SlideShare a Scribd company logo
1 of 9
Download to read offline
1
ECE6420 Wireless IC Design
Final Design Project Report
Tianhao Li 902885592
Chenxi Yin 903146918
School of Electrical and Computer Engineering
Georgia Institute of Technology
2
Introduction
In this report, a wideband direct downconversion receiver (RX) consisting of a differential common
gate low-noise amplifier (LNA) and two Gilbert Cell mixers is presented. The LNA achieves a high
noise figure (NF) and wideband input matching by taking advantage of multiple feedback to
decouple the trade-off between input matching and gain. This design is inspired by work concluded
in [1].
Figure 1. Topology of the direct downconversion RX.
Performance Summary of the Proposed Design
Specifications Requirements Measurements Achieved?
𝑉𝐷𝐷 ≤ 2.5 V 2.5 V Yes
DC Power Budget 80 mW 41.45 mW Yes
|𝑆11| < -10 dB -10.035 dB Yes
Frequency Bandwidth 2.4 – 5 GHz 2.4 – 5 GHz Yes
IF Bandwidth 50 MHz 50 MHz Yes
Peak Conversion Gain 27 dB 32.016 dB Yes
Noise Figure 5 dB Min: 3.421 dB
Max: 3.691 dB
Yes
𝑃1𝑑𝐵 @ Input -25 dBm -23.42 dBm Yes
𝑃𝐼𝐼𝑃3 -20 dBm -14.557 dBm Yes
Total Inductance Budget 20 nH 2.29 nH Yes
3
Schematic
Figure 2. Schematic of the LNA with the output buffer [1].
Device/Source Value Device/Source Value
𝑀1 19 um/0.175 um 𝑅 𝐿 880 Ohm
𝑀2 2 um/1 um 𝐶1 0.7 pF
𝑀3 11 um/0.3 um 𝑉𝐵1 1.28 V
𝑀 𝐵1 15 um/0.13 um 𝑉𝐵2 1.4 V
𝑀 𝐵2 25 um/0.9 um 𝑉𝐵3 1.16 V
𝑅 𝐵 5 kOhm 𝑉𝐵4 2.05 V
4
Figure 3. Schematic of the Gilbert Cell mixer [2].
Device/Source Value Device/Source Value
𝑀4 7 um/0.145 um 𝑅 𝐷 755 Ohm
𝑀5 31 um/0.13 um 𝑉𝐵5 0.844 V
𝑀6 90 um/0.4 um 𝑉𝐵6 0.781 V
𝑅 𝐵 5 kOhm 𝑉𝐵7 1.5 V
Theoretical Analyses
a) Input Matching
𝑅𝑖𝑛 =
1
𝑔 𝑚1(1 − 𝐴 𝑃𝑂𝑆 − 𝐵 𝑃𝑂𝑆)
where 𝐴 𝑃𝑂𝑆 = 𝑔 𝑚2 𝑅 𝐿 and 𝐵 𝑃𝑂𝑆 =
𝑔 𝑚3
2𝑔 𝑚1
𝐼 𝐷1 =
1
2
𝜇 𝑛 𝐶 𝑜𝑥
𝑊3
𝐿3
(𝑉𝑔𝑠3 − 𝑉𝑡𝑛)2
= 1.53 mA
𝑔 𝑚1 = √2𝜇 𝑛 𝐶 𝑜𝑥
𝑊1
𝐿1
𝐼 𝐷1 = 0.00682 S
𝐼 𝐷2 =
1
2
𝜇 𝑝 𝐶 𝑜𝑥
𝑊2
𝐿2
(𝑉𝑔𝑠2 − 𝑉𝑡𝑝)2
= 78.86 uA
𝑔 𝑚2 = √2𝜇 𝑝 𝐶 𝑜𝑥
𝑊2
𝐿2
𝐼 𝐷2 = 2.103 ∗ 10−4
S
5
𝑔 𝑚3 = √2𝜇 𝑛 𝐶 𝑜𝑥
𝑊3
𝐿3
𝐼 𝐷1 = 0.00397 S
𝑅𝑖𝑛 = 280 Ω
b) Conversion Gain
𝐴 𝑣,𝑏𝑎𝑙𝑢𝑛 = √2
𝐴 𝑣,𝐿𝑁𝐴 =
𝑅 𝐿(1 + 𝑔 𝑚3 𝑅 𝑠)
𝑅 𝑠(1 − 𝐴 𝑃𝑂𝑆)
= 12.942
𝐴 𝑣,𝑏𝑢𝑓𝑓𝑒𝑟 =
𝑔 𝑚𝐵1 𝑟𝑜𝐵2
