SlideShare a Scribd company logo
1 of 4
Download to read offline
4/3/2008




                                      Lecture 18                                                                   Common‐Source Stage
                                    OUTLINE
            •    Basic MOSFET amplifier
            •    MOSFET biasing
            •    MOSFET current sources
            •    Common‐source amplifier
                 Common source amplifier

            • Reading: Chap. 7.1‐7.2                                                                                      λ =0
                                                                                                                          Av = −g m RD
                                                                                                                                               W
                                                                                                                          Av = − 2μnCox          I D RD
                                                                                                                                               L
            EE105 Spring 2008             Lecture 18, Slide 1          Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 2     Prof. Wu, UC Berkeley




                                Operation in Saturation                                                              CS Stage with λ=0

                                                     Condition for M1 in saturation
                                                     Vout > Vin −VTH

                                                     ⇒ VDD − RD I D > (VGS −VTH )


                                                                                                                              Av = − g m RL
           • In order to maintain operation in saturation, Vout
             cannot fall below Vin by more than one threshold                                                                 Rin = ∞
             voltage.  
                                                                                                                              Rout = RL
           • The condition above ensures operation in saturation.  
            EE105 Spring 2008             Lecture 18, Slide 3          Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 4     Prof. Wu, UC Berkeley




                                  CS Stage with λ ≠ 0                                                     CS Gain Variation with Channel Length




                                      Av = −gm ( RL || rO )
                                      Rin = ∞                                                                                     W
                                                                                                                            2μnCox
                                                                                                                   Av =           L ∝ 2μnCoxWL
                                      Rout = RL || rO
                                                                                                                             λ ID        ID
           • However, channel length modulation leads to finite 
             output resistance, ro, which is in parallel with the load                         • Since λ is inversely proportional to L, the intrinsic 
                                                                                                 voltage gain actually becomes proportional to the 
             resistance, RL                                                                      square root of L.  
            EE105 Spring 2008             Lecture 18, Slide 5          Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 6     Prof. Wu, UC Berkeley




EE105 Fall 2007                                                                                                                                                                         1
4/3/2008




                                 MOS Biasing                                                                         Self‐Biased MOS Stage
                                         R1
                                              VDD = VGS + I D RS
                                     R1 + R2
                                            1      W
                                     I D = μnCox (VGS − VTH )
                                                                 2

                                            2       L

                                     2 unknows (VGS , I D ), 2 equations ⇒
                                                                                                                                       I D RD +VGS + RS I D = VDD
                                                                                                                                             1      W
                                                                                                                                       I D = μnCox (VGS −VTH )
                                                                                                                                                                  2
                                                                    ⎛ RV         ⎞
                                    VGS = − (V1 − VTH ) + V12 + 2V1 ⎜ 2 DD − VTH ⎟
                                                                    ⎝ R1 + R2    ⎠                                                           2       L
                                               1
                                    V1 =
                                                W
                                         μn Cox RS
                                                 L

           • Voltage at X is determined by VDD, R1, and R2.
                                                                                                 • The circuit above is analyzed by noting M1 is in 
           • VGS can be found using the equation above, and ID can be 
             found by using the NMOS current equation.                                             saturation and no potential drop appears across RG.
            EE105 Spring 2008           Lecture 18, Slide 7              Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 8      Prof. Wu, UC Berkeley




                                Current Sources                                                       CS Stage with Current‐Source Load




                                                                                                                      Av = − g m1 (rO1 || rO 2 )
                                                                                                                      Rout = rO1 || rO 2
           • When in saturation region, a MOSFET behaves as a current source.                    • To alleviate the headroom problem, an active current‐source load 
           • NMOS draws current from a point to ground (sinks current),                            is used.
             whereas PMOS draws current from VDD to a point (sources                             • This is advantageous because a current‐source has a high output 
             current).                                                                             resistance and can tolerate a small voltage drop across it.  
            EE105 Spring 2008           Lecture 18, Slide 9              Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 10     Prof. Wu, UC Berkeley




