquid starts and vice versa.
y=Kx……………………………1.
Where K is the constant of proportionality
11/18/2020 DINESH PANCHAL
Block diagram for the system for the given system is below
Fig of proportional control system.
11/18/2020 DINESH PANCHAL
Where is the reference input and is the controlled variable or output
# only changes only when if error x changes.
# for the sensity of the controller term Proportional band term is used (P.B.)
# P.B. Is defined as the % change in variable x require to give 100% change in
controller output y. If full scale value of input and output value are
Then P.B. =
Advantages of Proportional Controller
Now let us discuss some advantages of proportional controller. Proportional
controller helps in reducing the steady state error, thus makes the system more
stable.
Slow response of the over damped system can be made faster with the help of
these controllers.
Disadvantages of Proportional Controller
Now there are some serious disadvantages of these controllers and these are
written as follows: Due to presence of these controllers we some offsets in the
system. Proportional controllers also increase the maximum overshoot of the
system.
11/18/2020 DINESH PANCHAL
rx cx
inq
0,0 yx
0
0
y
y
x
x
2. Integral Control System :
As the name suggests in integral controllers the output (also called the actuating
signal) is directly proportional to the integral of the error signal. Now let us
analyze integral controller mathematically. As we know in an integral controller
output is directly proportional to the integration of the error signal, writing this
mathematically we have,
`
Advantages of Integral Controller
Due to their unique ability they can return the controlled variable back to the
exact set point following a disturbance that’s why these are known as reset
controllers.
Disadvantages of Integral Controller
It tends to make the system unstable because it responds slowly towards the
produced error.
11/18/2020 DINESH PANCHAL
Fig. shows the integral type control system
e=c x where c is the constant
Flow rate of high pressure oil= be = A dy/dt Where b is port constant
and A is the area of the piston.
b c x = ADy Where D is the d/dt
11/18/2020 DINESH PANCHAL
From the above eq.
Where
In case of level changes x , controller output y keeps on increasing with time t till
the error is brought to zero..Thus there is no steady state error in this type of
control action. But system may be unstable under certain conditions due to
friction of moving component. Usually it is combined with the proportional
action controller called PI controller.
11/18/2020 DINESH PANCHAL
D
x
K
A
bcxdt
y
A
bcxdt
dy
A
bx
dt
dy
A
bcx
Dy
AD
bcx
y
AD
bc
x
y
 





1
A
bc
K 1
Due to combined action output will be
Graphs.
11/18/2020 DINESH PANCHAL
D
x
KKxy 1
Derivative Control :
# In this type of control y is proportional to the dx/dt
# Control action is proportional to the rate of change of controlled variable.
When the level rises x then the piston will move in the downward with a
velocity. It will produces a force proportional to it due to the viscosity of
the fluid in the cylinder. As cylinder is mounted on the springs, springs
deflects y is proportional to the force developed.
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
# In this type of controller, controller output is more if rate of change of x is
more
P-D Controller :
it is the combination of proportional and derivative control system.
Dxk
dt
dx
ky
dt
dx
y
22 

xDKy
DxKKxy
dt
dx
KKxy
yyy
d
d
)1(
2
21






On – Off Controller :
This type of control action control valve have two position
either fully open or fully closed. As per the fig. when level rises to a certain level
i.e. highest set point, the switch is off and the solenoid is de- energized, closing
the valve. Thus the level starts reducing till it reaches the lowest set point, the
switch is on , the solenoid is energized and the valve is fully open.
11/18/2020 DINESH PANCHAL
# Proportional, derivative and integral control action can be obtained by using
hydraulic servo motor suitably
# Transfer function of hydraulic servo motor shown in fig. 2 have eq.
is of integral type and fig. 1 have P-D Control action
Fig. 1 Fig 2
11/18/2020 DINESH PANCHAL
 e
A
C
DA
eC
y
1
1
1
1
11/18/2020 DINESH PANCHAL
 
 
1...........................
0
0
fWhere0SummationForce
.
fcDfk
kz
y
kzfcDfky
fcDykzfky
cDy
f
z
kky
a
l
yc
f
z
yk












11/18/2020 DINESH PANCHAL
 
 
 
 
 
   
   
   
   
   
bk
fxbcDbk
bk
zbkADfkfcAD
bk
xbfcDbfk
bk
zbkfcADADfk
xbfcDbfkzbkfcADADfk
xbfcDbfkzbkADfcDADfk
bxfcDbxfkbkzADzfcDADzfk
bkzbxfcDbxfkADzfcDADzfk
bkzbxfcDbxfkADzfcDADzfk
fcDfk
bkzfcDfkbx
ADz
fcDfk
bkz
bxADz
fcDfk
kz
xbADz

























2
2
2
2no.eq.inyofvaluePut the
bADzOilPressureHighofRateFlow
11/18/2020 DINESH PANCHAL
   
 
fx
k
cD
z
fx
k
cD
z
fx
k
cD
z
b
fAD
kb
cfAD
bk
fxbcDbk
bk
zbkADfkfcAD






























1
1100
largeveryis
k
b
andsmallvery veryisAIf
11
Now
2
2
Electronic Controller :
Electronic controller are easily available and used in low and medium
power servomotor as proportional controller
From the fig ( a)
If I is the current then (Voltage across Capacitor)
As we know q = C v
= Voltage Across Capictor and put this value in eq. 1
11/18/2020 DINESH PANCHAL
  1..............................1vvKv io 
1viRvo 
DC
i
v
DCvi
dt
dCv
dt
dq



1
1
1
then
From Eq. 1 Put the value of
11/18/2020 DINESH PANCHAL
1
1
1
1
1
1
2............................Then
1
1
1









RCD
DC
i
iRv
v
DC
i
iRv
v
DC
iiR
DC
i
v
v
DC
i
iRv
o
o
o
o
1KvKvv io 
RCDv
v
Kv
RCD
K
v
RCD
K
If
Kv
RCD
K
v
Kv
RCD
v
Kv
RCD
v
KKvv
i
o
io
io
i
o
o
o
io
























1
1
1
1
1
1
1
1
1
 Then
11/18/2020 DINESH PANCHAL
RCDv
v
Kv
RCD
K
v
i
o
io









1
1
1
D
i
qDqi
dt
dq
i  ,,
11/18/2020 DINESH PANCHAL
Derive the expression for the overall transfer function and show that it is of
PDI type of controller
From the fig. as we know
Put the value of q in eq. 1
Also V=iR11/18/2020 DINESH PANCHAL
2..........
1..............
D
i
qDq
dt
dq
i
C
q
VCVq


DC
q
V 
The eq. for the circuit having
And for the circuit having
11/18/2020 DINESH PANCHAL
00andCR
  0
0
1
0
0
000010
0
11
e
DC
i
R
DC
ieiRii
DC







110 , andRCC
 
 
DC
DC
i
iRi
DC
i
DC
i
iRi
DCDC
i
DC
i
iRi
DCDC
i
iRi
DCDC
i
DC
i
iRi
DC
ii
DC
iRi
DC
ii
DC
0
0
1
111
1
0
0
1
111
10
0
0
1
111
10
0
111
10
0
0
1
111
1
01
0
11
1
01
0
1
1
1
1
11
0
11












Now put the value of in eq.
11/18/2020 DINESH PANCHAL
0i 0
0
1
0
0
0
1
e
DC
i
R
DC
i 






 
 
 
  0
0
00
10
11010
1
0
0
00
0
1
1
1
0
0
00
0
1
1
1
0
0
1
00
0
1
1
1
0
0
1
00
0
0
0
1
1
1
0
0
1
0
0
0
0
1
1
1
0
0
1
0
0
0
0
1
11
1
1
0
0
1
0
0
0
0
1
11
1
1
1
1
1
11
1
1
11
1
11
11
111
1
11
e
DC
DRC
DCC
CRDCCC
i
e
DC
DRC
DC
R
DC
i
e
DC
DRC
DC
R
DC
i
e
DC
i
DRC
DC
R
DC
i
e
DC
i
DRC
DC
DC
DC
R
DC
i
e
DC
i
R
DC
DC
DC
R
DC
i
e
DC
i
R
DC
DC
DC
i
iR
DC
i
e
DC
i
R
DC
DC
DC
i
iRi
DC











 





















































































11/18/2020 DINESH PANCHAL
 
)1(
)(
)(
)(
eq.Fron
But
1
1Now
0101010011
11
0
1
001000110001010
101
0
1
10010001100011010
101
0
1
100100011000110101
1011
0
1
10
10010001100011010
11
0
1
111
0
10
100100110001110
1
0
0
00
10
1110
1
DRCDRDRCCDRCDRC
DCR
e
e
DRCCDRCCDRCDRCCRDCCC
DCCR
e
e
CDRCCDRCCDRCDRCCCRDCCC
DCCR
e
e
CDRCCDRCCDRCDRCCCRDCCCi
DCCRi
e
e
DCC
CDRCCDRCCDRCDRCCCRDCCC
Ri
e
e
eRi
e
DCC
CDRCCDRCDRCDRCCCDRCC
i
e
DC
DRC
DCC
CDRCC
i






















 











 
Now
Further
From above two eq.
11/18/2020 DINESH PANCHAL
  )1(
)1(
0101
2
010011
11
0
1
0101010011
11
0
1
RRCCDRCRCRCD
DCR
e
e
DRCDRDRCCDRCDRC
DCR
e
e




2
3
12
02
R
R
ee
andKeeei


 
2
3
01
2
3
10
0
2
3
1
R
R
Keee
R
R
eKee
Ke
R
R
ee
i
i
i



Now put the value of e1 in eq………
11/18/2020 DINESH PANCHAL
 
 
 
 
 
 
 
 
  
 
 
  30101
2
010011211
30101
2
0100110
30101
2
010011
30101
2
010011211
0
30101
2
010011
211
0
3
2
0101
2
010011
11
0
3
2
0101
2
010011
11
0
0
0
3
2
0101
2
010011
11
0
0
0101
2
010011
11
0
2
3
0
0101
2
010011
11
0
1
)1(
)1(
)1(
)1(
)1(
)1(
)1(
)1(
)1(
)1(
RRRCCDRCRCRCDKDRCR
RRRCCDRCRCRCD
e
e
RRRCCDRCRCRCD
RRRCCDRCRCRCDKDRCR
e
e
K
RRRCCDRCRCRCD
DRCR
e
e
K
R
R
RRCCDRCRCRCD
DCR
e
e
R
R
RRCCDRCRCRCD
DCR
e
Ke
e
e
R
R
RRCCDRCRCRCD
DCR
e
Kee
RRCCDRCRCRCD
DCR
e
R
R
Kee
RRCCDRCRCRCD
DCR
e
e
i
i
i
i
i
i
i






















The basic component of a pneumatic controller is a flapper nozzle system
motion e of the flapper is the input and output of the controller is
pressure p0 which is applied to the final control element. The block
diagram is shown in fig.
Proportional Controller :
11/18/2020 DINESH PANCHAL
if is constant it is proportional controller
The fig shows the pneumatic proportional controller.
Supply Pressure =Constant=
Pressure in the Chamber= variable= which changes with motion e
Capital letters are used for absolute value and small letters are used for
operating values
When there is no gap between nozzle and flapper
If gap is very large
Changes in the pressure in the chamber operate a relay whose output
pressure varies from supply pressure to atm. Pressure, depending on
motion y of elastic end chamber. The relay is ment to amplify the pressure
changes
Transfer function between and e may be obtained by analysis of
1. Flapper Nozzle element 2. Chamber 3. Relay 4. Feedback Element
11/18/2020 DINESH PANCHAL
e
p0
SP
1P
SPP 1
.1 atmPP 
1p
SP
1p
0p
Mass flow rate of air through orifice depend on pressure difference
But is constant.
So
Or Where
Mass flow rate of air out of the nozzle depend on
Mass flow rate of air in the chamber = (Mass flow rate through orifice) –
(mass flow rate through nozzle outside)
11/18/2020 DINESH PANCHAL
)1( PPS 
SP
 1PFMin 
D
m
D
m
m
pam
inin
in
in


flowMass
)1.......(..........11
01
1
dP
dM
a 
 1,0
XPFM 
andXP1
 
 3..............................NozzletheoutsideflowMass
and
2..................................
NozzletheoutsideRateflowMass
3120
0
0
0
3
01
0
2
3120
0
0
1
01
0
0
D
xapa
D
m
m
X
M
a
P
M
aWhere
xapam
X
X
M
P
P
M
m

















Now
11/18/2020 DINESH PANCHAL
 
 
 
 
 7......................................................................
p
y
p
bellowofbalanceforceFor
6......................................................................................v
bellowyofntDisplacemeXchamberinbellowofareachamberofin volumeChange
5................................................................................................
a
va
s
constantsareaawherevasa
,PSo
chambertheinsidevol.andmasson thedependchambertheinsidePressure
constantgaslUniverasatheisChamber,airin theof
masstheisair,oftempabsolutetheischamber,inairofvol.theisWhere
LawGastoaccordingBut
4..........................................
NozzletheoutideFlowMass-NozzlethroughflowMasschambertheinsideflowMass
11
11
11
4
151
c
5415c41
11
11
111
3
1211
12113
31211
31211
K
A
KyA
yA
p
andp
VSF
R
STV
TRSVP
a
Dspapa
xDspapaxa
xapapaDs
D
xapapa
s
C
C
C
c
c
cc















Now from eq. 1 and 2
11/18/2020 DINESH PANCHAL
 
    
  
  
yofput valueNow
Aaaa
ap
vofput valueNow
vaaa
ap
vaaa
ap
a
va
p
eq.aboveinofvalueput theNow
p
p
151412411
4311
1
151412411
4311
151412411
4311
4
151
1211
311
1211
311
3
1211
11
ypDpapaK
aA
x
y
pDpapaK
aA
x
y
pDpapaK
aA
p
DpapaK
aA
x
y
s
DspapaK
aA
a
Dspapa
K
A
x
y
c
cc











 






  
 
 
 2142
1
5214
431
2
1
5214
431
2
1
54241
431
1
154241
431
11
151412411
4311
151412411
4311
abyDivide
a1a
a
a1a
a
a1aa
a
Aa1aa
a
]
Aaaa
ap
Aaaa
ap
aa
K
A
Daa
a
K
A
x
y
K
A
Daa
a
K
A
K
A
DaaK
aA
x
y
K
A
DaaK
aA
x
y
K
Ap
pDpapaK
aA
x
y
ypDpapaK
aA
x
y





















































































11/18/2020 DINESH PANCHAL
 
 
 
 
 
 
   
 
 
 
   
 
 10.........................................................................................
2
flapperofmiddleat theisnozzleif
9...........................................................................................
YmotionondependPpressureSince
8....................................................................................Cy
CthensmallisIf
1
C-Where
11
a
a
a
a1
eWher
a
a1
1
a
a
60
0
1
11
21
321
3
1214
43
1
214
2
1
5
214
2
1
5
214
43
1
ze
x
yap
x
K
A
K
A
x
y
D
C
K
A
x
y
aa
a
D
aa
a
K
A
x
y
D
aa
a
K
A
x
y
aa
K
A
aa
K
A
D
aa
a
K
A
x
y








































































11/18/2020 DINESH PANCHAL
 
lyrespectiveareaandstiffnesstheareandWhere
11...............................................................................
bellowsfeedbackforeq.balanceForce
0
ff
ff
AK
pAzK 
11/18/2020 DINESH PANCHAL
FIG.
11/18/2020 DINESH PANCHAL
)(pondependbellowfeedbackthemrateflowmassin theChange
belowase''and'p'betweenrelationthederiveTo.derivation
previousin theassameremainsx''andpbetweenrelationThe
.x''amountbyincreasesnozzlenearflapperofdistancethen
givenise''inputIf.z''feedbacknoistheremeat that tichangesande''
motioninputany timeatifSobelolow.fedbackrelay tofromairof
entrythebeforejustintroducedisresistancepneumaticsystemin this
0f
0
0
fp
 
 
.
bellowofstiffnessandareatheareKandAWhere
bellowofbalanceforceFor
bellowofvol.in theChange
constantstheareaandaWhere
,
Si.e.bellowinairofmassoffunctionisbellowin thePPressure
bellowairin thechangeMass
ff
f
87
87
ff
6
6
006
f
ff
fff
f
ffffff
f
f
ff
ff
ff
K
pA
zzKpA
zAv
vasapVSFP
D
s
s
dtss
a
mpa
pppam








11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
 
 





 







 












7
8
6
6
7
8
6
6
0
6
6
6
60
6
6
6
60
eq.From
a
zvAap
DpaK
apA
a
vap
DpaK
apA
H
p
z
DspaK
apA
a
mpa
K
pA
H
p
z
mpaK
apA
a
mpa
K
pA
H
p
z
ff
ff
ff
ff
ff
ff
f
fff
ff
ff
f
ff
f
fff
ff
ff
f
ff
f
 
67
2
8
67
2
8
7
2
8
6
6
0
7
8
6
6
7
8
6
6
0
1
Where
1
1
1
1
1
aa
K
vAa
DK
A
aa
K
vAa
DK
A
a
K
vAa
DaK
aA
H
p
z
a
K
A
vAa
DaK
aA
a
K
pA
vAap
DpaK
apA
H
p
z
f
f
f
ff
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
ff
ff
ff
ff
f










































































11/18/2020 DINESH PANCHAL
Fig.
11/18/2020 DINESH PANCHAL
 
 
 
f
ff
ff
f
ff
f
f
f
A
DK
DK
Ae
p
DK
A
G
H
G
GH
G
e
p














1
1
1
largevery veryisGIf
1
1
1
1
1
1
diagramblockaboveFron the
0
0
11/18/2020 DINESH PANCHAL
 
 
D
ppa
ppa
e
p
109
1
109
0
0
0
s
2bellowhethrough tflowMass
2bellowhethrough trateflowMass
sameremainwill
pandbetween xrelationbut the
derivedbewillzandpbetween
relationbelowTheasderivedbe
mayfig.inshowncontroller
for thefunctionTransfer



 
 
 
   
 z
z
z
z
Aisbelloweachofarea
andsameare2and1bellowofStiffness
eq.balanceForce
2bellowofareatheisWherez-z-
constsnts.areandand2bellowinchangevol.theisWhere
vandsoffunctiontheispaspFurther
11111910091010
11111091010
1111
109
10
10111111010
111111010
1
1110
11
11101
1111111101
ff
f
f
ff
ffff
ff
ff
ff
DK
AADapaapaa
DK
zDK
K
Ap
DK
AADappaa
z
K
Ap
K
AAa
D
ppa
a
z
K
Ap
z
K
AAasa
K
Ap
z
K
Avasa
K
Ap
z
K
Ap
K
Ap
AAAv
aav
vasa















 









11/18/2020 DINESH PANCHAL
   
  
 
 
   
 
 
 
910
2
111
910
1
0
910
2
111
910
1
910
2
111
910
1
0
910
2
111910
910
1
2
111910
1
111910
191019101
0
1119101910191010
1111910109101091010
109101091011191010
1111109101091010
1111
1
10
910091010
11111910091011111910091010
1
FandEWhere
1
1
1
1
z
z
zz
aa
K
Aa
Kaa
A
FD
ED
p
z
aa
K
Aa
D
Kaa
DA
Kaa
AaKD
Kaa
DA
p
z
Kaa
ADaKaaDK
Kaa
DA
ADaKaaDK
DA
AADaKaaDK
AaaAaaDA
p
z
AADaKaaDKzAaaAaaDAp
AADaKaaDKzApaaApaaADp
ApaaApaaAADaKaaDKzADp
AADazKApaaApaazDKADp
AADa
A
zKAp
aapaazDKADp
DK
AADapaapaazDK
DK
AADapaapaa
DK
zDK
K
Ap
f
f
f
f
f
f
f
ff
f
fffff
fff
ff
fff
ff
f
f
f
ff
f
f














































 





11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
EDE
F
He
p
H
G
GH
G
e
p
1
ED
FD1
0
1
largevery veryisGIf
1
1
1
1
0
1
1
0