1 + 𝑔 𝑚𝐵1 𝑟𝑜𝐵2
≈ 1
𝐴 𝑣,𝑚𝑖𝑥𝑒𝑟 =
2
𝜋
𝑔 𝑚5 𝑅 𝐷 (1 −
∆𝑇
𝑇𝐿𝑂
) = 3.277
Assume perfect input matching,
𝐶𝐺 =
1
2
𝐴 𝑣,𝑏𝑎𝑙𝑢𝑛 𝐴 𝑣,𝐿𝑁𝐴 𝐴 𝑣,𝑏𝑢𝑓𝑓𝑒𝑟 𝐴 𝑣,𝑚𝑖𝑥𝑒𝑟 = 59.98 = 35.56 dB
c) Noise Figure
𝑁𝐹 = 1 +
(𝑔 𝑚1 𝑅 𝑠 − 1)2
𝑔 𝑚1 𝑅𝑠
𝛾 + 𝑔 𝑚2 𝑅𝑠 𝛾 + 𝑔 𝑚3 𝑅𝑠 𝛾 + (1 +
1
2𝑔 𝑚1 𝑅𝑠
)
2
𝑅 𝑠
𝑅 𝐿
= 3.76 dB
Simulation
1. Input Matching
|𝑆11| is below -10.035 dB in the desired band.
6
2. Conversion Gain
The peak conversion gain is 32.016 dB. 5 GHz is within the -3dB bandwidth.
3. Noise Figure
𝑁𝐹 𝑚𝑖𝑛 is 3.421 dB when 𝑓𝑅𝐹 = 2.4 GHz and 𝑁𝐹𝑚𝑎𝑥 is 3.691 dB when 𝑓𝑅𝐹 = 5 GHz.
7
4. 𝑷 𝑰𝑰𝑷 𝟑
The lowest 𝐼𝐼𝑃3 is -14.557 dBm.
5. 𝑷 𝟏𝒅𝑩
The worst 𝑃1𝑑𝐵 is -23.42 dBm.
8
6. Power Consumption
Total current drawn from 𝑉𝐷𝐷 is 16.58 mA with 𝑉𝐷𝐷 = 2.5 V . Therefore, total power
consumption is 41.45 mW.
Comparison between Simulation and Calculation
a) Input Matching
For this design the input resistance 𝑅𝑖𝑛 (after matching network) is 280Ω, comparing to the 100
Ω the source impedance LNA sees.
At high frequency, 𝐶𝑔𝑠 will shunt current from input resistance to analog ground; therefore
inductive matching network at input is desirable.
b) Conversion Gain
The conversion gain of this wideband receiver is achieved through the combination of ideal balun,
differential LNA, voltage buffer, and Gilbert cell mixer.
The total conversion gain for this design is 32.016 dB. Comparing to theoretical calculation result:
35.56 dB. Channel length modulation is ignored in the hand analysis because the difficulty to
extract lambda from model file, which might affect the gain calculation significantly.
c) Noise Figure
The worst case NF in this design happens at 5GHz stands at 3.69 dB, comparing to 3.76 dB through
hand calculation (where 𝛾 =
2
3
). The hand analysis result might be worse because trans-
conductance 𝑔 𝑚 might be smaller in the simulation results.
9
References
[1] S. H. K. E. E. Sobhy, A. Helmy, and E. Sinencio, ‘‘A 2.8-mW sub-2-dB noise-figure inductorless
wideband CMOS LNA employing multiple feedback,’’ IEEE Trans. Microw. Theory Tech., vol. 59, no. 12,
pp. 3154–3161, Dec. 2011.
[2] cas.ee.ic.ac.uk/old/students/ganesh/mixers.html