                PMOS CS Stage with NMOS as Load                                                    CS Stage with Diode‐Connected Load



                                                  Av = − g m 2 (rO1 || rO 2 )

                                                                                                                                  ⎛ 1                  ⎞
                                                                                                                      Av = − g m1 ⎜     || rO 2 || rO1 ⎟
                                                                                                                                  ⎝ gm2                ⎠
                                                                                                                                     1           (W / L )1
                                                                                                                      Av = − g m1 ⋅     =−
                                                                                                                                    gm2          (W / L )2
           • Similarly, with PMOS as input stage and NMOS as the 
             load, the voltage gain is the same as before.                                       • Lower gain, but less dependent on process parameters.
            EE105 Spring 2008           Lecture 18, Slide 11             Prof. Wu, UC Berkeley   EE105 Spring 2008                  Lecture 18, Slide 12     Prof. Wu, UC Berkeley




EE105 Fall 2007                                                                                                                                                                            2
4/3/2008




                     CS Stage with Diode‐Connected PMOS Device                                                 CS Stage with Degeneration


                                                         ⎛ 1                ⎞
                                            Av = − g m 2 ⎜
                                                         ⎜ g || ro1 || ro 2 ⎟
                                                                            ⎟
                                                         ⎝ m1               ⎠
                                                                                                                               RD
                                                                                                                    Av = −
                                                                                                                             1
                                                                                                                                + RS
                                                                                                                             gm
                                                                                                                    λ =0
           • Note that PMOS circuit symbol is usually drawn with                                • Similar to bipolar counterpart, when a CS stage is degenerated, 
             the source on top of the drain.                                                      its gain, I/O impedances, and linearity change.
            EE105 Spring 2008          Lecture 18, Slide 13             Prof. Wu, UC Berkeley   EE105 Spring 2008              Lecture 18, Slide 14        Prof. Wu, UC Berkeley




                      Example of CS Stage with Degeneration                                                 CS Stage with Gate Resistance



                                                                                                                                                      VRG = 0

                                                RD
                                   Av = −
                                             1     1
                                                +
                                            g m1 g m 2                                          • Since at low frequencies, the gate conducts no 
                                                                                                  current, gate resistance does not affect the gain or I/O 
           • A diode‐connected device degenerates a CS stage.                                     impedances.
            EE105 Spring 2008          Lecture 18, Slide 15             Prof. Wu, UC Berkeley   EE105 Spring 2008              Lecture 18, Slide 16        Prof. Wu, UC Berkeley




                          Output Impedance of CS Stage with 
                                   Degeneration
                                                                                                           Output Impedance Example (I)


                                                              rout ≈ gmrO RS + rO



                                                                                                                               ⎛          1 ⎞
                                                                                                                    Rout = rO1 ⎜1 + g m1     ⎟
           • Similar to the bipolar counterpart, degeneration                                                                  ⎝         gm2 ⎠
             boosts output impedance.                                                           • When 1/gm is parallel with rO2, we often just consider 1/gm

            EE105 Spring 2008          Lecture 18, Slide 17             Prof. Wu, UC Berkeley   EE105 Spring 2008              Lecture 18, Slide 18        Prof. Wu, UC Berkeley




EE105 Fall 2007                                                                                                                                                                          3
4/3/2008




                      Output Impedance Example (II)                                                         CS Core with Biasing




                                                                                                                         R1 || R2      − RD
                                                                                                                Av =                ⋅         ,     Av = − g m R D
                                                                                                                       RG + R1 || R2 1 + R
                                                                                                                                            S
                                                                                                                                      gm
                                Rout ≈ g m1rO1rO 2 + rO1
                                                                                        • Degeneration is used to stabilize bias point, and a bypass 
           • In this example, the impedance that degenerates the CS stage                 capacitor can be used to obtain a larger  small‐signal voltage 
             is rO, instead of 1/gm in the previous example.                              gain at the frequency of interest. 
            EE105 Spring 2008            Lecture 18, Slide 19   Prof. Wu, UC Berkeley   EE105 Spring 2008               Lecture 18, Slide 20      Prof. Wu, UC Berkeley