11/18/2020
DINESH
PANCHAL
TRANSIENT AND STEADY RESPONSE
# Transient and steady response of feedback control system response is
analyzed for various inputs
# Governing eq. is analyzed by the Laplace transformation
# Solution of higher order equation may be find out by using the digital
computer
11/18/2020 DINESH PANCHAL
# fig. shows transfer function representation between torque variable u(t) and
rotary function Ð(t) in time domain
11/18/2020 DINESH PANCHAL
 
  aDID 
 2
1
tu
t
G(t)functionTransfer

 
 
 
   
 
 
 
 
 
 
 
 
 
    trtc
tr
tc
1
tGofvalueput theNow
11tr
tc
1tHBut
1tr
tc
edistrubancnowithsystemeabovfor thefunctionTransfer
2
2
2
KKaDID
KaDID
K
aDID
K
tG
K
tKG
tKG
So
tHtKG
tKG












11/18/2020 DINESH PANCHAL
For the general case having disturbance:
11/18/2020 DINESH PANCHAL
    


for toutputstatesteadyandc(t)outputresponsetransientthegivesThis
domainin timesolvedbecantscoefficienlinearorder withsecondofiseq.aboveThe
trtc 2
KKaDID
        
     
     
     
        tbtrKtG
tutG
tbtrK
tutu
tctrKteKtu





tcK-
tc
tcK-
tb
2
12
1
          
             
             
            
     
  
   
  
     
  1
0
existb(t)edistrubanconlyand0r(t)If
b(t)cedistrubaanandr(t)inputthetorelatedisc(t)Output
11
K1
tcK
tcK-
tcK-
tGK
tbtG
tc
tGK
tbtG
tGK
trtGK
tc
tbtGtrtGKtGtc
tbtGtrKtGtGtc
tbtGtGtrKtGtc
tbtrKtGtc











11/18/2020 DINESH PANCHAL
For second order system the eq. Become where
11/18/2020 DINESH PANCHAL
     
  1
0
tGK
tbtG
tc


     
  
 
 
 
 
 
    
responsetransientfor thesolvediseq.aboveThe
1
G(t)
1
1
2
2
2
tbKaDIDtc
KaDIDtb
tc
KaDID
tb
K
tb
tGK
tbtG
tc










 
aDID
tG

 2
1
  
    
      
        
2
1
0
1
0
22
1
1
0
R(s)TransformLaplaceitsThen
ar(t)inputrampFor
R(s)TransformLaplaceitsThen
Constantar(t)inputstepFor
00
0
And
aswrittenLaplaceofInverse
)()(And
)(isTransformLaplaceitsfunctiongeneralanyFor
s
a
dttea
t
s
a
dtae
fsfsFssFDL
fssFsDFL
tfsFL
L
tfLdttfesF
sFf(t)
st
a
st
st



















11/18/2020 DINESH PANCHAL
FINAL VALUE THEOREM :
It gives the steady state value of any function as given below. The
steady state value of function f(t) is given by
11/18/2020 DINESH PANCHAL
   sFtf LtLt st 0

     
  
   
  
b(t)loadandr(t)inputtodueresponseofsumtheisoutputWhere
11
underasistopicpreviousinderivedasoutputofequatationThe
controlalproportioninconstantiselementcontroltheofKfunctionTransfer
tGK
tbtG
tGK
trtGK
tc




11/18/2020 DINESH PANCHAL
Transient response due to reference input r(t):
When load does not exist and only input exist i.e. R(t) exist and b(t)=0
11/18/2020 DINESH PANCHAL
     
  
   
  
     
  
   
  
 
     
  
 
 
 
 
   
 
   
       
111
SystemofFrequencyNatural
I
K
or
I
K
But
1
KbyDeno.andNum.theDivide
11
1
tGwheresystemordersecondofcasethetakeweIf
1
0
1
become
11
eq.The
2
2
2
2
2
2
2
2
2
2
2

























































KI
aD
K
ID
tr
IKK
IaDD
tr
KK
aDD
tr
tc
K
aD
K
ID
tr
tc
KaDID
trK
tc
KaDID
trK
K
tG
trK
tGK
trtGK
tc
aDID
tGK
trtGK
tGK
trtGK
tc
tGK
tbtG
tGK
trtGK
tc
nnn
nn


11/18/2020 DINESH PANCHAL
     
     
   
 
   
  1
tanWhere1sin
1
1tc
alsoiseq.aboveofSol.
1sin
1
1cos1tc
belowgiveneq.isaldifferentithisofSolution1
2
bewilleq.Thedr(t)puti.e.inputstepFor1
2
1
2
1
1
21
DampingCritical
systemofDamping
C
C
RatioDamping
2
But
1
1
1
2
12
2
2
2
2
2
2
2
2
2
2
2
2
c
2
2
2
2

































































































t
e
d
ted
dtc
DD
trtc
DD
DD
tr
DD
tr
tc
KI
a
KI
aDD
tr
KI
aD
K
ID
tr
tc
n
t
nn
t
nn
nn
nnnn
nnn
n
n
The plot of the below eq., Which is the transient response for a second order
system having proportional control and having step input
11/18/2020 DINESH PANCHAL
   
 










2
12
2
2
2
2
1
tanWhere1sin
1
1tc
alsoiseq.aboveofSol.
1sin
1
1cos1tc



























t
e
d
ted
n
t
nn
t
n
n
IMPORTANT POINTS:
# Graph has been plot for different damping ratio .
# If The there is a peak value of response initially after that response c(t)
oscillate
about the reference input value r(t) =d till the steady state is reached.
# For there is no oscillation.
11/18/2020 DINESH PANCHAL

1
1
(A) Rise Time (tr) : It is time taken by the system to reach the value of
output equal to input first time. It corresponds to the point P. Lower the
value of lower the value of
11/18/2020 DINESH PANCHAL
2
2
1
1
1
tan











 


n
rt

rt
(B) Time (tp) : for peak value and peak overshoot: It is time taken by the
system to reach the max. value of output first time. It compounds to the
point the point .
It is the time when first overshoot take place .It can be found out by
putting
dc/dt =0
11/18/2020 DINESH PANCHAL
2P
 
   




























2max
p2
2
2
2
1
1C
first timeoutputofvalueMax.ofvalueget thewe
c(t)foreq.in thetofvaluetheputtingBy
1
01sin
1
1cos1tc
dt
d
0







ed
t
ted
tc
dt
d
n
p
nn
tn
( C) Percentage Overshoot: is the percentage by which the peak response
exceeds the value of step input
11/18/2020 DINESH PANCHAL
2
1
-
e100OversshootPeak% 




0.0 1.57 3.15 100.0
0.2 1.80 3.20 53.0
0.4 2.20 3.42 25.4
0.6 2.80 3.93 9.5
0.8 4.50 5.24 1.5
 rnt pnt OvershootPeak%
(D) Settling Time: It is the time taken system when the output c(t) remain
with in the range of . It corresponds to the point . From the eq.
settling time can be find out when x is given the put c(t) =x
(E) Steady State : When the output of the system become equal to the reference
input and does not change with time. This will become possible when
.
11/18/2020 DINESH PANCHAL
%x 3P
X (Percentage 1 2 3 4 5
4.6 3.9 3.5 3.2 3.0  sn t
t
 











2
1
1


te
dxtc
n
PROBLEM : For first order system shown in fig. derive the sol. For the output
for unit step input=1
SOLUTION:
11/18/2020 DINESH PANCHAL
 
 
 
 
 
  bD
K
KaD
K
K
aDt
t
G
G
t
t
GH
G
t
t
i
















1
1
aD
K
GBut
1
G
1
1
1
1Hfig.giventheFrom
1
asbelowgivenssystemsystemclosedtheofFunctionTransferOverall
i
0
i
0
i
0






11/18/2020 DINESH PANCHAL
 
 
 
     
      
 
   
   
 
 
   3no.eq.incond.boundaryput thisNow0t0at tSo
.zeroissystemofoutputthestartingAt
3...........................AeAe
solutionParticularsolutionryComplementt
bygiven1.iseq.ofsolutionSo
K
eq.ofsolutionParticular
-br
00
0
2eq.intofvaluethePut
teq.ialdifferientthisofsolutionryComplement
2.................................
1.................................
Given1InputBut
0
bt-rt
0
00
0
i
i
0






















b
K
b
K
b
brAebr
bAerAe
Ae
KtbtD
KtbD
t
bD
K
t
t
rt
rtrt
rt
 
 
 
graphinshownisformgraphicalinOutput
1
b
K
e
b
-outputSo
b
K
-A
b
K
A0
Ae
rt
0
rt
0
bt
e
b
KK
t
b
K
t







11/18/2020 DINESH PANCHAL
STEADY STATE RESPONSE FOR UNIT INPUT AND NO LOAD:
To find out the steady state response and steady state error of the system
to any input r(t) or any load b(t), we have to apply the limit t→∞ to the
solution or apply s→0 using final value theorem in Laplace
Transformation eq.
We can also find out the steady state error by using the Final Value Theorem
and Laplace Transformation
11/18/2020 DINESH PANCHAL
   
 
0d-dc-rerrorstateSo
Outputc
tstatesteadyAt
1sin
1
1cos1tc 2
2
2













 
d
ted nn
tn




     
  
   
  
   
   
 KaDD
Then
,0tbif
11
2
2







I
trK
tc
aDIDtG
tGK
tbtG
tGK
trtGK
tc
11/18/2020 DINESH PANCHAL
   
 
   
 
 
     
   
 
 
1
K
I
K
I
1
K
I
1
1
1
K
I
sRsEError
1
K
IKass
TranformLaplaceTaking
KaDD
2
2
2
2
2
2
2


















































s
K
a
s
s
K
a
s
sR
s
K
a
s
sR
s
K
a
s
sR
sR
sC
s
K
a
s
sR
I
sRK
sC
I
trK
tc
   
 
domaintimefromobtainedassameisWhich
0
100
00
d
1
K
I
K
I
d
1
K
I
K
I
0EErrorStateSteady
TheoremValueFinaltoAccording
1
K
I
K
I
So
s
d
R(s)Laplaceitsanddr(t)inputstepFor
1
K
I
K
I
2
2
2
2
0
0
2
2
2
2









































































s
K
a
s
s
K
a
s
s
K
a
s
s
K
a
s
s
d
s
s
s
K
a
s
s
K
a
s
s
d
sE
s
K
a
s
s
K
a
s
sRsE
s
s
11/18/2020 DINESH PANCHAL
   
 
largebeshouldgainandpossibleassmallasbeshouldconstantdampingerrortheminimiseTo
and
2
Where
2
10
0
1
K
I
K
I
1
K
I
K
I
1
1
K
I
K
I
1
0EErrorStateSteady
TheoremValueFinaltoAccording
1
K
I
K
I
1
So
s
1
R(s)Laplaceitsandtr(t)inputrampunitFor
1
K
I
K
I
n
22
2
2
2
20
0
2
2
2
2
2
2
I
K
KI
a
K
a
o
K
a
s
K
a
s
K
a
s
s
K
a
s
s
K
a
s
ss
K
a
s
s
K
a
s
s
s
s
s
K
a
s
s
K
a
s
s
sE
s
K
a
s
s
K
a
s
sRsE
n
s
s


































































































11/18/2020 DINESH PANCHAL
TRANSIENT RESPONSE TO LOAD INPUT AND r(t)=0 :
11/18/2020 DINESH PANCHAL
   
 
 
   
 
 
 
 
   
       
We
tbtcKaDID
KaDID
tb
K
tG
tb
tKG
tbtG
tc
aDID
tKG
tbtG
tc
t-ctc-0tc-trerrorstateSteady
tany timeatoutputofvaluethefindtosolvediseq.aboveThe
)(
11
)(
1
tGtakeSystemOrdersecondFor
1
)(
2
2
2












11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
# This analysis is simple in nature and useful technique
# It is used to study the behavior of the system
# In this technique behavior of the output is analyzed when harmonic signal
applied at input
# the frequency of the output signal is ω, it is changed from low value to high
value
# For the linear system frequency of the o/p and i/p remain same and ratio of
their magnitude is one and phase difference between the o/p and i/p signal
depend on ω
# Frequency response analysis may be carried out experimentally or
analytically
11/18/2020 DINESH PANCHAL
Diagram
Input =r(t)=Harmonic in nature=
Otput = e(t) = Harmonic in nature =
D=d/dt = jωt
tj
er 
tj
ec 
11/18/2020 DINESH PANCHAL
 








jaI
jG
jSoD
tcjecjtDc
ecjtDcec
dt
d
tc
dt
d
ectc
asIs
sG
aDID
tj
tjtj
tj










2
2
2
1
)(
)()(
)()(
)(
1
)(
1
GFunctionTransferIf
11/18/2020 DINESH PANCHAL
 
GH
G
r
c
GrGHcGrcGHc
cGHGrccHrGc
Gec
cHrcre






1
functiontransferloopclosedFor1
)()(
2eq.in to1eq.fromeofvalueput theNow
2.......................................
1....................'
11/18/2020 DINESH PANCHAL
FG
r
c
FG
r
c
FGH
r
c
G
G
r
c






'
'
1*
systemfeedbackunitFor
1
Then1HIf
# It is the plot of magnitude and phase of the Transfer Function in the
polar co-ordinate system as is changed from 0 to
FIG. 6.7
11/18/2020 DINESH PANCHAL
iM i
i 
(A) Polar Plot of First Order System :-
Fig 6.10
But H = 1
So But
Now
11/18/2020 DINESH PANCHAL
GH
G
r
c
aD
K
G



1
G
G
G
r
c
1
1
1
1 



aD
K
G 
aD
KG
r
c
1
1
1
1
1
1



 1.................................
1
1
1
1
TD
K
aDr
c




Where T = a/K
Now put jω in place of D In eq. no. 1
Compare with complex no. a+ jb
11/18/2020 DINESH PANCHAL
2222
22
11
1
1
1
1
1
*
1
1
1
1
1
1









T
jT
Tr
c
T
jT
Tj
Tj
Tjr
c
TjTDr
c















2
22
2
22
22
22
22
22
11
1
1
1
1


























T
T
T
baM
baMMagnitude
T
T
b
and
T
a
Next
Phase Angle
11/18/2020 DINESH PANCHAL
     2222
22
2
22
2
22
11
1
1
11
1





TT
T
M
T
T
T
M

























T
T
T
T
T
a
b
1
22
22
1
tan
1
1
1tan
tan









ωt M Ф
0 1 0
0.5 0.89 -27
1 0.707 -45
2 0.45 -63
4 0.42 -76
5 0.196 -79
0 -90
Diagram 6.11
11/18/2020 DINESH PANCHAL
POLAR PLOT OF SECOUND ORDER SYSTEM :-
Fig. 6.12
But For feedback system overall transfer function is
So
11/18/2020 DINESH PANCHAL
asIs
K
sG

 2
)(
1)(
)()(1
)(
)(
)(



sButH
sHsG
sG
sR
sC
1
)(
1
1
)(
)(
)(
1
)(
1
1
)(1
)(
)(
)(
2








sG
sR
sC
asIs
K
sButG
sG
sG
sG
sR
sC
11/18/2020 DINESH PANCHAL
22
2
22
2
2
2
2
22
2)(
)(
jsputNow
2)(
)(
So
2
Let
1
)(
)(
Now
nn
n
nn
n
n
jsR
sC
ss
I
K
I
as
s
I
K
sR
sC
KI
a
I
K
I
K
I
as
s
I
K
KasIs
K
K
asIssR
sC






















11/18/2020 DINESH PANCHAL
       222
2
222
2
2
2
22
2
2
2
22
2
2
2
22
2
21
21
21
21
)(
)(
21
21
*
21
1
21
1
)(
)(
Put
2
1
1
2)(
)(
bydenumandnum.Divide
2)(
)(
RR
RjR
RjR
RjR
jr
jc
RjR
RjR
RjRRjRjr
jc
R
jjjr
jc
jjR
jC
n
nnn
nn
n
n
n
nn
n














































           
   
   
       
 
    
 
  
     222224
224
224
2
222
224
2
222
2
222
2
22
222
222
2
222222
2
222
2
21
1
221
1
221
221
21
221
21
2
21
1
21
2
21
1
jbano.complexwithCompare
21
2
21
1
21
21
)(
)(
RRRRR
M
RRR
RRR
RR
RRR
M
RR
R
RR
R
baM
RR
R
b
RR
R
a
RR
Rj
RR
R
RR
RjR
jr
jc






























































11/18/2020 DINESH PANCHAL
Now
M will be maximum when
11/18/2020 DINESH PANCHAL
   
   
   222
2
1
2
222
2
222
21
1
1
2
tan
1
2
21
1
21
2
tan
RR
M
R
R
R
R
RR
R
RR
R
a
b




















2
2
2
12
1
21
21







peak
n
M
and
Or
R
DIAGRAM 6.13
11/18/2020 DINESH PANCHAL
Draw the polar plot for open loop frequency response of fig. 6.12
when a =2, K =20 , I = 1
Fig. 6.12
11/18/2020 DINESH PANCHAL
Solution :-
11/18/2020 DINESH PANCHAL
 
           
222 2222
2
22
2
2
2
2
2
2
22
22
2
2
)(
*)(
*)(
)()(
)()()(
)()()(
functiontransferoverallfunctiontransferloopopenFor
1)(
)(

















jaI
jKa
jaI
KI
jaI
jaIK
jF
jaI
jaI
jaI
K
jF
jaI
jaI
jaI
K
jaI
K
jF
jaI
K
jajI
K
jHjGjF
asIs
K
sHsGsF
sH
asIs
K
sG



























Now
11/18/2020 DINESH PANCHAL
       
       
 
 
     





























2
tan
4
20
4
40
tan
4
120
4
400
4
4400
4
1600400
4
40
4
20
4
40
4
20
)(
*2**1
*2*20*
*2**1
*1*20
)(
)(
1
24
2
24
1
224224
24
224
242
24
2
24
2
2424
2
2222
2
2222
2
22
22











































j
M
M
j
jF
j
j
j
jF
jaI
jKa
jaI
KI
jF
Fig. 6.14
11/18/2020 DINESH PANCHAL
 



2
tan
4
120
1
2



M
ω F(Jω) Ф
0 -90
0.5 19.4 256
1 8.9 243
2 3.5 225
3 1.84 213.6
4 1.12 207
5 0.74 201.8
6 0.53 198
0 180
# It is the plot of magnitude and phase angle of transfer function against
in linear or logthrmic fashion they are also known as Bode Plots.
1.First order System :
FIG. NO. 6.10
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
22
2
22
2
22
22
22
22
2222
222222
1
1
11
1
1
1
1
jbawitheq.abovetheCompare
11
1
)(
)(
11
1
1
1
1
1
*
11
1
)(
)(
1
1
1
)(
1
1
)(1
)(
)(
)(
frequencyloopclosedFor
1
)(
TT
T
T
baMMagnitude
T
T
b
T
a
T
Tj
Tjr
jc
T
Tj
TT
Tj
Tj
Tj
Tjjr
jc
Tj
jG
jG
jG
jr
jc
K
a
WhereT
Tjja
K
jG
aD
K
G






































































.
11/18/2020 DINESH PANCHAL
tvsandtvs.MplotNow
tan
1
1
1tantan
AnglePhase
1
22
22
11







T
T
T
T
a
b 






ωT M
0 1
1 0.707
2 0.4472
3 0.3162
4 0.2425
5 0.1961
6 0.1644
7 0.1414
8 0.124
0 1 2 3 4 5 6 7
Ф 0 -45 -63.43 -71.56 -75.96 -78.69 -80.83 -81.86
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
AxisTitle
Mag. Vs. ωT
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0 1 2 3 4 5 6 7 8
Ф Vs ωT
Ф
11/18/2020 DINESH PANCHAL
ФT Ф
0 0
1 -45
2 -63.4
3 -71.6
4 -76
5 -78.7
6 -80.8
7 -81.9
∞ 90
POLAR PLOT FOR SECOUND ORDER SYSTEM:
From Fig. 6.12
11/18/2020 DINESH PANCHAL
   222
2
1
21
1
1
2
tan
RR
M
R
R






 
11/18/2020 DINESH PANCHAL
2
tantan-90and
41
20
M
2)1)(ss(s
20
G(s)(iii)
tan-90and
1
10
M
1)s(s
10
G(s)(ii)
tan-90and
1
1
M
1)s(s
1
G(s)(i)
forplotpolarDraw.1
110
22
10
2
10
2

