More Related Content

What's hot

Cascade and cascode amplifiers
Cascade and cascode amplifiersCascade and cascode amplifiers
Cascade and cascode amplifiersPRAVEENA N G
 
Dc load line fixed biasing
Dc load line fixed biasingDc load line fixed biasing
Dc load line fixed biasingPRAVEENA N G
 
Low noise amplifier csd
Low noise amplifier csdLow noise amplifier csd
Low noise amplifier csdRina Ahire
 
Noise Error Calculation : Averaging and Industrial Standards (Formula)
Noise Error Calculation : Averaging and Industrial Standards (Formula)Noise Error Calculation : Averaging and Industrial Standards (Formula)
Noise Error Calculation : Averaging and Industrial Standards (Formula)Gan Chun Chet
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...AIMST University
 
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...IJEEE
 
Iaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dspIaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dspIaetsd Iaetsd
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADSankit_master
 
Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Keshav
 

What's hot (20)

Cascade and cascode amplifiers
Cascade and cascode amplifiersCascade and cascode amplifiers
Cascade and cascode amplifiers
 
Dc load line fixed biasing
Dc load line fixed biasingDc load line fixed biasing
Dc load line fixed biasing
 
Low noise amplifier csd
Low noise amplifier csdLow noise amplifier csd
Low noise amplifier csd
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
RF_Amplifier_Design
RF_Amplifier_DesignRF_Amplifier_Design
RF_Amplifier_Design
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Noise Error Calculation : Averaging and Industrial Standards (Formula)
Noise Error Calculation : Averaging and Industrial Standards (Formula)Noise Error Calculation : Averaging and Industrial Standards (Formula)
Noise Error Calculation : Averaging and Industrial Standards (Formula)
 
bandgap ppt
bandgap pptbandgap ppt
bandgap ppt
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
 
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...
Optimization for Minimum Noise Figure of RF Low Noise Amplifier in 0.18µm Tec...
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Electromagnetic Fields-UNIT2_Dipoles
Electromagnetic Fields-UNIT2_DipolesElectromagnetic Fields-UNIT2_Dipoles
Electromagnetic Fields-UNIT2_Dipoles
 
FET Biasing
FET BiasingFET Biasing
FET Biasing
 
Iaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dspIaetsd gmsk modulation implementation for gsm in dsp
Iaetsd gmsk modulation implementation for gsm in dsp
 
Bode plot
Bode plotBode plot
Bode plot
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Delta connection (line and phase quantities)
Delta connection (line and phase quantities)
 

Viewers also liked

Inoxsail-teaser2015
Inoxsail-teaser2015 Inoxsail-teaser2015
Inoxsail-teaser2015 Roberto Bosi
 
Morphology and structure of bacteria
Morphology and structure of bacteriaMorphology and structure of bacteria
Morphology and structure of bacteriabalaji natesan
 
Μαρία Κιουρί
Μαρία ΚιουρίΜαρία Κιουρί
Μαρία Κιουρίnellykallitsi
 
Loy Krathong festival
Loy Krathong festivalLoy Krathong festival
Loy Krathong festival0932629891
 
Teguh syahrizal tanjung
Teguh syahrizal tanjungTeguh syahrizal tanjung
Teguh syahrizal tanjungpanglimaagus
 
Sandbox Conference Presentation
Sandbox Conference PresentationSandbox Conference Presentation
Sandbox Conference PresentationJoseph Harrell
 
Mte(laporan hari kantin)2014
Mte(laporan hari kantin)2014Mte(laporan hari kantin)2014
Mte(laporan hari kantin)2014mizah1606
 