EE105 Fall 2007                                                                                                                                                                 4

More Related Content

What's hot

Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
Strongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesStrongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesUtrecht University
 
9702 s11 qp_21
9702 s11 qp_219702 s11 qp_21
9702 s11 qp_21Hira Rizvi
 
AS PHYSICS-May/June 9702/12
AS PHYSICS-May/June 9702/12AS PHYSICS-May/June 9702/12
AS PHYSICS-May/June 9702/12Hira Rizvi
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Sanjay Ram
 
Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09Agyapal Bajwa
 
A Technique To Model A Frequency Mixer
A Technique To Model A Frequency MixerA Technique To Model A Frequency Mixer
A Technique To Model A Frequency Mixeroseassen
 
June2006 P1
June2006 P1June2006 P1
June2006 P1nazarin
 
14.00 o1 c sutton
14.00 o1 c sutton14.00 o1 c sutton
14.00 o1 c suttonNZIP
 
A fast and accurate computational approach to protein ionization: combining t...
A fast and accurate computational approach to protein ionization: combining t...A fast and accurate computational approach to protein ionization: combining t...
A fast and accurate computational approach to protein ionization: combining t...BIOVIA
 
9702 w11 qp_23
9702 w11 qp_239702 w11 qp_23
9702 w11 qp_23Hira Rizvi
 
9702 w11 qp_21
9702 w11 qp_219702 w11 qp_21
9702 w11 qp_21Hira Rizvi
 
9702 w11 qp_22
9702 w11 qp_229702 w11 qp_22
9702 w11 qp_22Hira Rizvi
 
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...disorderedmatter
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHCkneemo
 
Master's Thesis Presentation 2013/02/19
Master's Thesis Presentation 2013/02/19Master's Thesis Presentation 2013/02/19
Master's Thesis Presentation 2013/02/19Yuhei Iwata
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикиSergey Sozykin
 

What's hot (20)

Structure of atom
Structure of atom Structure of atom
Structure of atom
 
Gq3112761281
Gq3112761281Gq3112761281
Gq3112761281
 
Soft Matter 2010
Soft Matter 2010Soft Matter 2010
Soft Matter 2010
 
Strongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesStrongly interacting fermions in optical lattices
Strongly interacting fermions in optical lattices
 
9702 s11 qp_21
9702 s11 qp_219702 s11 qp_21
9702 s11 qp_21
 
AS PHYSICS-May/June 9702/12
AS PHYSICS-May/June 9702/12AS PHYSICS-May/June 9702/12
AS PHYSICS-May/June 9702/12
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09
 
A Technique To Model A Frequency Mixer
A Technique To Model A Frequency MixerA Technique To Model A Frequency Mixer
A Technique To Model A Frequency Mixer
 
June2006 P1
June2006 P1June2006 P1
June2006 P1
 
14.00 o1 c sutton
14.00 o1 c sutton14.00 o1 c sutton
14.00 o1 c sutton
 
A fast and accurate computational approach to protein ionization: combining t...
A fast and accurate computational approach to protein ionization: combining t...A fast and accurate computational approach to protein ionization: combining t...
A fast and accurate computational approach to protein ionization: combining t...
 
9702 w11 qp_23
9702 w11 qp_239702 w11 qp_23
9702 w11 qp_23
 
9702 w11 qp_21
9702 w11 qp_219702 w11 qp_21
9702 w11 qp_21
 
9702 w11 qp_22
9702 w11 qp_229702 w11 qp_22
9702 w11 qp_22
 
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHC
 
Master's Thesis Presentation 2013/02/19
Master's Thesis Presentation 2013/02/19Master's Thesis Presentation 2013/02/19
Master's Thesis Presentation 2013/02/19
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 

