SlideShare a Scribd company logo
1 of 34
9.4 Synthetic
Polymers
Polymers are large molecules made up of
many smaller and identical repeating units
joined together by covalent bonds . These
molecules are called monomers .
Polymerisation is the chemical process by
which the monomers are joined together to
form a big molecule known as a polymer .
A polymer is a macromolecules (a very big
molecules) . Hence , the relative molecular
mass of a polymer is large .
The properties of a polymer are different from
its monomers .
POLYMERS CAN
DIVIDED INTO 2 TYPES:
a) Naturally occurring polymers
Polymers that exists in living things
in nature (plants and animals)
b) Synthetic polymer
Polymers that are man-made by
chemical processes in the
laboratories.
NATURALLY OCCURRING
POLYMERS
1) Naturally occurring polymers exist in plants or
animals.
2) Examples of naturally occurring polymers are
a) Protein : in muscles,skin,silk,hair,wool and fur
b) Carbohydrates : in starch and cellulose.
c) Natural rubber : in latex.
3) Protein is formed by the polymerisation of
monomers known as amino acids.
amino acids polymerisation protein
(monomers) (polymers)
4) Carbohydrates such as starch and cellulose
consist of monomers known as glucose joined
together chemically.
5) Natural rubber found in latex consist of
monomers known as isoprene (2-methylbuta-1,3-
diene) joined together chemically.
glucose polymerisation carbohydrates
(monomers) (polymers)
H CH3 H H H CH3 H H
n C = C - C = C - C – C = C – C -
H H H H n
isoprene(monomer) natural rubber (polymer)
SYNTHETIC POLYMERS
1. Synthetic polymers are polymers made in the
industry from chemical substances.
2. Through scientific research , scientist are able to
copy the structures of natural polymers to
produce synthetic polymers.
3. Many of the raw materials for synthetic polymers
are obtained from petroleum , after the refining
and cracking processes.
4. The types of synthetic polymers include
a) Plastics
b) Fibre
c) Elastomers
PLASTIC
SYNTHETIC FIBRE
ELASTOMER
1. An elastomer is a polymer that can regain its original
shape after being stretched or pressed.
2. Both natural rubber and synthetic rubber are
examples of elastomers.
3. Examples of synthetic rubber are neoprene and
styrene-butadiene rubber (SBR).
4. SBR is used to make car tyres.
5. There are two types of polymerisation processes:
 Addition polymerisation
 Condensation polymerisation
6. Plastics such as polythene and PVC are produced by
addition polymerisation,whereas synthetic fibres
such as nylon and Terylene are made by
condensation polymerisation
CLASSIFICATION OF
POLYMERS
CHARACTERISTICS OF
POLYMERS
PROPERTIES OF POLYMERS
STRENGTH OF POLYMERS
APPLICATIONS OF POLYMERS
POLLUTION PROBLEM CAUSED BY
SYNTHETIC POLYMERS
1. Most polymers are non-biodegradable,that is they
cannot be decomposed by bacteria or other
microorganisms. This will cause disposal
problems as the polymers will not decay like other
organic garbage.
2. Dicarded plastic items may cause blockage of
drainage systems and rivers thus causing flash
floods.
3. Plastic bottles and containers that are not buried
in the ground will become breeding grounds for
mosquitoes which will cause diseases such as
dengue.
4. Small plastic items that are thrown into the
rivers,lakes and seas are sometimes swallowed
by aquatic animals. These animals may die from
choking.
5. The open burning of polymers may release
harmful and poisonous gases that will cause air
pollution. For example,the burning of PVC will
release hydrogen chloride gas which contributes
to the acid rain problem. The burning of some
polymers will release toxic gas such as hydrogen
cyanide.
6. The main source of raw materials for the making
of synthetic polymers is petroleum. Petroleum is a
non-renewable resource.
METHODS TO OVERCOME
ENVIRONMENTAL PROBLEMS OF
POLYMERS
 REDUCE,REUSE AND RECYCLE SYNTHETIC
POLYMERS
1. Reduce the use of non-biodegradable polymers.
2. Polymers are collected and reused or
reprocessed to make new items. The biggest
problem is the collection and separation. Not only
must the plastic be separated form other types of
solid waste but the different type of polymers
must be separated from each other.
 DEVELOP BIODEGRADABLE POLYMERS
 The polymers can be decomposed by
bacteria,other microorganisms or simply by
sunlight (photodegradable). One type of
biodegradable polymer was developed by
incorporating starch molecules into the plastic
materials so that they can be decomposed by
bacteria. However, biodegradable polymers
are usually more expensive.