La qualità tutti i giorni.
La qualità tutti i giorni.La qualità tutti i giorni.
La qualità tutti i giorni.StanhomeAP
 
The instagram shopping experience
The instagram shopping experienceThe instagram shopping experience
The instagram shopping experiencemelltoo
 
Mariolis_anaptyksh_xreos
Mariolis_anaptyksh_xreosMariolis_anaptyksh_xreos
Mariolis_anaptyksh_xreosallagiporeias
 
Cryptologypastpresentandfuture 130131082256-phpapp02
Cryptologypastpresentandfuture 130131082256-phpapp02Cryptologypastpresentandfuture 130131082256-phpapp02
Cryptologypastpresentandfuture 130131082256-phpapp02KARNAN L S
 
Lindo_trapezes_protaseis
Lindo_trapezes_protaseisLindo_trapezes_protaseis
Lindo_trapezes_protaseisallagiporeias
 
Factoring Scenarios: How We Help Small Businesses
Factoring Scenarios: How We Help Small BusinessesFactoring Scenarios: How We Help Small Businesses
Factoring Scenarios: How We Help Small BusinessesVersant Funding LLC
 

Viewers also liked (16)

Inoxsail-teaser2015
Inoxsail-teaser2015 Inoxsail-teaser2015
Inoxsail-teaser2015
 
Morphology and structure of bacteria
Morphology and structure of bacteriaMorphology and structure of bacteria
Morphology and structure of bacteria
 
Μαρία Κιουρί
Μαρία ΚιουρίΜαρία Κιουρί
Μαρία Κιουρί
 
Muhamad rifky
Muhamad rifkyMuhamad rifky
Muhamad rifky
 
Loy Krathong festival
Loy Krathong festivalLoy Krathong festival
Loy Krathong festival
 
trabajo en clase
trabajo en clasetrabajo en clase
trabajo en clase
 
Teguh syahrizal tanjung
Teguh syahrizal tanjungTeguh syahrizal tanjung
Teguh syahrizal tanjung
 
Sandbox Conference Presentation
Sandbox Conference PresentationSandbox Conference Presentation
Sandbox Conference Presentation
 
Mte(laporan hari kantin)2014
Mte(laporan hari kantin)2014Mte(laporan hari kantin)2014
Mte(laporan hari kantin)2014
 
La qualità tutti i giorni.
La qualità tutti i giorni.La qualità tutti i giorni.
La qualità tutti i giorni.
 
The instagram shopping experience
The instagram shopping experienceThe instagram shopping experience
The instagram shopping experience
 
Mariolis_anaptyksh_xreos
Mariolis_anaptyksh_xreosMariolis_anaptyksh_xreos
Mariolis_anaptyksh_xreos
 
Cryptologypastpresentandfuture 130131082256-phpapp02
Cryptologypastpresentandfuture 130131082256-phpapp02Cryptologypastpresentandfuture 130131082256-phpapp02
Cryptologypastpresentandfuture 130131082256-phpapp02
 
Del Piero
Del PieroDel Piero
Del Piero
 
Lindo_trapezes_protaseis
Lindo_trapezes_protaseisLindo_trapezes_protaseis
Lindo_trapezes_protaseis
 
Factoring Scenarios: How We Help Small Businesses
Factoring Scenarios: How We Help Small BusinessesFactoring Scenarios: How We Help Small Businesses
Factoring Scenarios: How We Help Small Businesses
 

Similar to ECE6420 Final Project Report

DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...csijjournal
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationIRJET Journal
 
Double feedback technique for reduction of Noise LNA with gain enhancement
Double feedback technique for reduction of Noise LNA with gain enhancementDouble feedback technique for reduction of Noise LNA with gain enhancement
Double feedback technique for reduction of Noise LNA with gain enhancementijceronline
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsA New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsTELKOMNIKA JOURNAL
 