11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
1. Determine the transfer function of the system
2. Rewrite the Transfer Function both numerator and denominator in stranded form as
shown in fig.
))()((
))()()((
)(
111
1111
pspspss
zszszszsK
sH



polesarepandzerosarezWhere
111
1111
)(
111
1111
)(
321
4321
1
321
321
4321
4321


























































































p
s
p
s
p
s
s
z
s
z
s
z
s
z
s
K
sH
p
s
p
s
p
s
ppsp
z
s
z
s
z
s
z
s
zzzKz
sH
3. The transfer function contains:
1.
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
# Positive Gain margin means system is stable and negative gain
margin means system is unstable.
# For min. phase system both phase margin and gain margin
must be positive.
11/18/2020 DINESH PANCHAL
PROBLEM: Sketch the Bodes plot for transfer function
Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover
frequency (e) Gain crossover frequency
PROBLEM : 2 Sketch the Bodes plot for transfer function
Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover
frequency (e) Gain crossover frequency
PROBLEM : 3 Sketch the Bodes plot for transfer function
Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover
frequency (e) Gain crossover frequency
11/18/2020 DINESH PANCHAL
)001.01()1.01(
1000
)(
ss
sS


)1.01)(125.01(
)5.01(16
)( 2
sss
s
sG



)1.01)(25.01(
50
)(
sss
sG


PROBLEM -1
11/18/2020 DINESH PANCHAL
PROBLEMS : 2
11/18/2020 DINESH PANCHAL
PROBLEM: 3
11/18/2020 DINESH PANCHAL
# A system is said to be stable if it return to equilibrium position after being
disturbed.
# If the output response shown in fig 7.1 (A) or (b) then system is unstable
# While the system is stable if the output as per the dia. 7.2 (a) and (b)
11/18/2020 DINESH PANCHAL
# Transfer function for the given fig. is
11/18/2020 DINESH PANCHAL
equatationsticcharacteritheis0GH1i.e.
equatationsticcharacterithegiveswhichzerotoequal
c
ofrdenominatoPut
element.feedbacktheisH
lementseforwardoffunctiontransfercombinedtheisGWhere
1



r
GH
G
r
c
   
 AAAc(t)
AAAc(t)Then
,If
AAAc(t)
responseTransient
prootrealthebeingandconjugateomplexare,and,,,areeq.abovetheofrootsIf
0eq.sticCharacteri
1
r
c
order.thirdofeq.sticcharacteriithwithsystemSuppose
unstable.issystemThen thepart.realpositiveorpositiveiseq.sticcharacteritheofroottheofanyIf#
system.theofresponsetransientthegiveseq.abovetheofrootThe
0ID
equatationsticCharacteri
0rDenominatoputequatationsticCharacteriFor
ID
K
1
ID
1
1
1
1
1r
c
1Hfeedbackand
ID
K
GwithsystemordersecondFor
321
321
32
321
1323232
23
23
2
2
2
2
1
1
321
jytjytxttp
tjyxtjyxtp
tptptp
eeee
eee
jyxpp
eee
pjyxpppppp
dcDbDaD
dcDbDaD
w
KaD
KaD
K
aD
G
GH
G
aD
























11/18/2020 DINESH PANCHAL
# Routh’s criterion is used to find the with positive real part
# It is applied to the characteristics eq. of the system.
# If any a’s are zero or negative then the eq. definitely has roots either
pure imaginary or have positive real part
# If all a’s are positive we use Routh’s criterion if any of root is positive.
11/18/2020 DINESH PANCHAL
....ee
....dd
ccc
..........bbb
.....aaaa
.....aaaa
asarrayanintcoefficientheArrange
0..................
21
21
321
321
7531
6420
1
2
2
3
3
2
2
1
10  

nnn
nnnn
asasasasasasa
11/18/2020 DINESH PANCHAL
b
ba-ba
b
b-aba
a
aa-aa
a
aa-aa
a
aa-aa
Where
....ee
....dd
ccc
..........bbb
.....aaaa
.....aaaa
asarrayanintcoefficientheArrange
1
3113
2
1
2112
1
1
3113
2
1
2112
1
1
3115
2
1
2113
1
1
7016
3
1
5014
2
1
3012
1
21
21
321
321
7531
6420
d
dcdc
e
d
dcdc
e
c
cbcb
d
c
cbcb
d
cc
bbb










# The above process is continued in each row and column , until zero are
obtained for additional coefficients in the array
# According to the routh’s criterion , the no. of change of sign in left hand
column of the array is equal to the no. of roots of the eq. with positive real
part. If there is any root with positive real part, then the system is
unstable.
11/18/2020 DINESH PANCHAL
  
.
unstable.issystemSopart.realpositivewithrootstwohaseq.sticcharacterithe.Thus
2.5to4-and4-to1i.e.signinchangestwoaretheretop,fromstartingleftin thecolumnfirstInthe
0d
............6
5.2
046*5.2
c
..........b0b2.5
4-
6-1*4-
b
.....0a0a6a-4a
.....0a0a1a1a
asarrayanintcoefficientheArrange
0..................
belowgiveneq.atandredwitheq.abobetheCompare:SOLUTION
06s4ss
partrealpositiveany withifrootsofno.thefindeq.sticscharacteriwithasystemFor:PROBLEM
1
1
321
7531
6420
1
2
2
3
3
2
2
1
10
23












nnn
nnnn
asasasasasasa
11/18/2020 DINESH PANCHAL
 
 
0
28
4K
2s5
1
0sG1eq.sticcharacteriFor
11r
c
28
4K
2s5
28
18.0
4.015sG
:SOLUTION
stable.issystemfor theKofvaluetheFindsystemcontrolFor:
2
i
2
i
2
i


























ss
s
G
G
GH
G
ss
s
sss
K
s
PROBLEM
i
11/18/2020 DINESH PANCHAL
0.625to0isKofrangeSo
0.625K0
4
32K-20
changesignnoFor
0
0
4
32K-20
4K4
58
arraytheArranging
4K5s48
04K2s5s28
0
28
4K2s5s
1
0
28
4K
2s5
1
i
i
i
i
i
i
23
i
223
23
i
2
2
i
 










ss
ss
ss
ss
s
11/18/2020 DINESH PANCHAL
Special Case :
11/18/2020 DINESH PANCHAL
0
02
017/8
216
41-
282
531
Array
025s8s3s2ss
becomeEq.
2)(sbyeq.hemultiply tSo2.e.g.no.realarbitryanisAwhere
)(sbyeq.hemultiply tsituationsuchInrow.oneinzeroistcoefficienfirstisThere
0
0
020
131
arraytheArranging
012s3ss
eq.sticscharacterigivenFor the
2345
24





A
There are two changes of the sign in the first column at left.
Thus there are two roots with positive real part. So the system
is unstable.
11/18/2020 DINESH PANCHAL
(unstable)01322ss(vii)
(unstable)0123s6s(vi)
(Stable)05.15.35.4(v)
(unstable)05432s(iv)
(Stable)012552s(iii)
(unstable)02322s(ii)
(Stable)01462s(i)
(Stable)01462s(i)
(Stable)01462s(i)
eq.ticscharactersthehavingsystemtheofstabilitytheFind
2345
2345
23
234
234
234
234
234
234









sss
sss
sss
sss
sss
sss
sss
sss
sss
11/18/2020 DINESH PANCHAL
0)95s(s
0
)95s(s
s)-Ke(1
1
0H(s)G(s)1eq.ticscharactersSo
0rdenominatoPut
H(s)G(s)
G(s)
FunctionTransfer
)95s(s
s)-Ke(1
)1(efrequencylowFor
:Ans
stableissystemforKofvaluemax.theFind
)95s(s
Ke
H(s)G(s)
functiontransferloopopenanhassystemfeedbackA#
0.73K04)2(2(ii)
unstableissystemsorootscomplexgivesIt01510520s(i)
stableissystemfor theKofvaluetheFind#
2
2
2
s-
2
s-
23
234













KsKs
s
s
s
s
sKKss
ssKs

11/18/2020 DINESH PANCHAL
# By using the Routh’s criterion we can find out the stability of the system.
But it is impossible to find at a glance how unstable or stable the system
i.e. whether by changing the system parameter , it may change its state of
stability or instability or vice-versa.
This is possible by using the Nyquist Criterion which is graphical plot.
Zero’s and Poles of a Transfer Function:
11/18/2020 DINESH PANCHAL
 
 
 
 
      
    
zerosthearez......z,z,z
polestheare......pp,p,p
b
a
Where
.....
.......
rDenominato
Numerator
......
........
FunctionTransferofFormGeneral
m321
n321
n
m
21
21
2
210
2
210
K
pspspss
zszszsK
sF
sD
sN
sbsbsbbs
sasasaa
sF
n
q
m
n
n
q
m
m








system1typecalledisit1qif
system0typecalledisit0qIf
complexorrealbemayrootsandgaincalledisK


11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
 Roots of characterstics eq. of control system affects the response and
stability of system
 So plot of roots for varying system parameter are important.
 The locus of each root as the gain K varies known as Root Locus.
11/18/2020 DINESH PANCHAL
The block diagram is shown in fig for second order system
FIG. 8.2
11/18/2020 DINESH PANCHAL
 
2I
a
-s
2I
a
-s
4
KFor
2I
a
-sj
2I
a-
sKFor
I
a
-s0s0KFor
to0fromKfor varingplottedbecansandslociofThe
22
s
eq.abovetheofrootsThe
001
issystemtheofeq.ticsCharacters
21
2
21
21
21
2
1,2
2












I
a
j
I
K
I
a
I
a
KassIsGH
# Thus there are two root loci
# First root loci starting from origin and till –a/2I on the real axis
# then moving parallel to the imaginary axis in +ve direction
# The second root loci starts from –a/I and till –a/2I is on the real axis and
then goes parallel to the imaginary axis in –ve direction
# the root loci meet at x=-a/2I when K=
# Each point on the locus corresponds to the particular value of K
11/18/2020 DINESH PANCHAL
I
a
4
2
The root of previous eq. Can be easily calculated and root locus were drawn.
For higher order system we need digital computer to find the roots.
11/18/2020 DINESH PANCHAL
     
    v21
u321
00
00
p-s.................p-sp-s
z-s..................z-sz-sz-sK
GH(s)F(s)If
360180critrionAngular1GH
iscreitreonMagnitude......eq.from.....0,1,2,3,4.mWhere
3601801GHF
-1GH(s)or0(s)G1
issystemabovetheofeq.ticsCharactersThe





mGH
m
H
   
        mpszssGH
pspsps
zszszsK
H
u
i
i
u
i
i
u
360180sF
eq.ofcriterionangularThe
1
........
.........
sGsF
bewouldcriterionmagnitudeThe
zero.thearep..............p,p,pspointsWhere
zero.thearez..............z,z,zspointsWhere
11
111
11
v321
v321







 
11/18/2020 DINESH PANCHAL
RULE NO. 1 :
No. of separate root loci = No. of roots of characteristics eq.
RULE NO. 2 :
11/18/2020 DINESH PANCHAL
  
  
polesare...,pandzerosare....,zereWh
0
......p-sp-s
......z-sz-sK
1
eq.ticscharactersFor
or0eitheratterminateandF(s)
functiontransferloopopenofpolesatstartlocirootthatstateIt
2121
21
21
pz


RULE NO. 3 :
Root loci are symmetrical with respect to real axis. This is due to
the fact that complex roots appear as complex conjugates
RULE NO. 4 :
The real axis loci : A point on the real axis lies on the root locus if
the total number of real poles and zeros to its right , is an odd no.
11/18/2020 DINESH PANCHAL
A system with transfer function Draw the root
loci.
Solution :
According to rule 2, the loci start at poles
and ends at zero or infinity. One root
locus starts at pole 0 and ends at zero -3
, another root s starts at pole -6 and ends
at infinity.
11/18/2020 DINESH PANCHAL
 
 6
32
)()(



ss
sK
sGHsF
3zatareZeros
6pand0patarePoles
GH(s)abovetheFrom
1
21


Problem: For a open loop system for the given transfer function find the root
loci and find the value of K for which system is stable
Solution :
11/18/2020 DINESH PANCHAL
 
 20
10
)( 2



ss
sK
sGH
 



atends
andandfromstartssandslocirootTwo#
zzero
atendsandfromstartsslocusrootThus#
permittednotiswhichnos.,
inevenareofsiderighton thepointanyfrom
asinfinityrdsright towatogonotcanitFrom#
and,atstartlociRoot
10i.e.1zerosofNo.
20and0i.e.3polesofNo.
2121
1
33
3
3
321
1
321
pp
p
p
p
ppp
zN
pppN
Z
P
11/18/2020 DINESH PANCHAL
   
Kofvaluesallforstableissystemthe
plane,s''ofhalfrightenter thelocitheofnoneSince
5
2
10
1-3
1020-00
270,90
13
360180
3.....2,1,0,,
360180
1 1
00
















  
zp
v
i
u
i
ii
zp
NN
zp
f
m
m
NN
m

RULE NO. 6 :
Problem : Find the root loci for the system with
Solution :
11/18/2020 DINESH PANCHAL
0
11
belowgivenusedformulaaxisrealon thepointthefindTo
:pointsawayBreak
11


  
u
i i
v
i i zxx-p
  32
)(


sss
K
sGH
no.inoddarezerosand
polesofno.totalpoleofrighton thepointanyfromas
touprighttowardsgocanandfromstartsslociRoot#
and,atstartlociRoot
ili.e.0zerosofNo.
3and20i.e.3polesofNo.
3
33
321
321
p
p
ppp
nN
pppN
Z
P



11/18/2020 DINESH PANCHAL
   
     
0
3
1
2
1
0
1
0
11
:pointawayBreak
67.1
3
5
13
0032
300,180,60
03
360m180
N
360m180
Asymptotes#
axisrealaboutlsymmetricabewilland
axisrealfromawaybreakand2-and0frostartslocirootSo#
4no.ruletodue3-and2-betwwenpossibleislocusrootNo#
.atendsandandfromstartssandslociRoot#
11
1 1
000
p
2121



























 

 
xxx
zxx-p
NN
zp
f
N
pp
u
i i
v
i i
zp
v
i
u
i
ii
z

11/18/2020 DINESH PANCHAL
     
        
   
        
     
     
 
planes''ofhalfrightenter thelocitheaspointthisbeyondunstablebewillsystemThe
8no.ruleusingbyoutfoundbecan
axisimagenoryononintersectithetoingcorrospondKandbofvalueandaxis.realat
0.785-at xsepratelocusroottheSo.2-and0betweenlies-0.785xofvalueThe
785.0-,54.2
6
71.4
,
6
29.15
6
29.510
6
7210010
3*2
6*3*410010
2
4bb-
eq.abveofRoot
06103
02365
023623
02332
0
320
203032
0
3
1
2
1
0
1
2
2
22
22
2
2

























a
ac
xx
xxxxxx
xxxxxxx
xxxxxx
xxx
xxxxxx
xxx
RULE NO. 7 :
RULE NO. 8:
11/18/2020 DINESH PANCHAL
u
v
zszszszs
pspspsps



.....
......
K
:locusrootonpointanytoingcorrospondlocusrooton thKofvaluuethefindTo
321
321
stability.andyinstabilitofborderon theispointThis#
K.ofvalue
ingcorrospondfindandbforsolveandeq.sticcharacteriin thejbsPut#
itintersectlocusrootat whichaxis,imagenoryonbdistancefindTo#
:axisimagenorywithlocirootofonIntersecti

RULE NO. 7 :
RULE NO. 8:
11/18/2020 DINESH PANCHAL
u
v
zszszszs
pspspsps



.....
......
K
:locusrootonpointanytoingcorrospondlocusrooton thKofvaluuethefindTo
321
321
stability.andyinstabilitofborderon theispointThis#
K.ofvalue
ingcorrospondfindandbforsolveandeq.sticcharacteriin thejbsPut#
itintersectlocusrootat whichaxis,imagenoryonbdistancefindTo#
:axisimagenorywithlocirootofonIntersecti

Problem : Find the root loci for the system with
Solution :
11/18/2020 DINESH PANCHAL
  32
)(


sss
K
sGH
  
  
   
 
 
 
30KforunstablebewillSystem
30K02.45*5-KNow
2.45b
0b-60b-6b
5bK05b-K
imagenorypart withimagenoryandrealpart withrealCompare
0j065b-K0j0K5b-6jbjb-
0j0K6jb5b-jb-032jjb
eq.abovein thejbsPut
032ss0
32ss
K
1
0GH(s)1
problemgivenfor theeq.sticsCharacteri
2
22
22
3223
23












bbj
Ksjbb
Ks
s
RULE NO. 9 :
11/18/2020 DINESH PANCHAL
 
  
   
    1321
1321
11
1
21
21
22
3
1
360180departureofAngle
360180
setisfiedbetoiscriterionangularSo
locus.rooton theissand,saypolecomplex
thenear toveryspointtrialaby taking
andpolethefromdepartorstartlocus
rootin whichdirectionthefindorder toIn#
andatconjugates
complexbemaypolestwoabovetheFrom#
2ps
zsK
GH(s)If
:polecomplexafromdepartureofAngle








m
m
p
pp
pp
ss nn
PROBLEM:
SOLUTION: fig. 8.12
11/18/2020 DINESH PANCHAL
 
  1251s
5sK
GH(s)withsystemFor the 2



ss
   
  0
1
0
2
01
1
01
3
321
11
321
1
2,12,11
124412290180
90
44
5.2
4.2
tan
122
5.1
4.2
tan180
360180
fromdepartureofanglethefindTo
and,atstartlociRoot
5i.e.1zerosofNo.
4.25.2
2
48255
1
i.e.3polesofNo.


















m
p
ppp
zN
jppp
N
Z
P
11/18/2020 DINESH PANCHAL
5.0
13
55.25.21
180,270,90
13
360180360180 000














 
ZP
ZP
NN
zp
f
m
NN
m

11/18/2020 DINESH PANCHAL
Problem:
11/18/2020 DINESH PANCHAL
Problem:
11/18/2020 DINESH PANCHAL
Problem:
11/18/2020 DINESH PANCHAL
0
2
21
2
1,2
22
45then0.707Suppose
foundbecan,knownisIf
1
tan
fig.theFrom
shownasaresandsroot
theofpartimagenoryandrealiffig.theFrom
1casedunderdampefortrueisThis
1s
eq.aboveofrootsThe
02s
issystemordersecoundofeq.ticsCharacterssystem.theof
ratiodampingbyinfluencedgreatlyisresponseits
systemordersecoundofresposetransientFor the















n
n
nn
nn
j
s
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
 
3.1
3.91.33.9t
5.3secperAsvaluestatesteadyfor2%xwithinbetoresponse
for the3sec.isinputsteptosystemoprdersecoundfor thetimesettingtheSuppose#
specifiedbecan
locirootfor thezonethenspecifiedisx%bandwidthgivenafortimesettingtheif#
response.transientthedominatepolesdominantThese#
poles.
dominantcalledarepolesuchzeros,andpolesotherthanaxisimagenorytoclose
planes''inpoleconjugatecomplexanyisthereiforder,higherofissystemtheIf#
poles.conjugatecomplextwohasitsystemordersecoundFor the#
area.shadedbyshownislocirootsorrootshein which tzoneThe#
45beshould
thenresponsetransientdesiredfor0.707thanlessbeshouldthatrequiredisitIf#
n
nsn
0










 
    