Similar to Cs with active load

Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
MOSFET IV characteristics and its operations
MOSFET IV characteristics and its operationsMOSFET IV characteristics and its operations
MOSFET IV characteristics and its operationsjpradha86
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curveGayathriPriya34
 
Modelling diffusion at high pressure
Modelling diffusion at high pressureModelling diffusion at high pressure
Modelling diffusion at high pressureTomas Gomez-Acebo
 
Peec Wr Freq08
Peec Wr Freq08Peec Wr Freq08
Peec Wr Freq08Antonini
 
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用 vinie99
 
ไฟฟ้ากระแส
ไฟฟ้ากระแสไฟฟ้ากระแส
ไฟฟ้ากระแสTom Vipguest
 
BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価Tsuyoshi Horigome
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer newmkazree
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer newmkazree
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 

Similar to Cs with active load (20)

Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
MOSFET.ppt
MOSFET.pptMOSFET.ppt
MOSFET.ppt
 
MOSFET IV characteristics and its operations
MOSFET IV characteristics and its operationsMOSFET IV characteristics and its operations
MOSFET IV characteristics and its operations
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curve
 
Modelling diffusion at high pressure
Modelling diffusion at high pressureModelling diffusion at high pressure
Modelling diffusion at high pressure
 
Peec Wr Freq08
Peec Wr Freq08Peec Wr Freq08
Peec Wr Freq08
 
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用
 
ไฟฟ้ากระแส
ไฟฟ้ากระแสไฟฟ้ากระแส
ไฟฟ้ากระแส
 
Lecture07
Lecture07Lecture07
Lecture07
 
Lecture08
Lecture08Lecture08
Lecture08
 
Diode
DiodeDiode
Diode
 
BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価
 
TTL(Transistor Transistor Logic)
TTL(Transistor Transistor Logic)TTL(Transistor Transistor Logic)
TTL(Transistor Transistor Logic)
 
Voltage controllers
Voltage controllersVoltage controllers
Voltage controllers
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer new
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer new
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Topic 10 kft 131
Topic 10 kft 131Topic 10 kft 131
Topic 10 kft 131
 