Analog Circuit Design - Miller Amplifier Compensation
Analog Circuit Design - Miller Amplifier CompensationAnalog Circuit Design - Miller Amplifier Compensation
Analog Circuit Design - Miller Amplifier CompensationNicolò Bonacina
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier mrinal mahato
 
Design of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationDesign of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationIOSR Journals
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & MohammadKaveh Dehno
 
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
7- 1st semester_BJT_AC_Analysis (re model)-1.pdfssuserfefa63
 
study of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designstudy of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designManoj Kumar
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers ls234
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...AIMST University
 

Similar to ECE6420 Final Project Report (20)

DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
DESIGN AND ANALYSIS OF 2 GHz 130nm CMOS CASCODE LOW NOISE AMPLIFIER WITH INTE...
 
Frequency Response.pptx
Frequency Response.pptxFrequency Response.pptx
Frequency Response.pptx
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
 
Bh31403408
Bh31403408Bh31403408
Bh31403408
 
Double feedback technique for reduction of Noise LNA with gain enhancement
Double feedback technique for reduction of Noise LNA with gain enhancementDouble feedback technique for reduction of Noise LNA with gain enhancement
Double feedback technique for reduction of Noise LNA with gain enhancement
 
SAR_ADC__Resumo
SAR_ADC__ResumoSAR_ADC__Resumo
SAR_ADC__Resumo
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsA New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
 
Analog Circuit Design - Miller Amplifier Compensation
Analog Circuit Design - Miller Amplifier CompensationAnalog Circuit Design - Miller Amplifier Compensation
Analog Circuit Design - Miller Amplifier Compensation
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier
 
Design of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationDesign of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax Application
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
Q-watt.pdf
Q-watt.pdfQ-watt.pdf
Q-watt.pdf
 
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
 
study of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designstudy of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter design
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
 

More from Tianhao Li

BLE_Indoor_Report
BLE_Indoor_ReportBLE_Indoor_Report
BLE_Indoor_ReportTianhao Li
 
CMOS_MEMS_Filter_Mixer
CMOS_MEMS_Filter_MixerCMOS_MEMS_Filter_Mixer
CMOS_MEMS_Filter_MixerTianhao Li
 
6360_Project2_Report
6360_Project2_Report6360_Project2_Report
6360_Project2_ReportTianhao Li
 
Team2_Presentation_ECE6414_S16
Team2_Presentation_ECE6414_S16Team2_Presentation_ECE6414_S16
Team2_Presentation_ECE6414_S16Tianhao Li
 
Pulse_Oximeter_SoC
Pulse_Oximeter_SoCPulse_Oximeter_SoC
Pulse_Oximeter_SoCTianhao Li
 
Publications_Photovoltaics_Tianhao_Li
Publications_Photovoltaics_Tianhao_LiPublications_Photovoltaics_Tianhao_Li
Publications_Photovoltaics_Tianhao_LiTianhao Li
 

More from Tianhao Li (6)

BLE_Indoor_Report
BLE_Indoor_ReportBLE_Indoor_Report
BLE_Indoor_Report
 
CMOS_MEMS_Filter_Mixer
CMOS_MEMS_Filter_MixerCMOS_MEMS_Filter_Mixer
CMOS_MEMS_Filter_Mixer
 
6360_Project2_Report
6360_Project2_Report6360_Project2_Report
6360_Project2_Report
 
Team2_Presentation_ECE6414_S16
Team2_Presentation_ECE6414_S16Team2_Presentation_ECE6414_S16
Team2_Presentation_ECE6414_S16
 
Pulse_Oximeter_SoC
Pulse_Oximeter_SoCPulse_Oximeter_SoC
Pulse_Oximeter_SoC
 
Publications_Photovoltaics_Tianhao_Li
Publications_Photovoltaics_Tianhao_LiPublications_Photovoltaics_Tianhao_Li
Publications_Photovoltaics_Tianhao_Li
 