  
3j4-
2
100648
ppolestwoareThere
0zi.e.zerooneisThere
0
258s
10
258s
258s
258s
0
258s
258s
aswrittenbemayeq.Above
to0fromiesvarkofethat valurequiredisIt
0258s
iseq.sticcharacteriIf
Kofluecertain vatoscorrospond
locuson thepointEachK.gainofvaluedifferentforplotslociThe#
....
....
sGHreWhe
0G1eq.sticscharacterifor thelocirootdrawn thehaveWe
1,2
1
2
1
2
1
2
22
1
2
1
1
2
21
21



















s
sk
s
sks
ss
sks
sks
pspss
zszsK
sH
n
11/18/2020 DINESH PANCHAL
 
 
0
23
0
23
0
0654
321
2
23
23
A2ss
3Bs
sGH
0
A2ss
3Bs
1
aswrittenbecaneq.Now
Bofionvariat
forlociofstsrtfor thesuitablyselectedaofvaluetheisA#
AAwhenBofariationareforthevsand,slociRoot#
0BwhenAofariationareforthevsand,slociRoot#
fig.inshowndrawnasbecanabovetheoflocirootThe#
0
2s
1
02s
0BtakeFirst we
032s
below
oneeq.likesticcharacteriin theBabdA
parameterstwoofeffecttheifFurther













s
s
s
A
As
ABss
11/18/2020 DINESH PANCHAL
11/18/2020 DINESH PANCHAL
# Several control system are being used in the machine control like
hydraulic, pneumatic, electrical
# CNC and DNC system are also used to control the machines.
1. Hydraulic control : There are two type of systems
(a) Valve Control :
(b) Pump Controlled:
(a) Valve Control :
It involve the use of spool valve with constant pressure supply and
response is fast and efficiency is somehow low. There is chances of
leakage and contamination of dirt which affect the performance of
system
11/18/2020 DINESH PANCHAL
# Fig shows the valve controlled copying unit as applied in the machine unit.
# It uses a template and stylus is kept pressed in contact
# Stylus is connected to the piston valve
# The complete unit i.e. shaded part can move to and fro on the fixed rod.
# Machine tool slide is attached to the assembly.
11/18/2020 DINESH PANCHAL
# Tool slide follow the motion of stylus.
# High pressure oil at cont. pressure is supplied through the middle port.
# if stylus moves to left, High pressure oil goes through the port 2 and
assembly moves to the right, following the stylus motion
# By tool slide follow the profile on which the stylus moves.
11/18/2020 DINESH PANCHAL
(b) Pump Controlled: It has slow response .Its efficiency is high for large
power units this system is used.
# It is automatic positioning system for machine tools
# The fig. of pump controlled system is shown in fig.
# It consist axial type piston pump with control lever , in which discharge is
controlled by motion of control lever.
11/18/2020 DINESH PANCHAL
p
# This controls the travel of pistons located in rotating cylinder.
# The control lever can be operated by small torque motor, which is
operated depending on the error between desired position and actual
position
# The two electric potentiometers convert mechanical position in to voltage
signals.
11/18/2020 DINESH PANCHAL
2. NC/DNC/CNC System:
(a) NC SYSTEM:
# NC System for machine came in early 1950 for commercial use.
# They are of two type (i) open loop (ii) closed loop
11/18/2020 DINESH PANCHAL
# Fig. 12.3 shows the open loop NC system in which stepper moor is used to
control the slide having a motor rotating a screw shaft with fixed nut on
the slide
# he stepper motor moves as per the pluses generated in Machine
Controlled Unit
# MCU consist tape recorder, buffer storage and decoder.
# Tape has no. of holes depending on commands or program
# Pulses are generated by the decoder depending on desired output.
# For the turning on lathe machine two motion are required in x and y
direction . For each direction one stepper motor is required.
11/18/2020 DINESH PANCHAL
FIG. no. 12.4
# In NC closed loop system motion is measured by the sensor
# output is compared with the desired output (input command) and error
signal is generated
# This error signal after amplification is converted digital to analog signals
by DA convertor .
# Then these signal fed to the servo motor which rotate the shaft having
screw.
# Which moves the slide
11/18/2020 DINESH PANCHAL
cx
2. NC/DNC/CNC System:
(b) DNC SYSTEM:
# It was evolved in late sixties
# It uses a central computer to communicate with several machine tools.
# It eliminate the tape reader for each machine tools
# All program are stored in the central computer and program for each
machine tool can be downloaded when required.
# There is two way communication between machine and computer.
11/18/2020 DINESH PANCHAL
2. NC/DNC/CNC System:
(b) CNC SYSTEM:
# It uses micro computer for each machine tool separately.
# A large hard wired controllers are used in NC machine tool have been
replaced by computers
# Computer does the function of comparator and store the program.
# The program can be stored in floppy disc or CD can be edited at site.
# CNC is useful in FMS
11/18/2020 DINESH PANCHAL
# Engine are the prime mover and drive the loads but load may vary with
time
# So with the change of load the speed of the engine will also changes .In
most of cases the speed of the engine must be constant as in the case of
electric generator
# With change in speed the frequency of A.C. changes which is not desirable.
# So maintain the speed of the engine speed governor is attached to the
engine
# Governor may be of mechanical, hydraulic, pneumatic or electronic.
# Now a days microprocessor have application in the engine control.
1. Mechanical Governor
2. Hydraulic Governor
3. Pneumatic Governor
4. Electronic Governor
11/18/2020 DINESH PANCHAL
1. Mechanical Governor :
# Principle of mech. Governor is
centrifugal force
# For the fixed setting of the
adjusting lever the speed of the
engine is constant
# If the load on the engine decrease
then speed of the engine increase
and spindle of the governor is
rotated by the engine increase its speed.
# With increase in speed centrifugal force on the ball increases and they
move in outward direction , which uplift the sleeve.
# Due to the movement of the sleeve fuel control valve move in such a way
so that reduce the supply of fuel to the engine
11/18/2020 DINESH PANCHAL
# Thus the speed of the engine get reduced and reach to the equilibrium state.
# An increase in the load will have opposite effect.
# In case we want to change the equilibrium speed, we can change by
adjusting the lever which adjust the fuel valve corresponding to the
desired speed
# In Automotive application , the speed of the engine is protected against the
over speed.
# They are also protected against the idea ling speed.
# Between the min. speed and max. speed s, the control on the speed is
exercised by the driver through accelerator pedal.
# For max. high speed , the rising of the sleeve has to rise against the high
stiff spring.
# Min speed another spring of small stiffness is used.
11/18/2020 DINESH PANCHAL
2. Hydraulic Controller:
# In large unit like power plants ,
mechanical governor is used to
sense the speed and fuel valve is
controlled by means of hydraulic
servo.
# For the given setting of the speed
lever, if the speed increases due
to decrease in the load .The
outward movement of the balls
uplift the sleeve which gives the
downward movement to the piston
valve.
# The high pressure oil enters through
the bottom port of the hydraulic servo and move the power piston which
reduces the supply of the fuel by closing the fuel valve.
# Thus reducing the speed of the engine
# If the speed decrease then opposite action is taken by the system.
11/18/2020 DINESH PANCHAL
3. Pneumatic Governor:
# Due to change in speed , there is change in the air pressure in the intake
manifold.
# A spring loaded diaphragm is connected through a lever to the fuel
control valve which control the supply of the fuel to the engine.
# At equilibrium position , the spring force equal to the force due to the
pressure difference on two side of the diaphragm.
# If the speed of the engine increases , due to reduction of the load, the inlet
manifold pressure reduces and moving the fuel control rod to the right,
thus reducing the supply of fuel to the engine. So that engine speed return
to the desired value.
11/18/2020 DINESH PANCHAL
# Reverse action is taken by the system when speed of engine decreases due
to increase in the load.
# The butterfly valve is nearly closed at idling.
# As it is opened manifold pressure increases, moving the diaphragm and
fuel control valve to the left and increases the fuel supply up to speed
which is desired.
# Pneumatic governor are good for low speed.
# Pneumatic governor performance is not so good for high speed.
11/18/2020 DINESH PANCHAL
4. Electronic Governor :
# Electronic governor use electrical and electronic component
# They give efficient control of speed
# Speed is sensed by the electric sensor which give feedback signals the
sensor may be of electromagnetic type
# The desired speed is obtained in firm of electrical signal and compared with
sensor speed.
# Error voltage after the comparison is amplified and applied to the motor
actuator system , which control the fuel supply of fuel injection system
# The control system works till steady state is reached.
# With the development of computer tech. micro processor bases control
system are being applied for efficient control in engine.11/18/2020 DINESH PANCHAL
CARBURETTOR CONTROL :
# Development of electronic control carburetor for petrol engine is going
on so that engine run using the optimum use of fuel air mixture and min
exhaust emission
# A microprocessor based system is shown in fig.
# The main input variables are engine speed, switch position, engine temp.,
intake manifold temp., and main throttle angle.
11/18/2020 DINESH PANCHAL
# The operating conditions are determined by the above variables and may
be idling, accelerating, decelerating with engine cut off, starting and
warming and constant speed running.
# By using the suitable algorithms , the processing unit regulate the fuel
supply with the help of carburetor and chock valve.
# Suitable sensors are used for temp. and position measurement.
11/18/2020 DINESH PANCHAL
DIESEL FUEL IGNITION CONTROL :
# Now a days electronic control system has been employed to control the
injection timing and fuel control in a diesel engine.
11/18/2020 DINESH PANCHAL
# The timing of injection is controlled by the cam ring positing , while the
amount of fuel injected is controlled by the metering valve and valve is
controlled by the fueling actuator.
# Fig shows feedback control system for injection timing and fuel metering
, which is dependent on the output of the speed sensor.
# The desired timing is determined by speed and load while fuel control is
related to the speed.
# Feedback control system is applied to control injection timing which is
manipulated by the cam actuator system.
# The injection pump output is controlled depending on the need for fuel
11/18/2020 DINESH PANCHAL

More Related Content

What's hot

Abbreviations and Acronyms for Power Plants
Abbreviations and Acronyms for Power PlantsAbbreviations and Acronyms for Power Plants
Abbreviations and Acronyms for Power Plantsacronym24
 
Introduction to electropneumatic
Introduction to electropneumaticIntroduction to electropneumatic
Introduction to electropneumaticAditya Kurniawan
 
Automated process control systems
Automated process control systemsAutomated process control systems
Automated process control systemsShine Thenu
 
Pneumatic control valve
Pneumatic control valvePneumatic control valve
Pneumatic control valveKarnav Rana
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapterSrinivasa Rao
 
Bioreactor control system
Bioreactor control system Bioreactor control system
Bioreactor control system nandhujaan
 
Instrumentation and process control fundamentals
Instrumentation and  process control fundamentalsInstrumentation and  process control fundamentals
Instrumentation and process control fundamentalshossam hassanein
 
Ee16704 unit2 part2_electropneumatic
Ee16704 unit2 part2_electropneumaticEe16704 unit2 part2_electropneumatic
Ee16704 unit2 part2_electropneumaticthamizmani s
 
737 ng cl differences jakub muransky
737 ng cl differences jakub muransky737 ng cl differences jakub muransky
737 ng cl differences jakub muranskyJakub Muransky
 
Variable speed fire pump controllers
Variable speed fire pump controllersVariable speed fire pump controllers
Variable speed fire pump controllersmichaeljmack
 
B 737NG Warning systems.
B 737NG Warning systems.B 737NG Warning systems.
B 737NG Warning systems.theoryce
 
Electrohydraulic governing system
Electrohydraulic governing systemElectrohydraulic governing system
Electrohydraulic governing systemAshvani Shukla
 
Fire protection
Fire protectionFire protection
Fire protectiontheoryce
 
5. feedback control[1]
5. feedback control[1]5. feedback control[1]
5. feedback control[1]magy31
 
Fc744 Hydraulics
Fc744 HydraulicsFc744 Hydraulics
Fc744 Hydraulicstheoryce
 
Process control 2 chapter
Process control 2 chapterProcess control 2 chapter
Process control 2 chapterSrinivasa Rao
 

What's hot (20)

Abbreviations and Acronyms for Power Plants
Abbreviations and Acronyms for Power PlantsAbbreviations and Acronyms for Power Plants
Abbreviations and Acronyms for Power Plants
 
Introduction to electropneumatic
Introduction to electropneumaticIntroduction to electropneumatic
Introduction to electropneumatic
 
Automated process control systems
Automated process control systemsAutomated process control systems
Automated process control systems
 
Pneumatic control valve
Pneumatic control valvePneumatic control valve
Pneumatic control valve
 
Diesel Fire Pump Controllers
Diesel Fire Pump ControllersDiesel Fire Pump Controllers
Diesel Fire Pump Controllers
 
Control valves
Control valvesControl valves
Control valves
 
C045051318
C045051318C045051318
C045051318
 
Control system
Control systemControl system
Control system
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapter
 
Bioreactor control system
Bioreactor control system Bioreactor control system
Bioreactor control system
 
Instrumentation and process control fundamentals
Instrumentation and  process control fundamentalsInstrumentation and  process control fundamentals
Instrumentation and process control fundamentals
 
Ee16704 unit2 part2_electropneumatic
Ee16704 unit2 part2_electropneumaticEe16704 unit2 part2_electropneumatic
Ee16704 unit2 part2_electropneumatic
 
737 ng cl differences jakub muransky
737 ng cl differences jakub muransky737 ng cl differences jakub muransky
737 ng cl differences jakub muransky
 
Variable speed fire pump controllers
Variable speed fire pump controllersVariable speed fire pump controllers
Variable speed fire pump controllers
 
B 737NG Warning systems.
B 737NG Warning systems.B 737NG Warning systems.
B 737NG Warning systems.
 
Electrohydraulic governing system
Electrohydraulic governing systemElectrohydraulic governing system
Electrohydraulic governing system
 
Fire protection
Fire protectionFire protection
Fire protection
 
5. feedback control[1]
5. feedback control[1]5. feedback control[1]
5. feedback control[1]
 
Fc744 Hydraulics
Fc744 HydraulicsFc744 Hydraulics
Fc744 Hydraulics
 
Process control 2 chapter
Process control 2 chapterProcess control 2 chapter
Process control 2 chapter
 

Similar to Automatics Control Notes

BEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfBEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfShadab Siddiqui
 
IRJET- Solar based Portable Air Compressor for Tyre Inflation
IRJET- Solar based Portable Air Compressor for Tyre InflationIRJET- Solar based Portable Air Compressor for Tyre Inflation
IRJET- Solar based Portable Air Compressor for Tyre InflationIRJET Journal
 
Temperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingTemperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingJagannath Dutta
 
Parameter controlling of boiler in power plants using fuzzy logic controller
Parameter controlling of boiler in power plants using fuzzy logic controllerParameter controlling of boiler in power plants using fuzzy logic controller
Parameter controlling of boiler in power plants using fuzzy logic controllereSAT Journals
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second lawnaphis ahamad
 
Real time parameter estimation for power quality control and intelligent prot...
Real time parameter estimation for power quality control and intelligent prot...Real time parameter estimation for power quality control and intelligent prot...
Real time parameter estimation for power quality control and intelligent prot...EG TECHNOLOGIES
 
Open and closed loop systems
Open and closed loop systemsOpen and closed loop systems
Open and closed loop systemsKALPANA K
 
Design of Pnematic circuits.pptx
Design of Pnematic circuits.pptxDesign of Pnematic circuits.pptx
Design of Pnematic circuits.pptxMohamedSiddique20
 
Temperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingTemperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingJagannath Dutta
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapterSrinivasa Rao
 
ddc_controls_part_1_pnwd-sa-883dddds4.pdf
ddc_controls_part_1_pnwd-sa-883dddds4.pdfddc_controls_part_1_pnwd-sa-883dddds4.pdf
ddc_controls_part_1_pnwd-sa-883dddds4.pdfnqmanuntag
 

Similar to Automatics Control Notes (20)

Nidec asi silcovert s
Nidec asi silcovert sNidec asi silcovert s
Nidec asi silcovert s
 
FINAL YEAR PPT2013
FINAL YEAR PPT2013FINAL YEAR PPT2013
FINAL YEAR PPT2013
 
chap-1(1).pdf
chap-1(1).pdfchap-1(1).pdf
chap-1(1).pdf
 
BEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfBEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdf
 
IRJET- Solar based Portable Air Compressor for Tyre Inflation
IRJET- Solar based Portable Air Compressor for Tyre InflationIRJET- Solar based Portable Air Compressor for Tyre Inflation
IRJET- Solar based Portable Air Compressor for Tyre Inflation
 
Lecture Slide 1.pptx
Lecture Slide 1.pptxLecture Slide 1.pptx
Lecture Slide 1.pptx
 
Chapter_8.ppt
Chapter_8.pptChapter_8.ppt
Chapter_8.ppt
 
Temperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingTemperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring using
 
Parameter controlling of boiler in power plants using fuzzy logic controller
Parameter controlling of boiler in power plants using fuzzy logic controllerParameter controlling of boiler in power plants using fuzzy logic controller
Parameter controlling of boiler in power plants using fuzzy logic controller
 
Unit 1.2 thm
Unit 1.2 thmUnit 1.2 thm
Unit 1.2 thm
 
Moisture controller report total
Moisture controller report totalMoisture controller report total
Moisture controller report total
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second law
 
Real time parameter estimation for power quality control and intelligent prot...
Real time parameter estimation for power quality control and intelligent prot...Real time parameter estimation for power quality control and intelligent prot...
Real time parameter estimation for power quality control and intelligent prot...
 
WATER LEVEL CONTROL AND NO LOAD PROTECTION
 WATER LEVEL CONTROL AND NO LOAD PROTECTION WATER LEVEL CONTROL AND NO LOAD PROTECTION
WATER LEVEL CONTROL AND NO LOAD PROTECTION
 
Open and closed loop systems
Open and closed loop systemsOpen and closed loop systems
Open and closed loop systems
 
Design of Pnematic circuits.pptx
Design of Pnematic circuits.pptxDesign of Pnematic circuits.pptx
Design of Pnematic circuits.pptx
 
Final Control Element.pptx
Final Control Element.pptxFinal Control Element.pptx
Final Control Element.pptx
 
Temperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring usingTemperature based fan speed control & monitoring using
Temperature based fan speed control & monitoring using
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapter
 
ddc_controls_part_1_pnwd-sa-883dddds4.pdf
ddc_controls_part_1_pnwd-sa-883dddds4.pdfddc_controls_part_1_pnwd-sa-883dddds4.pdf
ddc_controls_part_1_pnwd-sa-883dddds4.pdf
 

More from Dinesh Panchal

Energy saving tips for electrical home appliance
Energy saving tips for electrical home applianceEnergy saving tips for electrical home appliance
Energy saving tips for electrical home applianceDinesh Panchal
 
Introduction to mechanical vibration
Introduction to mechanical vibrationIntroduction to mechanical vibration
Introduction to mechanical vibrationDinesh Panchal
 
Flow of Steam through Nozzels
Flow of Steam through NozzelsFlow of Steam through Nozzels
Flow of Steam through NozzelsDinesh Panchal
 
Boilers ppt (energy conversion)
Boilers ppt (energy conversion)Boilers ppt (energy conversion)
Boilers ppt (energy conversion)Dinesh Panchal
 
Direct Energy Conversion in Power Plant Engineering
Direct Energy Conversion   in Power Plant EngineeringDirect Energy Conversion   in Power Plant Engineering
Direct Energy Conversion in Power Plant EngineeringDinesh Panchal
 
Nuclear Power Plant PPT
Nuclear Power Plant PPTNuclear Power Plant PPT
Nuclear Power Plant PPTDinesh Panchal
 
Ultrasonic machining (modern manufacturing process)
Ultrasonic machining (modern manufacturing process)Ultrasonic machining (modern manufacturing process)
Ultrasonic machining (modern manufacturing process)Dinesh Panchal
 
Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Dinesh Panchal
 
Laser Beam Machining (Modern Manufacturing Process)
Laser Beam Machining (Modern Manufacturing Process)Laser Beam Machining (Modern Manufacturing Process)
Laser Beam Machining (Modern Manufacturing Process)Dinesh Panchal
 
Electric Discharge Machining (Modern Machining Process)
Electric Discharge Machining (Modern Machining Process)Electric Discharge Machining (Modern Machining Process)
Electric Discharge Machining (Modern Machining Process)Dinesh Panchal
 
Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Dinesh Panchal
 
Abrasive Jet Mechaning (Modern Manufacturing Process
Abrasive Jet Mechaning (Modern Manufacturing ProcessAbrasive Jet Mechaning (Modern Manufacturing Process
Abrasive Jet Mechaning (Modern Manufacturing ProcessDinesh Panchal
 
Basics of mechanical engineering
Basics of mechanical engineeringBasics of mechanical engineering
Basics of mechanical engineeringDinesh Panchal
 

More from Dinesh Panchal (13)

Energy saving tips for electrical home appliance
Energy saving tips for electrical home applianceEnergy saving tips for electrical home appliance
Energy saving tips for electrical home appliance
 