Cs with active load

  • 1. 4/3/2008 Lecture 18 Common‐Source Stage OUTLINE • Basic MOSFET amplifier • MOSFET biasing • MOSFET current sources • Common‐source amplifier Common source amplifier • Reading: Chap. 7.1‐7.2 λ =0 Av = −g m RD W Av = − 2μnCox I D RD L EE105 Spring 2008 Lecture 18, Slide 1 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 2 Prof. Wu, UC Berkeley Operation in Saturation CS Stage with λ=0 Condition for M1 in saturation Vout > Vin −VTH ⇒ VDD − RD I D > (VGS −VTH ) Av = − g m RL • In order to maintain operation in saturation, Vout cannot fall below Vin by more than one threshold  Rin = ∞ voltage.   Rout = RL • The condition above ensures operation in saturation.   EE105 Spring 2008 Lecture 18, Slide 3 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 4 Prof. Wu, UC Berkeley CS Stage with λ ≠ 0 CS Gain Variation with Channel Length Av = −gm ( RL || rO ) Rin = ∞ W 2μnCox Av = L ∝ 2μnCoxWL Rout = RL || rO λ ID ID • However, channel length modulation leads to finite  output resistance, ro, which is in parallel with the load  • Since λ is inversely proportional to L, the intrinsic  voltage gain actually becomes proportional to the  resistance, RL square root of L.   EE105 Spring 2008 Lecture 18, Slide 5 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 6 Prof. Wu, UC Berkeley EE105 Fall 2007 1
  • 2. 4/3/2008 MOS Biasing Self‐Biased MOS Stage R1 VDD = VGS + I D RS R1 + R2 1 W I D = μnCox (VGS − VTH ) 2 2 L 2 unknows (VGS , I D ), 2 equations ⇒ I D RD +VGS + RS I D = VDD 1 W I D = μnCox (VGS −VTH ) 2 ⎛ RV ⎞ VGS = − (V1 − VTH ) + V12 + 2V1 ⎜ 2 DD − VTH ⎟ ⎝ R1 + R2 ⎠ 2 L 1 V1 = W μn Cox RS L • Voltage at X is determined by VDD, R1, and R2. • The circuit above is analyzed by noting M1 is in  • VGS can be found using the equation above, and ID can be  found by using the NMOS current equation. saturation and no potential drop appears across RG. EE105 Spring 2008 Lecture 18, Slide 7 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 8 Prof. Wu, UC Berkeley Current Sources CS Stage with Current‐Source Load Av = − g m1 (rO1 || rO 2 ) Rout = rO1 || rO 2 • When in saturation region, a MOSFET behaves as a current source. • To alleviate the headroom problem, an active current‐source load  • NMOS draws current from a point to ground (sinks current),  is used. whereas PMOS draws current from VDD to a point (sources  • This is advantageous because a current‐source has a high output  current). resistance and can tolerate a small voltage drop across it.   EE105 Spring 2008 Lecture 18, Slide 9 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 10 Prof. Wu, UC Berkeley PMOS CS Stage with NMOS as Load  CS Stage with Diode‐Connected Load Av = − g m 2 (rO1 || rO 2 ) ⎛ 1 ⎞ Av = − g m1 ⎜ || rO 2 || rO1 ⎟ ⎝ gm2 ⎠ 1 (W / L )1 Av = − g m1 ⋅ =− gm2 (W / L )2 • Similarly, with PMOS as input stage and NMOS as the  load, the voltage gain is the same as before. • Lower gain, but less dependent on process parameters. EE105 Spring 2008 Lecture 18, Slide 11 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 12 Prof. Wu, UC Berkeley EE105 Fall 2007 2
  • 3. 4/3/2008 CS Stage with Diode‐Connected PMOS Device CS Stage with Degeneration ⎛ 1 ⎞ Av = − g m 2 ⎜ ⎜ g || ro1 || ro 2 ⎟ ⎟ ⎝ m1 ⎠ RD Av = − 1 + RS gm λ =0 • Note that PMOS circuit symbol is usually drawn with  • Similar to bipolar counterpart, when a CS stage is degenerated,  the source on top of the drain. its gain, I/O impedances, and linearity change. EE105 Spring 2008 Lecture 18, Slide 13 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 14 Prof. Wu, UC Berkeley Example of CS Stage with Degeneration CS Stage with Gate Resistance VRG = 0 RD Av = − 1 1 + g m1 g m 2 • Since at low frequencies, the gate conducts no  current, gate resistance does not affect the gain or I/O  • A diode‐connected device degenerates a CS stage. impedances. EE105 Spring 2008 Lecture 18, Slide 15 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 16 Prof. Wu, UC Berkeley Output Impedance of CS Stage with  Degeneration Output Impedance Example (I) rout ≈ gmrO RS + rO ⎛ 1 ⎞ Rout = rO1 ⎜1 + g m1 ⎟ • Similar to the bipolar counterpart, degeneration  ⎝ gm2 ⎠ boosts output impedance. • When 1/gm is parallel with rO2, we often just consider 1/gm EE105 Spring 2008 Lecture 18, Slide 17 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 18 Prof. Wu, UC Berkeley EE105 Fall 2007 3
  • 4. 4/3/2008 Output Impedance Example (II) CS Core with Biasing R1 || R2 − RD Av = ⋅ , Av = − g m R D RG + R1 || R2 1 + R S gm Rout ≈ g m1rO1rO 2 + rO1 • Degeneration is used to stabilize bias point, and a bypass  • In this example, the impedance that degenerates the CS stage  capacitor can be used to obtain a larger  small‐signal voltage  is rO, instead of 1/gm in the previous example.   gain at the frequency of interest.  EE105 Spring 2008 Lecture 18, Slide 19 Prof. Wu, UC Berkeley EE105 Spring 2008 Lecture 18, Slide 20 Prof. Wu, UC Berkeley EE105 Fall 2007 4