More Related Content

What's hot

What's hot (20)

Mechanism of Polymerization
Mechanism of Polymerization Mechanism of Polymerization
Mechanism of Polymerization
 
Introduction to pharmaceuitcal polymer chemistry
Introduction to pharmaceuitcal polymer chemistryIntroduction to pharmaceuitcal polymer chemistry
Introduction to pharmaceuitcal polymer chemistry
 
Polymer ppt
Polymer pptPolymer ppt
Polymer ppt
 
Introduction to Polymer Chemistry
Introduction to Polymer ChemistryIntroduction to Polymer Chemistry
Introduction to Polymer Chemistry
 
Polymers
PolymersPolymers
Polymers
 
Polymers
PolymersPolymers
Polymers
 
Polymerization
PolymerizationPolymerization
Polymerization
 
Molecular Weight of Polymers
Molecular Weight of PolymersMolecular Weight of Polymers
Molecular Weight of Polymers
 
PRESENTATION ON POLYMERS
PRESENTATION ON POLYMERSPRESENTATION ON POLYMERS
PRESENTATION ON POLYMERS
 
POLYMERS
POLYMERSPOLYMERS
POLYMERS
 
Polymer
PolymerPolymer
Polymer
 
Natural polymer :origin and applications
Natural polymer :origin and applicationsNatural polymer :origin and applications
Natural polymer :origin and applications
 
Polymer Chemistry
Polymer ChemistryPolymer Chemistry
Polymer Chemistry
 
PPT on "Silicones" by Deepak rawal, Speciality polymers
PPT on "Silicones" by Deepak rawal, Speciality polymersPPT on "Silicones" by Deepak rawal, Speciality polymers
PPT on "Silicones" by Deepak rawal, Speciality polymers
 
Biopolymer
BiopolymerBiopolymer
Biopolymer
 
polymer
polymerpolymer
polymer
 
Polymers
PolymersPolymers
Polymers
 
Polymer and polymer synthesis
Polymer and polymer synthesisPolymer and polymer synthesis
Polymer and polymer synthesis
 
Polymer
PolymerPolymer
Polymer
 
Polymerization (Condensation Polymerization)
Polymerization (Condensation Polymerization)Polymerization (Condensation Polymerization)
Polymerization (Condensation Polymerization)
 

Similar to Synthetic polymer

Polymers Used in Everyday Life
Polymers Used in Everyday LifePolymers Used in Everyday Life
Polymers Used in Everyday Life
ijtsrd
 
Polymers Meyer (2014) suggests that a contemporary culture could n.docx
Polymers Meyer (2014) suggests that a contemporary culture could n.docxPolymers Meyer (2014) suggests that a contemporary culture could n.docx
Polymers Meyer (2014) suggests that a contemporary culture could n.docx
ChantellPantoja184
 
Organic macromolecules
Organic macromoleculesOrganic macromolecules
Organic macromolecules
Siyavula
 
Non-Metal Materials
Non-Metal MaterialsNon-Metal Materials
Non-Metal Materials
Goutam Gachhinakatti
 
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICSPLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
ShriguniAdmane
 
polymer1-150424024932-conversion-gate02.pdf
polymer1-150424024932-conversion-gate02.pdfpolymer1-150424024932-conversion-gate02.pdf
polymer1-150424024932-conversion-gate02.pdf
DINESH459309
 

Similar to Synthetic polymer (20)

Polymers and It's Classification
Polymers and It's ClassificationPolymers and It's Classification
Polymers and It's Classification
 
Introduction to polymer chemistry
Introduction to polymer chemistryIntroduction to polymer chemistry
Introduction to polymer chemistry
 
Plastis
PlastisPlastis
Plastis
 
Polymers Used in Everyday Life
Polymers Used in Everyday LifePolymers Used in Everyday Life
Polymers Used in Everyday Life
 
class-8 science Chapter-1 synthetic fibers and plastics
class-8 science Chapter-1 synthetic fibers and plasticsclass-8 science Chapter-1 synthetic fibers and plastics
class-8 science Chapter-1 synthetic fibers and plastics
 
A Glimpse of Industrial polymers
A Glimpse of Industrial polymersA Glimpse of Industrial polymers
A Glimpse of Industrial polymers
 
Polymers Meyer (2014) suggests that a contemporary culture could n.docx
Polymers Meyer (2014) suggests that a contemporary culture could n.docxPolymers Meyer (2014) suggests that a contemporary culture could n.docx
Polymers Meyer (2014) suggests that a contemporary culture could n.docx
 
Fibre mechanical engineering 2016*
Fibre mechanical engineering 2016*Fibre mechanical engineering 2016*
Fibre mechanical engineering 2016*
 
General chemistry (unit iv)
General chemistry (unit iv)General chemistry (unit iv)
General chemistry (unit iv)
 
TECHNOLOGY IN CHEMISTRY.pptx
TECHNOLOGY IN CHEMISTRY.pptxTECHNOLOGY IN CHEMISTRY.pptx
TECHNOLOGY IN CHEMISTRY.pptx
 
Organic macromolecules
Organic macromoleculesOrganic macromolecules
Organic macromolecules
 
Polymer
PolymerPolymer
Polymer
 
polymers in textile industries
polymers in textile industriespolymers in textile industries
polymers in textile industries
 
Polymer
PolymerPolymer
Polymer
 
Chemistry of plastics, rubber and resins
Chemistry of plastics, rubber and resinsChemistry of plastics, rubber and resins
Chemistry of plastics, rubber and resins
 