Introduction to mechanical vibration
Introduction to mechanical vibrationIntroduction to mechanical vibration
Introduction to mechanical vibration
 
Flow of Steam through Nozzels
Flow of Steam through NozzelsFlow of Steam through Nozzels
Flow of Steam through Nozzels
 
Boilers ppt (energy conversion)
Boilers ppt (energy conversion)Boilers ppt (energy conversion)
Boilers ppt (energy conversion)
 
Direct Energy Conversion in Power Plant Engineering
Direct Energy Conversion   in Power Plant EngineeringDirect Energy Conversion   in Power Plant Engineering
Direct Energy Conversion in Power Plant Engineering
 
Nuclear Power Plant PPT
Nuclear Power Plant PPTNuclear Power Plant PPT
Nuclear Power Plant PPT
 
Ultrasonic machining (modern manufacturing process)
Ultrasonic machining (modern manufacturing process)Ultrasonic machining (modern manufacturing process)
Ultrasonic machining (modern manufacturing process)
 
Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)
 
Laser Beam Machining (Modern Manufacturing Process)
Laser Beam Machining (Modern Manufacturing Process)Laser Beam Machining (Modern Manufacturing Process)
Laser Beam Machining (Modern Manufacturing Process)
 
Electric Discharge Machining (Modern Machining Process)
Electric Discharge Machining (Modern Machining Process)Electric Discharge Machining (Modern Machining Process)
Electric Discharge Machining (Modern Machining Process)
 
Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)
 
Abrasive Jet Mechaning (Modern Manufacturing Process
Abrasive Jet Mechaning (Modern Manufacturing ProcessAbrasive Jet Mechaning (Modern Manufacturing Process
Abrasive Jet Mechaning (Modern Manufacturing Process
 
Basics of mechanical engineering
Basics of mechanical engineeringBasics of mechanical engineering
Basics of mechanical engineering
 

Recently uploaded

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 

Recently uploaded (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Automatics Control Notes