ECE6420 Final Project Report

  • 1. 1 ECE6420 Wireless IC Design Final Design Project Report Tianhao Li 902885592 Chenxi Yin 903146918 School of Electrical and Computer Engineering Georgia Institute of Technology
  • 2. 2 Introduction In this report, a wideband direct downconversion receiver (RX) consisting of a differential common gate low-noise amplifier (LNA) and two Gilbert Cell mixers is presented. The LNA achieves a high noise figure (NF) and wideband input matching by taking advantage of multiple feedback to decouple the trade-off between input matching and gain. This design is inspired by work concluded in [1]. Figure 1. Topology of the direct downconversion RX. Performance Summary of the Proposed Design Specifications Requirements Measurements Achieved? 𝑉𝐷𝐷 ≤ 2.5 V 2.5 V Yes DC Power Budget 80 mW 41.45 mW Yes |𝑆11| < -10 dB -10.035 dB Yes Frequency Bandwidth 2.4 – 5 GHz 2.4 – 5 GHz Yes IF Bandwidth 50 MHz 50 MHz Yes Peak Conversion Gain 27 dB 32.016 dB Yes Noise Figure 5 dB Min: 3.421 dB Max: 3.691 dB Yes 𝑃1𝑑𝐵 @ Input -25 dBm -23.42 dBm Yes 𝑃𝐼𝐼𝑃3 -20 dBm -14.557 dBm Yes Total Inductance Budget 20 nH 2.29 nH Yes
  • 3. 3 Schematic Figure 2. Schematic of the LNA with the output buffer [1]. Device/Source Value Device/Source Value 𝑀1 19 um/0.175 um 𝑅 𝐿 880 Ohm 𝑀2 2 um/1 um 𝐶1 0.7 pF 𝑀3 11 um/0.3 um 𝑉𝐵1 1.28 V 𝑀 𝐵1 15 um/0.13 um 𝑉𝐵2 1.4 V 𝑀 𝐵2 25 um/0.9 um 𝑉𝐵3 1.16 V 𝑅 𝐵 5 kOhm 𝑉𝐵4 2.05 V
  • 4. 4 Figure 3. Schematic of the Gilbert Cell mixer [2]. Device/Source Value Device/Source Value 𝑀4 7 um/0.145 um 𝑅 𝐷 755 Ohm 𝑀5 31 um/0.13 um 𝑉𝐵5 0.844 V 𝑀6 90 um/0.4 um 𝑉𝐵6 0.781 V 𝑅 𝐵 5 kOhm 𝑉𝐵7 1.5 V Theoretical Analyses a) Input Matching 𝑅𝑖𝑛 = 1 𝑔 𝑚1(1 − 𝐴 𝑃𝑂𝑆 − 𝐵 𝑃𝑂𝑆) where 𝐴 𝑃𝑂𝑆 = 𝑔 𝑚2 𝑅 𝐿 and 𝐵 𝑃𝑂𝑆 = 𝑔 𝑚3 2𝑔 𝑚1 𝐼 𝐷1 = 1 2 𝜇 𝑛 𝐶 𝑜𝑥 𝑊3 𝐿3 (𝑉𝑔𝑠3 − 𝑉𝑡𝑛)2 = 1.53 mA 𝑔 𝑚1 = √2𝜇 𝑛 𝐶 𝑜𝑥 𝑊1 𝐿1 𝐼 𝐷1 = 0.00682 S 𝐼 𝐷2 = 1 2 𝜇 𝑝 𝐶 𝑜𝑥 𝑊2 𝐿2 (𝑉𝑔𝑠2 − 𝑉𝑡𝑝)2 = 78.86 uA 𝑔 𝑚2 = √2𝜇 𝑝 𝐶 𝑜𝑥 𝑊2 𝐿2 𝐼 𝐷2 = 2.103 ∗ 10−4 S