Polumers-Dr. Surendran Parambadath
Polumers-Dr. Surendran ParambadathPolumers-Dr. Surendran Parambadath
Polumers-Dr. Surendran Parambadath
 
Non-Metal Materials
Non-Metal MaterialsNon-Metal Materials
Non-Metal Materials
 
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICSPLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
PLASTICS.pdf ALL ABOUT THE JOURNEY OF PLASTICS
 
POLYMERS
POLYMERSPOLYMERS
POLYMERS
 
polymer1-150424024932-conversion-gate02.pdf
polymer1-150424024932-conversion-gate02.pdfpolymer1-150424024932-conversion-gate02.pdf
polymer1-150424024932-conversion-gate02.pdf
 

Recently uploaded

Recently uploaded (20)

AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at Comcast
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System Strategy
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 

Synthetic polymer

  • 2.
  • 3.
  • 4. Polymers are large molecules made up of many smaller and identical repeating units joined together by covalent bonds . These molecules are called monomers . Polymerisation is the chemical process by which the monomers are joined together to form a big molecule known as a polymer . A polymer is a macromolecules (a very big molecules) . Hence , the relative molecular mass of a polymer is large . The properties of a polymer are different from its monomers .
  • 5.
  • 6. POLYMERS CAN DIVIDED INTO 2 TYPES: a) Naturally occurring polymers Polymers that exists in living things in nature (plants and animals) b) Synthetic polymer Polymers that are man-made by chemical processes in the laboratories.
  • 7. NATURALLY OCCURRING POLYMERS 1) Naturally occurring polymers exist in plants or animals. 2) Examples of naturally occurring polymers are a) Protein : in muscles,skin,silk,hair,wool and fur b) Carbohydrates : in starch and cellulose. c) Natural rubber : in latex. 3) Protein is formed by the polymerisation of monomers known as amino acids. amino acids polymerisation protein (monomers) (polymers)
  • 8. 4) Carbohydrates such as starch and cellulose consist of monomers known as glucose joined together chemically. 5) Natural rubber found in latex consist of monomers known as isoprene (2-methylbuta-1,3- diene) joined together chemically. glucose polymerisation carbohydrates (monomers) (polymers) H CH3 H H H CH3 H H n C = C - C = C - C – C = C – C - H H H H n isoprene(monomer) natural rubber (polymer)
  • 9. SYNTHETIC POLYMERS 1. Synthetic polymers are polymers made in the industry from chemical substances. 2. Through scientific research , scientist are able to copy the structures of natural polymers to produce synthetic polymers. 3. Many of the raw materials for synthetic polymers are obtained from petroleum , after the refining and cracking processes. 4. The types of synthetic polymers include a) Plastics b) Fibre c) Elastomers
  • 11.
  • 12.
  • 13.
  • 15.
  • 16.
  • 17. ELASTOMER 1. An elastomer is a polymer that can regain its original shape after being stretched or pressed. 2. Both natural rubber and synthetic rubber are examples of elastomers. 3. Examples of synthetic rubber are neoprene and styrene-butadiene rubber (SBR). 4. SBR is used to make car tyres. 5. There are two types of polymerisation processes:  Addition polymerisation  Condensation polymerisation 6. Plastics such as polythene and PVC are produced by addition polymerisation,whereas synthetic fibres such as nylon and Terylene are made by condensation polymerisation
  • 18.
  • 19.
  • 20.
  • 21.
  • 23.
  • 27.
  • 29.
  • 30.
  • 31. POLLUTION PROBLEM CAUSED BY SYNTHETIC POLYMERS 1. Most polymers are non-biodegradable,that is they cannot be decomposed by bacteria or other microorganisms. This will cause disposal problems as the polymers will not decay like other organic garbage. 2. Dicarded plastic items may cause blockage of drainage systems and rivers thus causing flash floods. 3. Plastic bottles and containers that are not buried in the ground will become breeding grounds for mosquitoes which will cause diseases such as dengue.
  • 32. 4. Small plastic items that are thrown into the rivers,lakes and seas are sometimes swallowed by aquatic animals. These animals may die from choking. 5. The open burning of polymers may release harmful and poisonous gases that will cause air pollution. For example,the burning of PVC will release hydrogen chloride gas which contributes to the acid rain problem. The burning of some polymers will release toxic gas such as hydrogen cyanide. 6. The main source of raw materials for the making of synthetic polymers is petroleum. Petroleum is a non-renewable resource.
  • 33. METHODS TO OVERCOME ENVIRONMENTAL PROBLEMS OF POLYMERS  REDUCE,REUSE AND RECYCLE SYNTHETIC POLYMERS 1. Reduce the use of non-biodegradable polymers. 2. Polymers are collected and reused or reprocessed to make new items. The biggest problem is the collection and separation. Not only must the plastic be separated form other types of solid waste but the different type of polymers must be separated from each other.
  • 34.  DEVELOP BIODEGRADABLE POLYMERS  The polymers can be decomposed by bacteria,other microorganisms or simply by sunlight (photodegradable). One type of biodegradable polymer was developed by incorporating starch molecules into the plastic materials so that they can be decomposed by bacteria. However, biodegradable polymers are usually more expensive.