  • 1. Automatic Control Has Application In many Areas: # Mechanical Engg. * Power Plant * Engines * Production * process Plant * transportation * Defense Applications # Electrical Engg. # Textile Engg. # Aerospace Engg. 11/18/2020 DINESH PANCHAL
  • 2. Main component involved in automatic control may be electrical, mechanical, hydraulic, pneumatic depending on the application. Types of control Systems : Control system controls the energy inputs to a system and gives the desired output. Control system may be classified as: 1. Open or closed Loop System 2. Analog or Digital Control System 3. Regulators and Servomechanisms 4. Sequence Control 11/18/2020 DINESH PANCHAL
  • 3. Open Loop System: In this system output of the system is no measured and output is not compared with the input value. In this system output value varies as the input is varied. 11/18/2020 DINESH PANCHAL
  • 4. Closed Loop System: In this system , the actual value of the variable being controlled is measured and compared with the desired value and action is taken to eliminate the error. This system is also called feedback systems. 11/18/2020 DINESH PANCHAL
  • 5. Analog Control System: In this system , an analog signal varies continuously and can have any value in the given range. 11/18/2020 DINESH PANCHAL
  • 7. Digital Control System: In this type of control system the signal have discrete values. In this system a digital computer is used for comparing the actual and desired values of the controlled variables by using specified control algorithm .It is used for complex control systems e.g. boiler control system. In this system the control devices are of analog type but these analog signal are converted in to the digital signals and vice versa in digital control system. 11/18/2020 DINESH PANCHAL
  • 9. Regulators: Regulators are the control systems in which the controlled variable in the system is fixed but in some cases it is not changed much as in voltage control. Another case is the temp. control system where the temp is to be maintained constant. Servomechanism: This type of control system is employed where the controlled variable is changing time to time e.g. in case of radar or gun control the position is often changed and the target may occupy any popsition. 11/18/2020 DINESH PANCHAL
  • 10. Sequence Control: it is the type of control system in which the set of operation are to be performed in a given sequence. e.g. In a cloth washing machine - Filling of water in the tub - Washing - Draining the tub - Rinsing - Spin Drying In this each operation is controlled by the timer . 11/18/2020 DINESH PANCHAL
  • 11. another example of this type of control system is used in production machines - Job in position - Guard in position - tool in position - tool motion - Tool withdrawal - Job withdrawal This type of control system uses logic control devices. . 11/18/2020 DINESH PANCHAL
  • 12. S.NO. OPEN LOOP CLOSED LOOP 1 These are not reliable These are reliable 2 It is easier to build It is difficult to build 3 If calibration is good, they perform accurately they are accurately 4 They are more stable They are less stable 5 Optimization is not possible Optimization is possible 6 They are simple They are complex 7 Less maintenance high maintenance 11/18/2020 DINESH PANCHAL
  • 13. Typical simplified block diagram of closed loop system is shown in fig. r : reference input or desired input or set point c : controlled variable or actual value of controlled variable or output . 11/18/2020 DINESH PANCHAL
  • 14. m : manipulated variable, which is manipulated to control the system b : disturbance or load input e : error which is the difference of two signals. Comparator : Comparison element like potentiometer or digital computer Control Elements : These are the functional elements which modifies the error signals like differentiating or integrating or amplifying ect. They may also include amplifier and final control elements. . 11/18/2020 DINESH PANCHAL
  • 15. Amplifier: It magnify the input signals by using external energy. E.g. Hydraulic, Pneumatic or electrical amplifier. Final Control Elements : Elements which are adjacent to the system being controlled e.g. control valve, servomotor, drive unit . 11/18/2020 DINESH PANCHAL
  • 16. System or Process or Plant: The main element which require control of its variables, e.g. rotating system, needs speed control, inertia system needs position control. Feedback Elements: Measuring elements or sensor ment for measure the actual value of controlled variable, for comparison with the desired input value. . 11/18/2020 DINESH PANCHAL
  • 17.  -To find out the performance of control system one has to determine the error over a period of time to different inputs.  - Error is the difference between the desired value and the actual value.  As the system is dynamic in nature so frequency or time domain analysis is done.  If the feedback system is not designed properly , it may become unstable under certain conditions. So system is to be checked for the stability.  So Routh, Nyquist, Bode, Root Locus techniques are used to check dynamic performance of system. 11/18/2020 DINESH PANCHAL
  • 18.  As we know that hardware used in the control system may be electrical, hydraulic or pneumatic or combination of these.  The first aim is to find out the governing equitation's or transfer functions of various element  After that the overall transfer function of the system is to be found out.  The overall equitation is to be used to find out the performance of the system. 11/18/2020 DINESH PANCHAL
  • 19.  Draw the Block Diagram of the system given below. 11/18/2020 DINESH PANCHAL
  • 20. 1. Mathematical Modeling: By using the physical laws and governing equations between input and outputs of a system is derived .The elements in the system may be electrical, mechanical, pneumatic. If a function Y is dependent on X which is independent variable 11/18/2020 DINESH PANCHAL
  • 22. Y=F(X) A small variation ΔY from operating point O is If the function Y depends on independent variable Y= F( ) 11/18/2020 DINESH PANCHAL X dX dY Y  0 .........,, ,321 XXX .........,, ,321 XXX .................20 2 10 1        X X Y X X Y Y
  • 23. 2. Block Diagram Representation: (A) Transfer Function y= Ax A= y/x = Output/Input Where A is the transfer Function 11/18/2020 DINESH PANCHAL
  • 24. (B) Summing Junction: Summing Junction is used to represent the addition or subtraction of signals c = a + d – b Sum of variable leaving the Junction = Some of variable entering the Junction 11/18/2020 DINESH PANCHAL
  • 25. ( C) Comparison Element: This is used to compare the desired output to the actual output e = Input – Output = r - c 11/18/2020 DINESH PANCHAL
  • 26. Representation of Spring Mass System: Which may be written as D 11/18/2020 DINESH PANCHAL D dt d isdotBut tfkxxcxm tfkxxcxm    ).( )( )( ... ...
  • 27. 11/18/2020 DINESH PANCHAL       Kcsmssf sx KcDmDtf tx tfKcDmDtx tftKxtcDxtxmD tfKxcDxxmD        2 2 2 2 2 1 )( )( 1 )( )( sbyreplacedisDtionTransformaLaplaceAfter )( )()()()( )( isFunctiontransferDomainTime
  • 28. 1. Liquid, Gas, Thermal System: These systems are analogous to electrical system Level, Pressure, Temp. = Potential liquid or gas flow rate, heat flow rate = current Tank =Capacitance These analogy is useful for driving the governing equations. 11/18/2020 DINESH PANCHAL
  • 29. Suppose a tank of capacity C to which there is a inflow of liquid at a rate qi at a pressure pi and outflow rate q0 from the tank. There is a pressure drop at inlet due to resistance R .If the level of the liquid in the tank is h 11/18/2020 DINESH PANCHAL
  • 30. Pressure at the bottom of tank is As per Electrical Analogy As ……………(1) As CV=Q As per Electrical Analogy …………….(2) 11/18/2020 DINESH PANCHAL ghp  i i q pp R   I VV R 21   0 0So qrateflow toanalogusiscurrentandpressuretoanalogusisVAs Currenti dt dQ QCV qqCDp qq dt dp C dt dV C dt dV C CVQ i i    
  • 31. Now Substituting the value of qi from eq. 1 to eq. 2 ………………………(3) 11/18/2020 DINESH PANCHAL )1( )1( 0 0 0 0 0 0            RCD Rqp p RqpRCDp RqppRCDp ppRqRCDp R pp qCDp q R pp CDp i i i i i i
  • 32. Vol. of liquid accumulated in the tank is This increase in vol. increase the height (h) of water in the tank of area A Increase in Vol. = So ………………………..(4) And p=hρg …………………………………..(5) 11/18/2020 DINESH PANCHAL 0qqi  dt dh A oi qq dt dh A 
  • 33. = 11/18/2020 DINESH PANCHAL 4 128 RisResistanceBut eq.aboveinhofvaluePut this g p h 4and2eq.From d L g A C g ADp CDp ghp ADh dt dh ACDp           
  • 34. Gas Pressure System: 11/18/2020 DINESH PANCHAL)1(1( )1( )1( )( )( 1noeq.inofvalueput theNow andSoVBut 1...................................qrateflowso CDVcurrent 0 0 0 0 0 0 21 i RCD Rq RCD p p RCD Rqp p RCDpRqp pRCDpRqp RCDpRqpp CDpq R pp q R pp q RqppiRV CDpq i dt dv C dt dq CVq i i i i i i i i i ii o                  
  • 35. C is the capacitance of the system As we know gas eq. pV=m R T From eq. no. 1 =dm/dt Rate of accumulation of mass =Dm So From eq. p V= m R T , Now put the value of m/p in above eq. And 11/18/2020 DINESH PANCHAL CDpqqi  0 p m C Cpm   RT V p m  RT V C  52 8 d fl R  
  • 36. Mechanical Rotating System: Here we have to determine the governing equation of the rotating system Torque developed by Motor = u Load Torque = Speed of Rotation= ω Moment of Inertia of Rotating Mass = I Viscous damping Coefficient = B Total Torque=Load Torque + Torque for Inertia + Damping Torque So Governing Eq. is 11/18/2020 DINESH PANCHAL Lu  BIDuu L 
  • 37. Geared System: Torque developed by Motor = Load Torque = Inertia = Speed of Rotation= Gears are used between motor and load for different speed and torque. So torque and rotation are different at the two ends. 11/18/2020 DINESH PANCHAL MU LU 21, JJ 21,
  • 39. 11/18/2020 DINESH PANCHAL Fig. shows hydraulic control system. This is used to controlling heavy loads, with application of small force. It may be used in machine tools, governing of turbine, ship steering system . High pressure pump supplies oil to hydraulic unit. Input motion given to system = x Output motion given by system is = y When x motion is given to the end A then upper port is uncovered and high pressure oil flow through upper port and moves the power piston in downward direction by an amount of y. The piston valve moves by an amount e From the diagram …………………………….1 21 eee 
  • 40. 11/18/2020 DINESH PANCHAL From similar triangle ACX and Bce From similar triangle ACy and Bcy Now put the value if e1 and e2 in eq .1 ………..2 ba xb e AC xBC e AC x BC e     1 1 1 ba ya e AC yAB e AC y AB e     2 2 2 2 yx e bifa ba ay ba bx e       
  • 42. 11/18/2020 DINESH PANCHAL A control valve is the final control element in a fluid Process system and control the flow rate of the system From the fig pressure applied to the diaphragm is p Spring constant of Diaphragm = K Moving mass of valve = m Damping Constant = B Force Applied by Diaphragm on Valve= F = p(t) A…..1 For a spring Mass system eq. is given as       KBDmD A tp tx KBDmDtxF tKxtBDxtxmDF KxxBxmF      2 2 2 )( )( 2and1no.eq.From 2.......................)( )()()( 
  • 43. Comparison elements or comparator find out the difference between the input and actual value of the controlled variable and gives a signal proportional to the error or difference 1. Potentiometer type : This is the simplest type of error detector, which produces a signal voltage which us proportional to the error signal. Potentiometer may be rotary or linear Suppose Input = Output = Two identical rotary potentiometer are Connected as shown in fig and the voltage e(t) depend on the difference Of position i.e. And it will be zero if position of these Two are same. 11/18/2020 DINESH PANCHAL r c crand cr  
  • 45. Block Diagram and Transfer Function Representation 11/18/2020 DINESH PANCHAL ABC r q ABC r q r p p m m q r q m q C p m B r p A     ** ** FunctionTransferOverall ,, FunctionTransfer
  • 46. From the above given Fig. Input = r Output = c Disturbance = b Transfer Function are A, G1, G2 and H 11/18/2020 DINESH PANCHAL  bcHrAGGc mGc bcHrAGm bmm cHrAGm eGm cHrAe        )( )( )( 12 12 11 1 1 1
  • 47. 11/18/2020 DINESH PANCHAL     b HGG G r HGG AGG c HGG bGrAGG c bGrAGGHGGc bGrAGGcHGGc bGcHGGrAGGc bcHGrAGGc bcHrAGGc )1()1( )1( )1( )( 12 2 12 12 12 212 21212 21212 21212 112 12            
  • 48. 11/18/2020 DINESH PANCHAL Fig. shows the temp. control System Thermal capacitance = C Actual value of temp. at any time =ϴ The disturbance is due to the heat loss to the surrounding and temp is controlled by transferring the heat To the chamber . Heat Inflow = Suppose to set the temp of chamber by moving the input lever by z upward . As the lever Pivots about P .So the movement Of piston valve by z/2 The piston covers both ports under Steady state condition. Due to upward motion of piston power piston moves y amount in inq r
  • 49. This apply force on rheostat contact point and rheostat put the smaller resistance. Hence voltage increases across the heater and gives more heat and increase the temp of chamber.Due to increase in temp. liquid in feedback bellow expand and moves the lever by x. Due to x point p moves downward. Hence piston moves x/2 in downward. Lever input Z is proportional to Flow rate of oil through port = be = Ady ……………………… 3 Where b is the port coefficient A is the area of the piston Heat input is proportional to the y net heat accumulate in the chamber and increase the temp of chamber 11/18/2020 DINESH PANCHAL 1............................................ 22 xz e  r 2................................................1 rCz  4.........................................2 yCqin  oin qq 
  • 50. So C is the thermal capacitance of the chamber and is the rate of heat loss to the surrounding Heat Loss = Where R is the resistance to heat loss X is directly proportional to the temp of the chamber From eq. 5 and 6 eliminate 11/18/2020 DINESH PANCHAL 5..................................CDqq oin  oq 6........................... R q a o     7..........................................4Cx  oq 8............................ 1 1                                R CDR R q R CD R q R CD R q CD RR q CD R q a in a in a in a in a in
  • 51. From the above eq. 11/18/2020 DINESH PANCHAL                                                                                         AD bCC R RCD RAD bCC AD bCC R RCD RAD bCC R RCD RAD bCC AD bCC R RCD RAD bxC AD bzC R RCD R xz AD bC R RCD RAD be C R RCD R yC R RCD R q ar ar ar a a a a a in 2 1 2 2 1 2 1 22 1 22 1 22 1 1 1 4212 4212 4212 22 2 2 2
  • 53.     bCRCRCDAD AD bCRCRCDAD RbCC bCRCARCDAD AD bCRCARCDAD RbCC bCRCARCDAD ADR RbCRCARCDAD ADR AD bCC bCRCARCDAD ADR RbCRCARCDAD ADR AD bCC ADR bCRCARCDAD RAD bCC AD bCC R RCD RAD bCC ar ar ar ar ar ar 4242 12 42 2 42 2 12 42 2 42 2 12 42 2 42 2 12 42 2 12 4212 12 2 12 22 2 22 22 2 * 22 2 * 2 22 2 * 22 2 * 2 2 22 2 2 1 2                                              11/18/2020 DINESH PANCHAL
  • 54. It is the another way to represent the system by network. As we are representing the system by block diagrams. # In signal flow graph junction is called Node # Node are connected by path called Branches. # Direction of signal is shown by an arrow. # Value of variable is indicated at nodes. # Gain is shown in the center of path. Fro the fig. 11/18/2020 DINESH PANCHAL 12 112 3 xGx xGx  
  • 55. Fig. Fig. 11/18/2020 DINESH PANCHAL 22113 xHxHx  23214 xGGGx 
  • 56. Some Important points. # Input node have only outgoing branches # output node have only incoming branch. # Forward path is a path from input to output node. # Feedback is a path which start and ends at the same node . Fig. 11/18/2020 DINESH PANCHAL
  • 57. PROBLEM : Draw signal flow graph for following equitations. 11/18/2020 DINESH PANCHAL 56 345 324 423 512 xx gxfxx exdxx cxbxx axxx     
  • 58. PROBLEM : Draw signal flow graph for following equitation. 11/18/2020 DINESH PANCHAL 4453355 4443344 2233 5524423321122 xaxax xaxax xax xaxaxaxax    
  • 59. Meson’s Formula gives the overall gain M of the system, which is the ratio of output to input # = 1- (sum of all individual loop gain)+(sum of product of gains of all possible combinations of two non touching loops) – (sum of product of gains of all possible combinations of three non touching loops) + ………………….. # = value of for that part of the signal flow graph not touching the forward path. 11/18/2020 DINESH PANCHAL    k kkM M  k  th k
  • 60. A signal flow graph shown for a system (a) Derive overall transfer function c/r using Mason’s formula and draw block diagram Sol. : There is only one forward path total gain of forward path= No. of feed back loop system = 3 with gains = There is one combination of two non – touching loops Product of gains of these non touching loops= There is no combination of three or more non touching loops 11/18/2020 DINESH PANCHAL cxxrx 321 43211 YYYYM  342321 ,, YYYYYY  3412 YYYY
  • 61.    k kkM M 11/18/2020 DINESH PANCHAL # = 1- (sum of all individual loop gain)+(sum of product of gains of all possible combinations of two non touching loops) – (sum of product of gains of all possible combinations of three non touching loops) + ………………….. # = value of for that part of the signal flow graph not touching the forward path. = 1+ = 1 Since there is no part of graph not touching the first forward path So M =c/r = For Block diagram governing eq. are k    3412432321 YYYYYYYYYY  1 4231432321 4231 1 YYYYYYYYYY YYYY        323 2312 121 Ycxx Yxxx Yxrx   
  • 63. For the block diagram shown in fig. draw signal flow graph and overall transfer function Sol. : Signal Flow Graph 11/18/2020 DINESH PANCHAL
  • 64. From signal flow graph r is input and c is output There are two forward path and Gain of 1st forward path = Gain of 2nd Forward Path = There are three feed back loop with gains There are no non touching loop and all loops touch both forward path 11/18/2020 DINESH PANCHAL cGGrG 321 cGGrG 421 321 GGG 421 GGG 2421232121 ,,1 HGGGHGGGHGG  24212321121 421321 2211 24212321121 21 1 1 1 HGGGHGGGHGG GGGGGG MM r c M HGGGHGGGHGG        
  • 65.  For given block diagram draw signal flow graph and find out overall transfer function 11/18/2020 DINESH PANCHAL
  • 66.  For given block diagram draw signal flow graph and find out overall transfer function 11/18/2020 DINESH PANCHAL
  • 68. #Controller may be hydraulic, pneumatic or electrical. 1. Hydraulic Controller # they modify the error signal to suitable form # Hydraulic control system needs high pressure fluid and may be used in ships, machines tools, aircraft control #hydraulic control system gives higher torque/inertia ratio, high power to size ratio # They can withstand shock and vibrations # They have sealing difficulties # Hydraulic fluids are generally inflammable. 2. Pneumatic Controller : # these are suitable where the compressed air is easily available # They are suitable where fire – hazard are important. # Proper sealing is required 11/18/2020 DINESH PANCHAL
  • 69. 3. Electrical Controller : # these are good for remote positioning. Where signals are transmitted through wires or microwaves # They have a drawback of fire – hazards . # Generally they are used for position and speed control. 11/18/2020 DINESH PANCHAL
  • 70. 1. Proportional Control : # this type of control action is used in level process # controlled variable is level of the liquid # x is the change in the level or error. # y is the movement of the valve. We cannot use any types of controllers at anywhere, with each type controller, there are certain conditions that must be fulfilled. With proportional controllers there are two conditions and these are written below: (a) Deviation should not be large, it means there should be less deviation between the input and output. (b)Deviation should not be sudden. If the level of the tank increases to the set level then due to lever valve moves y distance in the downward direction and closes the valve and reduces the flow rate . Hence decrease in the level of liquid starts and vice versa. y=Kx……………………………1. Where K is the constant of proportionality 11/18/2020 DINESH PANCHAL
  • 71. Block diagram for the system for the given system is below Fig of proportional control system. 11/18/2020 DINESH PANCHAL
  • 72. Where is the reference input and is the controlled variable or output # only changes only when if error x changes. # for the sensity of the controller term Proportional band term is used (P.B.) # P.B. Is defined as the % change in variable x require to give 100% change in controller output y. If full scale value of input and output value are Then P.B. = Advantages of Proportional Controller Now let us discuss some advantages of proportional controller. Proportional controller helps in reducing the steady state error, thus makes the system more stable. Slow response of the over damped system can be made faster with the help of these controllers. Disadvantages of Proportional Controller Now there are some serious disadvantages of these controllers and these are written as follows: Due to presence of these controllers we some offsets in the system. Proportional controllers also increase the maximum overshoot of the system. 11/18/2020 DINESH PANCHAL rx cx inq 0,0 yx 0 0 y y x x
  • 73. 2. Integral Control System : As the name suggests in integral controllers the output (also called the actuating signal) is directly proportional to the integral of the error signal. Now let us analyze integral controller mathematically. As we know in an integral controller output is directly proportional to the integration of the error signal, writing this mathematically we have, ` Advantages of Integral Controller Due to their unique ability they can return the controlled variable back to the exact set point following a disturbance that’s why these are known as reset controllers. Disadvantages of Integral Controller It tends to make the system unstable because it responds slowly towards the produced error. 11/18/2020 DINESH PANCHAL
  • 74. Fig. shows the integral type control system e=c x where c is the constant Flow rate of high pressure oil= be = A dy/dt Where b is port constant and A is the area of the piston. b c x = ADy Where D is the d/dt 11/18/2020 DINESH PANCHAL
  • 75. From the above eq. Where In case of level changes x , controller output y keeps on increasing with time t till the error is brought to zero..Thus there is no steady state error in this type of control action. But system may be unstable under certain conditions due to friction of moving component. Usually it is combined with the proportional action controller called PI controller. 11/18/2020 DINESH PANCHAL D x K A bcxdt y A bcxdt dy A bx dt dy A bcx Dy AD bcx y AD bc x y        1 A bc K 1
  • 76. Due to combined action output will be Graphs. 11/18/2020 DINESH PANCHAL D x KKxy 1
  • 77. Derivative Control : # In this type of control y is proportional to the dx/dt # Control action is proportional to the rate of change of controlled variable. When the level rises x then the piston will move in the downward with a velocity. It will produces a force proportional to it due to the viscosity of the fluid in the cylinder. As cylinder is mounted on the springs, springs deflects y is proportional to the force developed. 11/18/2020 DINESH PANCHAL
  • 78. 11/18/2020 DINESH PANCHAL # In this type of controller, controller output is more if rate of change of x is more P-D Controller : it is the combination of proportional and derivative control system. Dxk dt dx ky dt dx y 22   xDKy DxKKxy dt dx KKxy yyy d d )1( 2 21      
  • 79. On – Off Controller : This type of control action control valve have two position either fully open or fully closed. As per the fig. when level rises to a certain level i.e. highest set point, the switch is off and the solenoid is de- energized, closing the valve. Thus the level starts reducing till it reaches the lowest set point, the switch is on , the solenoid is energized and the valve is fully open. 11/18/2020 DINESH PANCHAL
  • 80. # Proportional, derivative and integral control action can be obtained by using hydraulic servo motor suitably # Transfer function of hydraulic servo motor shown in fig. 2 have eq. is of integral type and fig. 1 have P-D Control action Fig. 1 Fig 2 11/18/2020 DINESH PANCHAL  e A C DA eC y 1 1 1 1
  • 81. 11/18/2020 DINESH PANCHAL     1........................... 0 0 fWhere0SummationForce . fcDfk kz y kzfcDfky fcDykzfky cDy f z kky a l yc f z yk            