  • 5. 5 𝑔 𝑚3 = √2𝜇 𝑛 𝐶 𝑜𝑥 𝑊3 𝐿3 𝐼 𝐷1 = 0.00397 S 𝑅𝑖𝑛 = 280 Ω b) Conversion Gain 𝐴 𝑣,𝑏𝑎𝑙𝑢𝑛 = √2 𝐴 𝑣,𝐿𝑁𝐴 = 𝑅 𝐿(1 + 𝑔 𝑚3 𝑅 𝑠) 𝑅 𝑠(1 − 𝐴 𝑃𝑂𝑆) = 12.942 𝐴 𝑣,𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑔 𝑚𝐵1 𝑟𝑜𝐵2 1 + 𝑔 𝑚𝐵1 𝑟𝑜𝐵2 ≈ 1 𝐴 𝑣,𝑚𝑖𝑥𝑒𝑟 = 2 𝜋 𝑔 𝑚5 𝑅 𝐷 (1 − ∆𝑇 𝑇𝐿𝑂 ) = 3.277 Assume perfect input matching, 𝐶𝐺 = 1 2 𝐴 𝑣,𝑏𝑎𝑙𝑢𝑛 𝐴 𝑣,𝐿𝑁𝐴 𝐴 𝑣,𝑏𝑢𝑓𝑓𝑒𝑟 𝐴 𝑣,𝑚𝑖𝑥𝑒𝑟 = 59.98 = 35.56 dB c) Noise Figure 𝑁𝐹 = 1 + (𝑔 𝑚1 𝑅 𝑠 − 1)2 𝑔 𝑚1 𝑅𝑠 𝛾 + 𝑔 𝑚2 𝑅𝑠 𝛾 + 𝑔 𝑚3 𝑅𝑠 𝛾 + (1 + 1 2𝑔 𝑚1 𝑅𝑠 ) 2 𝑅 𝑠 𝑅 𝐿 = 3.76 dB Simulation 1. Input Matching |𝑆11| is below -10.035 dB in the desired band.
  • 6. 6 2. Conversion Gain The peak conversion gain is 32.016 dB. 5 GHz is within the -3dB bandwidth. 3. Noise Figure 𝑁𝐹 𝑚𝑖𝑛 is 3.421 dB when 𝑓𝑅𝐹 = 2.4 GHz and 𝑁𝐹𝑚𝑎𝑥 is 3.691 dB when 𝑓𝑅𝐹 = 5 GHz.
  • 7. 7 4. 𝑷 𝑰𝑰𝑷 𝟑 The lowest 𝐼𝐼𝑃3 is -14.557 dBm. 5. 𝑷 𝟏𝒅𝑩 The worst 𝑃1𝑑𝐵 is -23.42 dBm.
  • 8. 8 6. Power Consumption Total current drawn from 𝑉𝐷𝐷 is 16.58 mA with 𝑉𝐷𝐷 = 2.5 V . Therefore, total power consumption is 41.45 mW. Comparison between Simulation and Calculation a) Input Matching For this design the input resistance 𝑅𝑖𝑛 (after matching network) is 280Ω, comparing to the 100 Ω the source impedance LNA sees. At high frequency, 𝐶𝑔𝑠 will shunt current from input resistance to analog ground; therefore inductive matching network at input is desirable. b) Conversion Gain The conversion gain of this wideband receiver is achieved through the combination of ideal balun, differential LNA, voltage buffer, and Gilbert cell mixer. The total conversion gain for this design is 32.016 dB. Comparing to theoretical calculation result: 35.56 dB. Channel length modulation is ignored in the hand analysis because the difficulty to extract lambda from model file, which might affect the gain calculation significantly. c) Noise Figure The worst case NF in this design happens at 5GHz stands at 3.69 dB, comparing to 3.76 dB through hand calculation (where 𝛾 = 2 3 ). The hand analysis result might be worse because trans- conductance 𝑔 𝑚 might be smaller in the simulation results.
  • 9. 9 References [1] S. H. K. E. E. Sobhy, A. Helmy, and E. Sinencio, ‘‘A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback,’’ IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3154–3161, Dec. 2011. [2] cas.ee.ic.ac.uk/old/students/ganesh/mixers.html