  • 82. 11/18/2020 DINESH PANCHAL                               bk fxbcDbk bk zbkADfkfcAD bk xbfcDbfk bk zbkfcADADfk xbfcDbfkzbkfcADADfk xbfcDbfkzbkADfcDADfk bxfcDbxfkbkzADzfcDADzfk bkzbxfcDbxfkADzfcDADzfk bkzbxfcDbxfkADzfcDADzfk fcDfk bkzfcDfkbx ADz fcDfk bkz bxADz fcDfk kz xbADz                          2 2 2 2no.eq.inyofvaluePut the bADzOilPressureHighofRateFlow
  • 83. 11/18/2020 DINESH PANCHAL       fx k cD z fx k cD z fx k cD z b fAD kb cfAD bk fxbcDbk bk zbkADfkfcAD                               1 1100 largeveryis k b andsmallvery veryisAIf 11 Now 2 2
  • 84. Electronic Controller : Electronic controller are easily available and used in low and medium power servomotor as proportional controller From the fig ( a) If I is the current then (Voltage across Capacitor) As we know q = C v = Voltage Across Capictor and put this value in eq. 1 11/18/2020 DINESH PANCHAL   1..............................1vvKv io  1viRvo  DC i v DCvi dt dCv dt dq    1 1 1
  • 85. then From Eq. 1 Put the value of 11/18/2020 DINESH PANCHAL 1 1 1 1 1 1 2............................Then 1 1 1          RCD DC i iRv v DC i iRv v DC iiR DC i v v DC i iRv o o o o 1KvKvv io  RCDv v Kv RCD K v RCD K If Kv RCD K v Kv RCD v Kv RCD v KKvv i o io io i o o o io                         1 1 1 1 1 1 1 1 1
  • 86.  Then 11/18/2020 DINESH PANCHAL RCDv v Kv RCD K v i o io          1 1 1
  • 88. Derive the expression for the overall transfer function and show that it is of PDI type of controller From the fig. as we know Put the value of q in eq. 1 Also V=iR11/18/2020 DINESH PANCHAL 2.......... 1.............. D i qDq dt dq i C q VCVq   DC q V 
  • 89. The eq. for the circuit having And for the circuit having 11/18/2020 DINESH PANCHAL 00andCR   0 0 1 0 0 000010 0 11 e DC i R DC ieiRii DC        110 , andRCC     DC DC i iRi DC i DC i iRi DCDC i DC i iRi DCDC i iRi DCDC i DC i iRi DC ii DC iRi DC ii DC 0 0 1 111 1 0 0 1 111 10 0 0 1 111 10 0 111 10 0 0 1 111 1 01 0 11 1 01 0 1 1 1 1 11 0 11            
  • 90. Now put the value of in eq. 11/18/2020 DINESH PANCHAL 0i 0 0 1 0 0 0 1 e DC i R DC i                0 0 00 10 11010 1 0 0 00 0 1 1 1 0 0 00 0 1 1 1 0 0 1 00 0 1 1 1 0 0 1 00 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 11 1 1 0 0 1 0 0 0 0 1 11 1 1 1 1 1 11 1 1 11 1 11 11 111 1 11 e DC DRC DCC CRDCCC i e DC DRC DC R DC i e DC DRC DC R DC i e DC i DRC DC R DC i e DC i DRC DC DC DC R DC i e DC i R DC DC DC R DC i e DC i R DC DC DC i iR DC i e DC i R DC DC DC i iRi DC                                                                                                  
  • 91. 11/18/2020 DINESH PANCHAL   )1( )( )( )( eq.Fron But 1 1Now 0101010011 11 0 1 001000110001010 101 0 1 10010001100011010 101 0 1 100100011000110101 1011 0 1 10 10010001100011010 11 0 1 111 0 10 100100110001110 1 0 0 00 10 1110 1 DRCDRDRCCDRCDRC DCR e e DRCCDRCCDRCDRCCRDCCC DCCR e e CDRCCDRCCDRCDRCCCRDCCC DCCR e e CDRCCDRCCDRCDRCCCRDCCCi DCCRi e e DCC CDRCCDRCCDRCDRCCCRDCCC Ri e e eRi e DCC CDRCCDRCDRCDRCCCDRCC i e DC DRC DCC CDRCC i                                     
  • 92. Now Further From above two eq. 11/18/2020 DINESH PANCHAL   )1( )1( 0101 2 010011 11 0 1 0101010011 11 0 1 RRCCDRCRCRCD DCR e e DRCDRDRCCDRCDRC DCR e e     2 3 12 02 R R ee andKeeei     2 3 01 2 3 10 0 2 3 1 R R Keee R R eKee Ke R R ee i i i   
  • 93. Now put the value of e1 in eq……… 11/18/2020 DINESH PANCHAL                          30101 2 010011211 30101 2 0100110 30101 2 010011 30101 2 010011211 0 30101 2 010011 211 0 3 2 0101 2 010011 11 0 3 2 0101 2 010011 11 0 0 0 3 2 0101 2 010011 11 0 0 0101 2 010011 11 0 2 3 0 0101 2 010011 11 0 1 )1( )1( )1( )1( )1( )1( )1( )1( )1( )1( RRRCCDRCRCRCDKDRCR RRRCCDRCRCRCD e e RRRCCDRCRCRCD RRRCCDRCRCRCDKDRCR e e K RRRCCDRCRCRCD DRCR e e K R R RRCCDRCRCRCD DCR e e R R RRCCDRCRCRCD DCR e Ke e e R R RRCCDRCRCRCD DCR e Kee RRCCDRCRCRCD DCR e R R Kee RRCCDRCRCRCD DCR e e i i i i i i i                      
  • 94. The basic component of a pneumatic controller is a flapper nozzle system motion e of the flapper is the input and output of the controller is pressure p0 which is applied to the final control element. The block diagram is shown in fig. Proportional Controller : 11/18/2020 DINESH PANCHAL
  • 95. if is constant it is proportional controller The fig shows the pneumatic proportional controller. Supply Pressure =Constant= Pressure in the Chamber= variable= which changes with motion e Capital letters are used for absolute value and small letters are used for operating values When there is no gap between nozzle and flapper If gap is very large Changes in the pressure in the chamber operate a relay whose output pressure varies from supply pressure to atm. Pressure, depending on motion y of elastic end chamber. The relay is ment to amplify the pressure changes Transfer function between and e may be obtained by analysis of 1. Flapper Nozzle element 2. Chamber 3. Relay 4. Feedback Element 11/18/2020 DINESH PANCHAL e p0 SP 1P SPP 1 .1 atmPP  1p SP 1p 0p
  • 96. Mass flow rate of air through orifice depend on pressure difference But is constant. So Or Where Mass flow rate of air out of the nozzle depend on Mass flow rate of air in the chamber = (Mass flow rate through orifice) – (mass flow rate through nozzle outside) 11/18/2020 DINESH PANCHAL )1( PPS  SP  1PFMin  D m D m m pam inin in in   flowMass )1.......(..........11 01 1 dP dM a   1,0 XPFM  andXP1    3..............................NozzletheoutsideflowMass and 2.................................. NozzletheoutsideRateflowMass 3120 0 0 0 3 01 0 2 3120 0 0 1 01 0 0 D xapa D m m X M a P M aWhere xapam X X M P P M m                 
  • 97. Now 11/18/2020 DINESH PANCHAL          7...................................................................... p y p bellowofbalanceforceFor 6......................................................................................v bellowyofntDisplacemeXchamberinbellowofareachamberofin volumeChange 5................................................................................................ a va s constantsareaawherevasa ,PSo chambertheinsidevol.andmasson thedependchambertheinsidePressure constantgaslUniverasatheisChamber,airin theof masstheisair,oftempabsolutetheischamber,inairofvol.theisWhere LawGastoaccordingBut 4.......................................... NozzletheoutideFlowMass-NozzlethroughflowMasschambertheinsideflowMass 11 11 11 4 151 c 5415c41 11 11 111 3 1211 12113 31211 31211 K A KyA yA p andp VSF R STV TRSVP a Dspapa xDspapaxa xapapaDs D xapapa s C C C c c cc               
  • 98. Now from eq. 1 and 2 11/18/2020 DINESH PANCHAL              yofput valueNow Aaaa ap vofput valueNow vaaa ap vaaa ap a va p eq.aboveinofvalueput theNow p p 151412411 4311 1 151412411 4311 151412411 4311 4 151 1211 311 1211 311 3 1211 11 ypDpapaK aA x y pDpapaK aA x y pDpapaK aA p DpapaK aA x y s DspapaK aA a Dspapa K A x y c cc                   
  • 99.         2142 1 5214 431 2 1 5214 431 2 1 54241 431 1 154241 431 11 151412411 4311 151412411 4311 abyDivide a1a a a1a a a1aa a Aa1aa a ] Aaaa ap Aaaa ap aa K A Daa a K A x y K A Daa a K A K A DaaK aA x y K A DaaK aA x y K Ap pDpapaK aA x y ypDpapaK aA x y                                                                                      11/18/2020 DINESH PANCHAL
  • 100.                              10......................................................................................... 2 flapperofmiddleat theisnozzleif 9........................................................................................... YmotionondependPpressureSince 8....................................................................................Cy CthensmallisIf 1 C-Where 11 a a a a1 eWher a a1 1 a a 60 0 1 11 21 321 3 1214 43 1 214 2 1 5 214 2 1 5 214 43 1 ze x yap x K A K A x y D C K A x y aa a D aa a K A x y D aa a K A x y aa K A aa K A D aa a K A x y                                                                         11/18/2020 DINESH PANCHAL
  • 102. FIG. 11/18/2020 DINESH PANCHAL )(pondependbellowfeedbackthemrateflowmassin theChange belowase''and'p'betweenrelationthederiveTo.derivation previousin theassameremainsx''andpbetweenrelationThe .x''amountbyincreasesnozzlenearflapperofdistancethen givenise''inputIf.z''feedbacknoistheremeat that tichangesande'' motioninputany timeatifSobelolow.fedbackrelay tofromairof entrythebeforejustintroducedisresistancepneumaticsystemin this 0f 0 0 fp
  • 103.     . bellowofstiffnessandareatheareKandAWhere bellowofbalanceforceFor bellowofvol.in theChange constantstheareaandaWhere , Si.e.bellowinairofmassoffunctionisbellowin thePPressure bellowairin thechangeMass ff f 87 87 ff 6 6 006 f ff fff f ffffff f f ff ff ff K pA zzKpA zAv vasapVSFP D s s dtss a mpa pppam         11/18/2020 DINESH PANCHAL
  • 104. 11/18/2020 DINESH PANCHAL                                 7 8 6 6 7 8 6 6 0 6 6 6 60 6 6 6 60 eq.From a zvAap DpaK apA a vap DpaK apA H p z DspaK apA a mpa K pA H p z mpaK apA a mpa K pA H p z ff ff ff ff ff ff f fff ff ff f ff f fff ff ff f ff f
  • 106. Fig. 11/18/2020 DINESH PANCHAL       f ff ff f ff f f f A DK DK Ae p DK A G H G GH G e p               1 1 1 largevery veryisGIf 1 1 1 1 1 1 diagramblockaboveFron the 0 0
  • 107. 11/18/2020 DINESH PANCHAL     D ppa ppa e p 109 1 109 0 0 0 s 2bellowhethrough tflowMass 2bellowhethrough trateflowMass sameremainwill pandbetween xrelationbut the derivedbewillzandpbetween relationbelowTheasderivedbe mayfig.inshowncontroller for thefunctionTransfer   
  • 108.            z z z z Aisbelloweachofarea andsameare2and1bellowofStiffness eq.balanceForce 2bellowofareatheisWherez-z- constsnts.areandand2bellowinchangevol.theisWhere vandsoffunctiontheispaspFurther 11111910091010 11111091010 1111 109 10 10111111010 111111010 1 1110 11 11101 1111111101 ff f f ff ffff ff ff ff DK AADapaapaa DK zDK K Ap DK AADappaa z K Ap K AAa D ppa a z K Ap z K AAasa K Ap z K Avasa K Ap z K Ap K Ap AAAv aav vasa                           11/18/2020 DINESH PANCHAL
  • 109.                      910 2 111 910 1 0 910 2 111 910 1 910 2 111 910 1 0 910 2 111910 910 1 2 111910 1 111910 191019101 0 1119101910191010 1111910109101091010 109101091011191010 1111109101091010 1111 1 10 910091010 11111910091011111910091010 1 FandEWhere 1 1 1 1 z z zz aa K Aa Kaa A FD ED p z aa K Aa D Kaa DA Kaa AaKD Kaa DA p z Kaa ADaKaaDK Kaa DA ADaKaaDK DA AADaKaaDK AaaAaaDA p z AADaKaaDKzAaaAaaDAp AADaKaaDKzApaaApaaADp ApaaApaaAADaKaaDKzADp AADazKApaaApaazDKADp AADa A zKAp aapaazDKADp DK AADapaapaazDK DK AADapaapaa DK zDK K Ap f f f f f f f ff f fffff fff ff fff ff f f f ff f f                                                      11/18/2020 DINESH PANCHAL
  • 110. 11/18/2020 DINESH PANCHAL EDE F He p H G GH G e p 1 ED FD1 0 1 largevery veryisGIf 1 1 1 1 0 1 1 0         
  • 112. TRANSIENT AND STEADY RESPONSE # Transient and steady response of feedback control system response is analyzed for various inputs # Governing eq. is analyzed by the Laplace transformation # Solution of higher order equation may be find out by using the digital computer 11/18/2020 DINESH PANCHAL
  • 113. # fig. shows transfer function representation between torque variable u(t) and rotary function Ð(t) in time domain 11/18/2020 DINESH PANCHAL     aDID   2 1 tu t G(t)functionTransfer 
  • 114.                                 trtc tr tc 1 tGofvalueput theNow 11tr tc 1tHBut 1tr tc edistrubancnowithsystemeabovfor thefunctionTransfer 2 2 2 KKaDID KaDID K aDID K tG K tKG tKG So tHtKG tKG             11/18/2020 DINESH PANCHAL
  • 115. For the general case having disturbance: 11/18/2020 DINESH PANCHAL        for toutputstatesteadyandc(t)outputresponsetransientthegivesThis domainin timesolvedbecantscoefficienlinearorder withsecondofiseq.aboveThe trtc 2 KKaDID                                    tbtrKtG tutG tbtrK tutu tctrKteKtu      tcK- tc tcK- tb 2 12 1
  • 116.                                                                             1 0 existb(t)edistrubanconlyand0r(t)If b(t)cedistrubaanandr(t)inputthetorelatedisc(t)Output 11 K1 tcK tcK- tcK- tGK tbtG tc tGK tbtG tGK trtGK tc tbtGtrtGKtGtc tbtGtrKtGtGtc tbtGtGtrKtGtc tbtrKtGtc            11/18/2020 DINESH PANCHAL
  • 117. For second order system the eq. Become where 11/18/2020 DINESH PANCHAL         1 0 tGK tbtG tc                           responsetransientfor thesolvediseq.aboveThe 1 G(t) 1 1 2 2 2 tbKaDIDtc KaDIDtb tc KaDID tb K tb tGK tbtG tc             aDID tG   2 1
  • 118.                         2 1 0 1 0 22 1 1 0 R(s)TransformLaplaceitsThen ar(t)inputrampFor R(s)TransformLaplaceitsThen Constantar(t)inputstepFor 00 0 And aswrittenLaplaceofInverse )()(And )(isTransformLaplaceitsfunctiongeneralanyFor s a dttea t s a dtae fsfsFssFDL fssFsDFL tfsFL L tfLdttfesF sFf(t) st a st st                    11/18/2020 DINESH PANCHAL
  • 119. FINAL VALUE THEOREM : It gives the steady state value of any function as given below. The steady state value of function f(t) is given by 11/18/2020 DINESH PANCHAL    sFtf LtLt st 0 
  • 120.                 b(t)loadandr(t)inputtodueresponseofsumtheisoutputWhere 11 underasistopicpreviousinderivedasoutputofequatationThe controlalproportioninconstantiselementcontroltheofKfunctionTransfer tGK tbtG tGK trtGK tc     11/18/2020 DINESH PANCHAL
  • 121. Transient response due to reference input r(t): When load does not exist and only input exist i.e. R(t) exist and b(t)=0 11/18/2020 DINESH PANCHAL                                                                      111 SystemofFrequencyNatural I K or I K But 1 KbyDeno.andNum.theDivide 11 1 tGwheresystemordersecondofcasethetakeweIf 1 0 1 become 11 eq.The 2 2 2 2 2 2 2 2 2 2 2                                                          KI aD K ID tr IKK IaDD tr KK aDD tr tc K aD K ID tr tc KaDID trK tc KaDID trK K tG trK tGK trtGK tc aDID tGK trtGK tGK trtGK tc tGK tbtG tGK trtGK tc nnn nn  
  • 122. 11/18/2020 DINESH PANCHAL                         1 tanWhere1sin 1 1tc alsoiseq.aboveofSol. 1sin 1 1cos1tc belowgiveneq.isaldifferentithisofSolution1 2 bewilleq.Thedr(t)puti.e.inputstepFor1 2 1 2 1 1 21 DampingCritical systemofDamping C C RatioDamping 2 But 1 1 1 2 12 2 2 2 2 2 2 2 2 2 2 2 2 c 2 2 2 2                                                                                                  t e d ted dtc DD trtc DD DD tr DD tr tc KI a KI aDD tr KI aD K ID tr tc n t nn t nn nn nnnn nnn n n
  • 123. The plot of the below eq., Which is the transient response for a second order system having proportional control and having step input 11/18/2020 DINESH PANCHAL                 2 12 2 2 2 2 1 tanWhere1sin 1 1tc alsoiseq.aboveofSol. 1sin 1 1cos1tc                            t e d ted n t nn t n n
  • 124. IMPORTANT POINTS: # Graph has been plot for different damping ratio . # If The there is a peak value of response initially after that response c(t) oscillate about the reference input value r(t) =d till the steady state is reached. # For there is no oscillation. 11/18/2020 DINESH PANCHAL  1 1
  • 125. (A) Rise Time (tr) : It is time taken by the system to reach the value of output equal to input first time. It corresponds to the point P. Lower the value of lower the value of 11/18/2020 DINESH PANCHAL 2 2 1 1 1 tan                n rt  rt
  • 126. (B) Time (tp) : for peak value and peak overshoot: It is time taken by the system to reach the max. value of output first time. It compounds to the point the point . It is the time when first overshoot take place .It can be found out by putting dc/dt =0 11/18/2020 DINESH PANCHAL 2P                                   2max p2 2 2 2 1 1C first timeoutputofvalueMax.ofvalueget thewe c(t)foreq.in thetofvaluetheputtingBy 1 01sin 1 1cos1tc dt d 0        ed t ted tc dt d n p nn tn
  • 127. ( C) Percentage Overshoot: is the percentage by which the peak response exceeds the value of step input 11/18/2020 DINESH PANCHAL 2 1 - e100OversshootPeak%      0.0 1.57 3.15 100.0 0.2 1.80 3.20 53.0 0.4 2.20 3.42 25.4 0.6 2.80 3.93 9.5 0.8 4.50 5.24 1.5  rnt pnt OvershootPeak%
  • 128. (D) Settling Time: It is the time taken system when the output c(t) remain with in the range of . It corresponds to the point . From the eq. settling time can be find out when x is given the put c(t) =x (E) Steady State : When the output of the system become equal to the reference input and does not change with time. This will become possible when . 11/18/2020 DINESH PANCHAL %x 3P X (Percentage 1 2 3 4 5 4.6 3.9 3.5 3.2 3.0  sn t t              2 1 1   te dxtc n
  • 129. PROBLEM : For first order system shown in fig. derive the sol. For the output for unit step input=1 SOLUTION: 11/18/2020 DINESH PANCHAL             bD K KaD K K aDt t G G t t GH G t t i                 1 1 aD K GBut 1 G 1 1 1 1Hfig.giventheFrom 1 asbelowgivenssystemsystemclosedtheofFunctionTransferOverall i 0 i 0 i 0      
  • 130. 11/18/2020 DINESH PANCHAL                                     3no.eq.incond.boundaryput thisNow0t0at tSo .zeroissystemofoutputthestartingAt 3...........................AeAe solutionParticularsolutionryComplementt bygiven1.iseq.ofsolutionSo K eq.ofsolutionParticular -br 00 0 2eq.intofvaluethePut teq.ialdifferientthisofsolutionryComplement 2................................. 1................................. Given1InputBut 0 bt-rt 0 00 0 i i 0                       b K b K b brAebr bAerAe Ae KtbtD KtbD t bD K t t rt rtrt rt
  • 131.       graphinshownisformgraphicalinOutput 1 b K e b -outputSo b K -A b K A0 Ae rt 0 rt 0 bt e b KK t b K t        11/18/2020 DINESH PANCHAL
  • 132. STEADY STATE RESPONSE FOR UNIT INPUT AND NO LOAD: To find out the steady state response and steady state error of the system to any input r(t) or any load b(t), we have to apply the limit t→∞ to the solution or apply s→0 using final value theorem in Laplace Transformation eq. We can also find out the steady state error by using the Final Value Theorem and Laplace Transformation 11/18/2020 DINESH PANCHAL       0d-dc-rerrorstateSo Outputc tstatesteadyAt 1sin 1 1cos1tc 2 2 2                d ted nn tn                              KaDD Then ,0tbif 11 2 2        I trK tc aDIDtG tGK tbtG tGK trtGK tc
  • 133. 11/18/2020 DINESH PANCHAL                             1 K I K I 1 K I 1 1 1 K I sRsEError 1 K IKass TranformLaplaceTaking KaDD 2 2 2 2 2 2 2                                                   s K a s s K a s sR s K a s sR s K a s sR sR sC s K a s sR I sRK sC I trK tc
  • 134.       domaintimefromobtainedassameisWhich 0 100 00 d 1 K I K I d 1 K I K I 0EErrorStateSteady TheoremValueFinaltoAccording 1 K I K I So s d R(s)Laplaceitsanddr(t)inputstepFor 1 K I K I 2 2 2 2 0 0 2 2 2 2                                                                          s K a s s K a s s K a s s K a s s d s s s K a s s K a s s d sE s K a s s K a s sRsE s s 11/18/2020 DINESH PANCHAL
  • 135.       largebeshouldgainandpossibleassmallasbeshouldconstantdampingerrortheminimiseTo and 2 Where 2 10 0 1 K I K I 1 K I K I 1 1 K I K I 1 0EErrorStateSteady TheoremValueFinaltoAccording 1 K I K I 1 So s 1 R(s)Laplaceitsandtr(t)inputrampunitFor 1 K I K I n 22 2 2 2 20 0 2 2 2 2 2 2 I K KI a K a o K a s K a s K a s s K a s s K a s ss K a s s K a s s s s s K a s s K a s s sE s K a s s K a s sRsE n s s                                                                                                   11/18/2020 DINESH PANCHAL
  • 136. TRANSIENT RESPONSE TO LOAD INPUT AND r(t)=0 : 11/18/2020 DINESH PANCHAL                                 We tbtcKaDID KaDID tb K tG tb tKG tbtG tc aDID tKG tbtG tc t-ctc-0tc-trerrorstateSteady tany timeatoutputofvaluethefindtosolvediseq.aboveThe )( 11 )( 1 tGtakeSystemOrdersecondFor 1 )( 2 2 2            
  • 138. 11/18/2020 DINESH PANCHAL # This analysis is simple in nature and useful technique # It is used to study the behavior of the system # In this technique behavior of the output is analyzed when harmonic signal applied at input # the frequency of the output signal is ω, it is changed from low value to high value # For the linear system frequency of the o/p and i/p remain same and ratio of their magnitude is one and phase difference between the o/p and i/p signal depend on ω # Frequency response analysis may be carried out experimentally or analytically
  • 139. 11/18/2020 DINESH PANCHAL Diagram Input =r(t)=Harmonic in nature= Otput = e(t) = Harmonic in nature = D=d/dt = jωt tj er  tj ec 
  • 140. 11/18/2020 DINESH PANCHAL           jaI jG jSoD tcjecjtDc ecjtDcec dt d tc dt d ectc asIs sG aDID tj tjtj tj           2 2 2 1 )( )()( )()( )( 1 )( 1 GFunctionTransferIf
  • 141. 11/18/2020 DINESH PANCHAL   GH G r c GrGHcGrcGHc cGHGrccHrGc Gec cHrcre       1 functiontransferloopclosedFor1 )()( 2eq.in to1eq.fromeofvalueput theNow 2....................................... 1....................'
  • 143. # It is the plot of magnitude and phase of the Transfer Function in the polar co-ordinate system as is changed from 0 to FIG. 6.7 11/18/2020 DINESH PANCHAL iM i i 
  • 144. (A) Polar Plot of First Order System :- Fig 6.10 But H = 1 So But Now 11/18/2020 DINESH PANCHAL GH G r c aD K G    1 G G G r c 1 1 1 1     aD K G  aD KG r c 1 1 1 1 1 1     1................................. 1 1 1 1 TD K aDr c    
  • 145. Where T = a/K Now put jω in place of D In eq. no. 1 Compare with complex no. a+ jb 11/18/2020 DINESH PANCHAL 2222 22 11 1 1 1 1 1 * 1 1 1 1 1 1          T jT Tr c T jT Tj Tj Tjr c TjTDr c                2 22 2 22 22 22 22 22 11 1 1 1 1                           T T T baM baMMagnitude T T b and T a
  • 146. Next Phase Angle 11/18/2020 DINESH PANCHAL      2222 22 2 22 2 22 11 1 1 11 1      TT T M T T T M                          T T T T T a b 1 22 22 1 tan 1 1 1tan tan          ωt M Ф 0 1 0 0.5 0.89 -27 1 0.707 -45 2 0.45 -63 4 0.42 -76 5 0.196 -79 0 -90
  • 148. POLAR PLOT OF SECOUND ORDER SYSTEM :- Fig. 6.12 But For feedback system overall transfer function is So 11/18/2020 DINESH PANCHAL asIs K sG   2 )( 1)( )()(1 )( )( )(    sButH sHsG sG sR sC 1 )( 1 1 )( )( )( 1 )( 1 1 )(1 )( )( )( 2         sG sR sC asIs K sButG sG sG sG sR sC
  • 150. 11/18/2020 DINESH PANCHAL        222 2 222 2 2 2 22 2 2 2 22 2 2 2 22 2 21 21 21 21 )( )( 21 21 * 21 1 21 1 )( )( Put 2 1 1 2)( )( bydenumandnum.Divide 2)( )( RR RjR RjR RjR jr jc RjR RjR RjRRjRjr jc R jjjr jc jjR jC n nnn nn n n n nn n                                              
  • 151.                                              222224 224 224 2 222 224 2 222 2 222 2 22 222 222 2 222222 2 222 2 21 1 221 1 221 221 21 221 21 2 21 1 21 2 21 1 jbano.complexwithCompare 21 2 21 1 21 21 )( )( RRRRR M RRR RRR RR RRR M RR R RR R baM RR R b RR R a RR Rj RR R RR RjR jr jc                                                               11/18/2020 DINESH PANCHAL
  • 152. Now M will be maximum when 11/18/2020 DINESH PANCHAL            222 2 1 2 222 2 222 21 1 1 2 tan 1 2 21 1 21 2 tan RR M R R R R RR R RR R a b                     2 2 2 12 1 21 21        peak n M and Or R
  • 154. Draw the polar plot for open loop frequency response of fig. 6.12 when a =2, K =20 , I = 1 Fig. 6.12 11/18/2020 DINESH PANCHAL
  • 155. Solution :- 11/18/2020 DINESH PANCHAL               222 2222 2 22 2 2 2 2 2 2 22 22 2 2 )( *)( *)( )()( )()()( )()()( functiontransferoverallfunctiontransferloopopenFor 1)( )(                  jaI jKa jaI KI jaI jaIK jF jaI jaI jaI K jF jaI jaI jaI K jaI K jF jaI K jajI K jHjGjF asIs K sHsGsF sH asIs K sG                           
  • 156. Now 11/18/2020 DINESH PANCHAL                                                        2 tan 4 20 4 40 tan 4 120 4 400 4 4400 4 1600400 4 40 4 20 4 40 4 20 )( *2**1 *2*20* *2**1 *1*20 )( )( 1 24 2 24 1 224224 24 224 242 24 2 24 2 2424 2 2222 2 2222 2 22 22                                            j M M j jF j j j jF jaI jKa jaI KI jF
  • 157. Fig. 6.14 11/18/2020 DINESH PANCHAL      2 tan 4 120 1 2    M ω F(Jω) Ф 0 -90 0.5 19.4 256 1 8.9 243 2 3.5 225 3 1.84 213.6 4 1.12 207 5 0.74 201.8 6 0.53 198 0 180
  • 158. # It is the plot of magnitude and phase angle of transfer function against in linear or logthrmic fashion they are also known as Bode Plots. 1.First order System : FIG. NO. 6.10 11/18/2020 DINESH PANCHAL
  • 160. . 11/18/2020 DINESH PANCHAL tvsandtvs.MplotNow tan 1 1 1tantan AnglePhase 1 22 22 11        T T T T a b        ωT M 0 1 1 0.707 2 0.4472 3 0.3162 4 0.2425 5 0.1961 6 0.1644 7 0.1414 8 0.124 0 1 2 3 4 5 6 7 Ф 0 -45 -63.43 -71.56 -75.96 -78.69 -80.83 -81.86 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 AxisTitle Mag. Vs. ωT
  • 161. -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0 1 2 3 4 5 6 7 8 Ф Vs ωT Ф 11/18/2020 DINESH PANCHAL ФT Ф 0 0 1 -45 2 -63.4 3 -71.6 4 -76 5 -78.7 6 -80.8 7 -81.9 ∞ 90
  • 162. POLAR PLOT FOR SECOUND ORDER SYSTEM: From Fig. 6.12 11/18/2020 DINESH PANCHAL    222 2 1 21 1 1 2 tan RR M R R        
  • 166. 1. Determine the transfer function of the system 2. Rewrite the Transfer Function both numerator and denominator in stranded form as shown in fig. ))()(( ))()()(( )( 111 1111 pspspss zszszszsK sH    polesarepandzerosarezWhere 111 1111 )( 111 1111 )( 321 4321 1 321 321 4321 4321                                                                                           p s p s p s s z s z s z s z s K sH p s p s p s ppsp z s z s z s z s zzzKz sH
  • 167. 3. The transfer function contains: 1.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 178.
  • 179.
  • 181. # Positive Gain margin means system is stable and negative gain margin means system is unstable. # For min. phase system both phase margin and gain margin must be positive. 11/18/2020 DINESH PANCHAL
  • 182. PROBLEM: Sketch the Bodes plot for transfer function Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover frequency (e) Gain crossover frequency PROBLEM : 2 Sketch the Bodes plot for transfer function Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover frequency (e) Gain crossover frequency PROBLEM : 3 Sketch the Bodes plot for transfer function Determine the (a) P.M. (b) G.M. (c) Stability of system (d) Phase crossover frequency (e) Gain crossover frequency 11/18/2020 DINESH PANCHAL )001.01()1.01( 1000 )( ss sS   )1.01)(125.01( )5.01(16 )( 2 sss s sG    )1.01)(25.01( 50 )( sss sG  
  • 184. PROBLEMS : 2 11/18/2020 DINESH PANCHAL
  • 186. # A system is said to be stable if it return to equilibrium position after being disturbed. # If the output response shown in fig 7.1 (A) or (b) then system is unstable # While the system is stable if the output as per the dia. 7.2 (a) and (b) 11/18/2020 DINESH PANCHAL
  • 187. # Transfer function for the given fig. is 11/18/2020 DINESH PANCHAL equatationsticcharacteritheis0GH1i.e. equatationsticcharacterithegiveswhichzerotoequal c ofrdenominatoPut element.feedbacktheisH lementseforwardoffunctiontransfercombinedtheisGWhere 1    r GH G r c
  • 188.      AAAc(t) AAAc(t)Then ,If AAAc(t) responseTransient prootrealthebeingandconjugateomplexare,and,,,areeq.abovetheofrootsIf 0eq.sticCharacteri 1 r c order.thirdofeq.sticcharacteriithwithsystemSuppose unstable.issystemThen thepart.realpositiveorpositiveiseq.sticcharacteritheofroottheofanyIf# system.theofresponsetransientthegiveseq.abovetheofrootThe 0ID equatationsticCharacteri 0rDenominatoputequatationsticCharacteriFor ID K 1 ID 1 1 1 1 1r c 1Hfeedbackand ID K GwithsystemordersecondFor 321 321 32 321 1323232 23 23 2 2 2 2 1 1 321 jytjytxttp tjyxtjyxtp tptptp eeee eee jyxpp eee pjyxpppppp dcDbDaD dcDbDaD w KaD KaD K aD G GH G aD                         11/18/2020 DINESH PANCHAL
  • 189. # Routh’s criterion is used to find the with positive real part # It is applied to the characteristics eq. of the system. # If any a’s are zero or negative then the eq. definitely has roots either pure imaginary or have positive real part # If all a’s are positive we use Routh’s criterion if any of root is positive. 11/18/2020 DINESH PANCHAL ....ee ....dd ccc ..........bbb .....aaaa .....aaaa asarrayanintcoefficientheArrange 0.................. 21 21 321 321 7531 6420 1 2 2 3 3 2 2 1 10    nnn nnnn asasasasasasa
  • 191. # The above process is continued in each row and column , until zero are obtained for additional coefficients in the array # According to the routh’s criterion , the no. of change of sign in left hand column of the array is equal to the no. of roots of the eq. with positive real part. If there is any root with positive real part, then the system is unstable. 11/18/2020 DINESH PANCHAL
  • 192.    . unstable.issystemSopart.realpositivewithrootstwohaseq.sticcharacterithe.Thus 2.5to4-and4-to1i.e.signinchangestwoaretheretop,fromstartingleftin thecolumnfirstInthe 0d ............6 5.2 046*5.2 c ..........b0b2.5 4- 6-1*4- b .....0a0a6a-4a .....0a0a1a1a asarrayanintcoefficientheArrange 0.................. belowgiveneq.atandredwitheq.abobetheCompare:SOLUTION 06s4ss partrealpositiveany withifrootsofno.thefindeq.sticscharacteriwithasystemFor:PROBLEM 1 1 321 7531 6420 1 2 2 3 3 2 2 1 10 23             nnn nnnn asasasasasasa 11/18/2020 DINESH PANCHAL
  • 193.     0 28 4K 2s5 1 0sG1eq.sticcharacteriFor 11r c 28 4K 2s5 28 18.0 4.015sG :SOLUTION stable.issystemfor theKofvaluetheFindsystemcontrolFor: 2 i 2 i 2 i                           ss s G G GH G ss s sss K s PROBLEM i 11/18/2020 DINESH PANCHAL
  • 195. Special Case : 11/18/2020 DINESH PANCHAL 0 02 017/8 216 41- 282 531 Array 025s8s3s2ss becomeEq. 2)(sbyeq.hemultiply tSo2.e.g.no.realarbitryanisAwhere )(sbyeq.hemultiply tsituationsuchInrow.oneinzeroistcoefficienfirstisThere 0 0 020 131 arraytheArranging 012s3ss eq.sticscharacterigivenFor the 2345 24      A
  • 196. There are two changes of the sign in the first column at left. Thus there are two roots with positive real part. So the system is unstable. 11/18/2020 DINESH PANCHAL
  • 199. # By using the Routh’s criterion we can find out the stability of the system. But it is impossible to find at a glance how unstable or stable the system i.e. whether by changing the system parameter , it may change its state of stability or instability or vice-versa. This is possible by using the Nyquist Criterion which is graphical plot. Zero’s and Poles of a Transfer Function: 11/18/2020 DINESH PANCHAL                     zerosthearez......z,z,z polestheare......pp,p,p b a Where ..... ....... rDenominato Numerator ...... ........ FunctionTransferofFormGeneral m321 n321 n m 21 21 2 210 2 210 K pspspss zszszsK sF sD sN sbsbsbbs sasasaa sF n q m n n q m m        
  • 202.  Roots of characterstics eq. of control system affects the response and stability of system  So plot of roots for varying system parameter are important.  The locus of each root as the gain K varies known as Root Locus. 11/18/2020 DINESH PANCHAL
  • 203. The block diagram is shown in fig for second order system FIG. 8.2 11/18/2020 DINESH PANCHAL   2I a -s 2I a -s 4 KFor 2I a -sj 2I a- sKFor I a -s0s0KFor to0fromKfor varingplottedbecansandslociofThe 22 s eq.abovetheofrootsThe 001 issystemtheofeq.ticsCharacters 21 2 21 21 21 2 1,2 2             I a j I K I a I a KassIsGH
  • 204. # Thus there are two root loci # First root loci starting from origin and till –a/2I on the real axis # then moving parallel to the imaginary axis in +ve direction # The second root loci starts from –a/I and till –a/2I is on the real axis and then goes parallel to the imaginary axis in –ve direction # the root loci meet at x=-a/2I when K= # Each point on the locus corresponds to the particular value of K 11/18/2020 DINESH PANCHAL I a 4 2
  • 205. The root of previous eq. Can be easily calculated and root locus were drawn. For higher order system we need digital computer to find the roots. 11/18/2020 DINESH PANCHAL           v21 u321 00 00 p-s.................p-sp-s z-s..................z-sz-sz-sK GH(s)F(s)If 360180critrionAngular1GH iscreitreonMagnitude......eq.from.....0,1,2,3,4.mWhere 3601801GHF -1GH(s)or0(s)G1 issystemabovetheofeq.ticsCharactersThe      mGH m H
  • 206.             mpszssGH pspsps zszszsK H u i i u i i u 360180sF eq.ofcriterionangularThe 1 ........ ......... sGsF bewouldcriterionmagnitudeThe zero.thearep..............p,p,pspointsWhere zero.thearez..............z,z,zspointsWhere 11 111 11 v321 v321          11/18/2020 DINESH PANCHAL
  • 207. RULE NO. 1 : No. of separate root loci = No. of roots of characteristics eq. RULE NO. 2 : 11/18/2020 DINESH PANCHAL       polesare...,pandzerosare....,zereWh 0 ......p-sp-s ......z-sz-sK 1 eq.ticscharactersFor or0eitheratterminateandF(s) functiontransferloopopenofpolesatstartlocirootthatstateIt 2121 21 21 pz  
  • 208. RULE NO. 3 : Root loci are symmetrical with respect to real axis. This is due to the fact that complex roots appear as complex conjugates RULE NO. 4 : The real axis loci : A point on the real axis lies on the root locus if the total number of real poles and zeros to its right , is an odd no. 11/18/2020 DINESH PANCHAL
  • 209. A system with transfer function Draw the root loci. Solution : According to rule 2, the loci start at poles and ends at zero or infinity. One root locus starts at pole 0 and ends at zero -3 , another root s starts at pole -6 and ends at infinity. 11/18/2020 DINESH PANCHAL    6 32 )()(    ss sK sGHsF 3zatareZeros 6pand0patarePoles GH(s)abovetheFrom 1 21  
  • 210. Problem: For a open loop system for the given transfer function find the root loci and find the value of K for which system is stable Solution : 11/18/2020 DINESH PANCHAL    20 10 )( 2    ss sK sGH      atends andandfromstartssandslocirootTwo# zzero atendsandfromstartsslocusrootThus# permittednotiswhichnos., inevenareofsiderighton thepointanyfrom asinfinityrdsright towatogonotcanitFrom# and,atstartlociRoot 10i.e.1zerosofNo. 20and0i.e.3polesofNo. 2121 1 33 3 3 321 1 321 pp p p p ppp zN pppN Z P
  • 211. 11/18/2020 DINESH PANCHAL     Kofvaluesallforstableissystemthe plane,s''ofhalfrightenter thelocitheofnoneSince 5 2 10 1-3 1020-00 270,90 13 360180 3.....2,1,0,, 360180 1 1 00                    zp v i u i ii zp NN zp f m m NN m 
  • 212. RULE NO. 6 : Problem : Find the root loci for the system with Solution : 11/18/2020 DINESH PANCHAL 0 11 belowgivenusedformulaaxisrealon thepointthefindTo :pointsawayBreak 11      u i i v i i zxx-p   32 )(   sss K sGH no.inoddarezerosand polesofno.totalpoleofrighton thepointanyfromas touprighttowardsgocanandfromstartsslociRoot# and,atstartlociRoot ili.e.0zerosofNo. 3and20i.e.3polesofNo. 3 33 321 321 p p ppp nN pppN Z P   
  • 213. 11/18/2020 DINESH PANCHAL           0 3 1 2 1 0 1 0 11 :pointawayBreak 67.1 3 5 13 0032 300,180,60 03 360m180 N 360m180 Asymptotes# axisrealaboutlsymmetricabewilland axisrealfromawaybreakand2-and0frostartslocirootSo# 4no.ruletodue3-and2-betwwenpossibleislocusrootNo# .atendsandandfromstartssandslociRoot# 11 1 1 000 p 2121                                 xxx zxx-p NN zp f N pp u i i v i i zp v i u i ii z 
  • 214. 11/18/2020 DINESH PANCHAL                                           planes''ofhalfrightenter thelocitheaspointthisbeyondunstablebewillsystemThe 8no.ruleusingbyoutfoundbecan axisimagenoryononintersectithetoingcorrospondKandbofvalueandaxis.realat 0.785-at xsepratelocusroottheSo.2-and0betweenlies-0.785xofvalueThe 785.0-,54.2 6 71.4 , 6 29.15 6 29.510 6 7210010 3*2 6*3*410010 2 4bb- eq.abveofRoot 06103 02365 023623 02332 0 320 203032 0 3 1 2 1 0 1 2 2 22 22 2 2                          a ac xx xxxxxx xxxxxxx xxxxxx xxx xxxxxx xxx
  • 215. RULE NO. 7 : RULE NO. 8: 11/18/2020 DINESH PANCHAL u v zszszszs pspspsps    ..... ...... K :locusrootonpointanytoingcorrospondlocusrooton thKofvaluuethefindTo 321 321 stability.andyinstabilitofborderon theispointThis# K.ofvalue ingcorrospondfindandbforsolveandeq.sticcharacteriin thejbsPut# itintersectlocusrootat whichaxis,imagenoryonbdistancefindTo# :axisimagenorywithlocirootofonIntersecti 
  • 216. RULE NO. 7 : RULE NO. 8: 11/18/2020 DINESH PANCHAL u v zszszszs pspspsps    ..... ...... K :locusrootonpointanytoingcorrospondlocusrooton thKofvaluuethefindTo 321 321 stability.andyinstabilitofborderon theispointThis# K.ofvalue ingcorrospondfindandbforsolveandeq.sticcharacteriin thejbsPut# itintersectlocusrootat whichaxis,imagenoryonbdistancefindTo# :axisimagenorywithlocirootofonIntersecti 
  • 217. Problem : Find the root loci for the system with Solution : 11/18/2020 DINESH PANCHAL   32 )(   sss K sGH                 30KforunstablebewillSystem 30K02.45*5-KNow 2.45b 0b-60b-6b 5bK05b-K imagenorypart withimagenoryandrealpart withrealCompare 0j065b-K0j0K5b-6jbjb- 0j0K6jb5b-jb-032jjb eq.abovein thejbsPut 032ss0 32ss K 1 0GH(s)1 problemgivenfor theeq.sticsCharacteri 2 22 22 3223 23             bbj Ksjbb Ks s
  • 218. RULE NO. 9 : 11/18/2020 DINESH PANCHAL              1321 1321 11 1 21 21 22 3 1 360180departureofAngle 360180 setisfiedbetoiscriterionangularSo locus.rooton theissand,saypolecomplex thenear toveryspointtrialaby taking andpolethefromdepartorstartlocus rootin whichdirectionthefindorder toIn# andatconjugates complexbemaypolestwoabovetheFrom# 2ps zsK GH(s)If :polecomplexafromdepartureofAngle         m m p pp pp ss nn
  • 219. PROBLEM: SOLUTION: fig. 8.12 11/18/2020 DINESH PANCHAL     1251s 5sK GH(s)withsystemFor the 2    ss       0 1 0 2 01 1 01 3 321 11 321 1 2,12,11 124412290180 90 44 5.2 4.2 tan 122 5.1 4.2 tan180 360180 fromdepartureofanglethefindTo and,atstartlociRoot 5i.e.1zerosofNo. 4.25.2 2 48255 1 i.e.3polesofNo.                   m p ppp zN jppp N Z P
  • 220. 11/18/2020 DINESH PANCHAL 5.0 13 55.25.21 180,270,90 13 360180360180 000                 ZP ZP NN zp f m NN m 
  • 226. 11/18/2020 DINESH PANCHAL   3.1 3.91.33.9t 5.3secperAsvaluestatesteadyfor2%xwithinbetoresponse for the3sec.isinputsteptosystemoprdersecoundfor thetimesettingtheSuppose# specifiedbecan locirootfor thezonethenspecifiedisx%bandwidthgivenafortimesettingtheif# response.transientthedominatepolesdominantThese# poles. dominantcalledarepolesuchzeros,andpolesotherthanaxisimagenorytoclose planes''inpoleconjugatecomplexanyisthereiforder,higherofissystemtheIf# poles.conjugatecomplextwohasitsystemordersecoundFor the# area.shadedbyshownislocirootsorrootshein which tzoneThe# 45beshould thenresponsetransientdesiredfor0.707thanlessbeshouldthatrequiredisitIf# n nsn 0          
  • 227.           3j4- 2 100648 ppolestwoareThere 0zi.e.zerooneisThere 0 258s 10 258s 258s 258s 0 258s 258s aswrittenbemayeq.Above to0fromiesvarkofethat valurequiredisIt 0258s iseq.sticcharacteriIf Kofluecertain vatoscorrospond locuson thepointEachK.gainofvaluedifferentforplotslociThe# .... .... sGHreWhe 0G1eq.sticscharacterifor thelocirootdrawn thehaveWe 1,2 1 2 1 2 1 2 22 1 2 1 1 2 21 21                    s sk s sks ss sks sks pspss zszsK sH n 11/18/2020 DINESH PANCHAL
  • 228.     0 23 0 23 0 0654 321 2 23 23 A2ss 3Bs sGH 0 A2ss 3Bs 1 aswrittenbecaneq.Now Bofionvariat forlociofstsrtfor thesuitablyselectedaofvaluetheisA# AAwhenBofariationareforthevsand,slociRoot# 0BwhenAofariationareforthevsand,slociRoot# fig.inshowndrawnasbecanabovetheoflocirootThe# 0 2s 1 02s 0BtakeFirst we 032s below oneeq.likesticcharacteriin theBabdA parameterstwoofeffecttheifFurther              s s s A As ABss 11/18/2020 DINESH PANCHAL
  • 230. # Several control system are being used in the machine control like hydraulic, pneumatic, electrical # CNC and DNC system are also used to control the machines. 1. Hydraulic control : There are two type of systems (a) Valve Control : (b) Pump Controlled: (a) Valve Control : It involve the use of spool valve with constant pressure supply and response is fast and efficiency is somehow low. There is chances of leakage and contamination of dirt which affect the performance of system 11/18/2020 DINESH PANCHAL
  • 231. # Fig shows the valve controlled copying unit as applied in the machine unit. # It uses a template and stylus is kept pressed in contact # Stylus is connected to the piston valve # The complete unit i.e. shaded part can move to and fro on the fixed rod. # Machine tool slide is attached to the assembly. 11/18/2020 DINESH PANCHAL
  • 232. # Tool slide follow the motion of stylus. # High pressure oil at cont. pressure is supplied through the middle port. # if stylus moves to left, High pressure oil goes through the port 2 and assembly moves to the right, following the stylus motion # By tool slide follow the profile on which the stylus moves. 11/18/2020 DINESH PANCHAL
  • 233. (b) Pump Controlled: It has slow response .Its efficiency is high for large power units this system is used. # It is automatic positioning system for machine tools # The fig. of pump controlled system is shown in fig. # It consist axial type piston pump with control lever , in which discharge is controlled by motion of control lever. 11/18/2020 DINESH PANCHAL p
  • 234. # This controls the travel of pistons located in rotating cylinder. # The control lever can be operated by small torque motor, which is operated depending on the error between desired position and actual position # The two electric potentiometers convert mechanical position in to voltage signals. 11/18/2020 DINESH PANCHAL
  • 235. 2. NC/DNC/CNC System: (a) NC SYSTEM: # NC System for machine came in early 1950 for commercial use. # They are of two type (i) open loop (ii) closed loop 11/18/2020 DINESH PANCHAL
  • 236. # Fig. 12.3 shows the open loop NC system in which stepper moor is used to control the slide having a motor rotating a screw shaft with fixed nut on the slide # he stepper motor moves as per the pluses generated in Machine Controlled Unit # MCU consist tape recorder, buffer storage and decoder. # Tape has no. of holes depending on commands or program # Pulses are generated by the decoder depending on desired output. # For the turning on lathe machine two motion are required in x and y direction . For each direction one stepper motor is required. 11/18/2020 DINESH PANCHAL
  • 237. FIG. no. 12.4 # In NC closed loop system motion is measured by the sensor # output is compared with the desired output (input command) and error signal is generated # This error signal after amplification is converted digital to analog signals by DA convertor . # Then these signal fed to the servo motor which rotate the shaft having screw. # Which moves the slide 11/18/2020 DINESH PANCHAL cx
  • 238. 2. NC/DNC/CNC System: (b) DNC SYSTEM: # It was evolved in late sixties # It uses a central computer to communicate with several machine tools. # It eliminate the tape reader for each machine tools # All program are stored in the central computer and program for each machine tool can be downloaded when required. # There is two way communication between machine and computer. 11/18/2020 DINESH PANCHAL
  • 239. 2. NC/DNC/CNC System: (b) CNC SYSTEM: # It uses micro computer for each machine tool separately. # A large hard wired controllers are used in NC machine tool have been replaced by computers # Computer does the function of comparator and store the program. # The program can be stored in floppy disc or CD can be edited at site. # CNC is useful in FMS 11/18/2020 DINESH PANCHAL
  • 240. # Engine are the prime mover and drive the loads but load may vary with time # So with the change of load the speed of the engine will also changes .In most of cases the speed of the engine must be constant as in the case of electric generator # With change in speed the frequency of A.C. changes which is not desirable. # So maintain the speed of the engine speed governor is attached to the engine # Governor may be of mechanical, hydraulic, pneumatic or electronic. # Now a days microprocessor have application in the engine control. 1. Mechanical Governor 2. Hydraulic Governor 3. Pneumatic Governor 4. Electronic Governor 11/18/2020 DINESH PANCHAL
  • 241. 1. Mechanical Governor : # Principle of mech. Governor is centrifugal force # For the fixed setting of the adjusting lever the speed of the engine is constant # If the load on the engine decrease then speed of the engine increase and spindle of the governor is rotated by the engine increase its speed. # With increase in speed centrifugal force on the ball increases and they move in outward direction , which uplift the sleeve. # Due to the movement of the sleeve fuel control valve move in such a way so that reduce the supply of fuel to the engine 11/18/2020 DINESH PANCHAL
  • 242. # Thus the speed of the engine get reduced and reach to the equilibrium state. # An increase in the load will have opposite effect. # In case we want to change the equilibrium speed, we can change by adjusting the lever which adjust the fuel valve corresponding to the desired speed # In Automotive application , the speed of the engine is protected against the over speed. # They are also protected against the idea ling speed. # Between the min. speed and max. speed s, the control on the speed is exercised by the driver through accelerator pedal. # For max. high speed , the rising of the sleeve has to rise against the high stiff spring. # Min speed another spring of small stiffness is used. 11/18/2020 DINESH PANCHAL
  • 243. 2. Hydraulic Controller: # In large unit like power plants , mechanical governor is used to sense the speed and fuel valve is controlled by means of hydraulic servo. # For the given setting of the speed lever, if the speed increases due to decrease in the load .The outward movement of the balls uplift the sleeve which gives the downward movement to the piston valve. # The high pressure oil enters through the bottom port of the hydraulic servo and move the power piston which reduces the supply of the fuel by closing the fuel valve. # Thus reducing the speed of the engine # If the speed decrease then opposite action is taken by the system. 11/18/2020 DINESH PANCHAL
  • 244. 3. Pneumatic Governor: # Due to change in speed , there is change in the air pressure in the intake manifold. # A spring loaded diaphragm is connected through a lever to the fuel control valve which control the supply of the fuel to the engine. # At equilibrium position , the spring force equal to the force due to the pressure difference on two side of the diaphragm. # If the speed of the engine increases , due to reduction of the load, the inlet manifold pressure reduces and moving the fuel control rod to the right, thus reducing the supply of fuel to the engine. So that engine speed return to the desired value. 11/18/2020 DINESH PANCHAL
  • 245. # Reverse action is taken by the system when speed of engine decreases due to increase in the load. # The butterfly valve is nearly closed at idling. # As it is opened manifold pressure increases, moving the diaphragm and fuel control valve to the left and increases the fuel supply up to speed which is desired. # Pneumatic governor are good for low speed. # Pneumatic governor performance is not so good for high speed. 11/18/2020 DINESH PANCHAL
  • 246. 4. Electronic Governor : # Electronic governor use electrical and electronic component # They give efficient control of speed # Speed is sensed by the electric sensor which give feedback signals the sensor may be of electromagnetic type # The desired speed is obtained in firm of electrical signal and compared with sensor speed. # Error voltage after the comparison is amplified and applied to the motor actuator system , which control the fuel supply of fuel injection system # The control system works till steady state is reached. # With the development of computer tech. micro processor bases control system are being applied for efficient control in engine.11/18/2020 DINESH PANCHAL
  • 247. CARBURETTOR CONTROL : # Development of electronic control carburetor for petrol engine is going on so that engine run using the optimum use of fuel air mixture and min exhaust emission # A microprocessor based system is shown in fig. # The main input variables are engine speed, switch position, engine temp., intake manifold temp., and main throttle angle. 11/18/2020 DINESH PANCHAL
  • 248. # The operating conditions are determined by the above variables and may be idling, accelerating, decelerating with engine cut off, starting and warming and constant speed running. # By using the suitable algorithms , the processing unit regulate the fuel supply with the help of carburetor and chock valve. # Suitable sensors are used for temp. and position measurement. 11/18/2020 DINESH PANCHAL
  • 249. DIESEL FUEL IGNITION CONTROL : # Now a days electronic control system has been employed to control the injection timing and fuel control in a diesel engine. 11/18/2020 DINESH PANCHAL
  • 250. # The timing of injection is controlled by the cam ring positing , while the amount of fuel injected is controlled by the metering valve and valve is controlled by the fueling actuator. # Fig shows feedback control system for injection timing and fuel metering , which is dependent on the output of the speed sensor. # The desired timing is determined by speed and load while fuel control is related to the speed. # Feedback control system is applied to control injection timing which is manipulated by the cam actuator system. # The injection pump output is controlled depending on the need for fuel 11/18/2020 DINESH PANCHAL