SlideShare a Scribd company logo
1 of 14
THE UNIVERSITY OF TEXAS AT DALLAS
ERIK JONSSON SCHOOL OF ENGINEERING & COMPUTER SCIENCE
EERF 6330 RFIC DESIGN Kenneth O.
SPRING 2016
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS
USING THE 3DB BANDWIDTH:
BY ILANGO JEYASUBRAMANIAN (ixj150230)
ANALYSIS OF SPIRAL INDUCTORUSED IN LNA;
INDUCTOR LAYOUT:
DRC_CHECK:
All the inductance, parasitic resistance and capacitance calculation is based on the following paper, “DESIGN
OF PLANAR RECTANGULAR MICROELECTRONIC INDUCTORS“,H. M. GREENHOUSE,SENIOR MEMBER,
IEEE.
CALCULATION OF TOTAL INDUCTANCE ( L ) :
MATLAB FUNCTION FOR CALCULATINGSELF-INDUCTANCE:
function l=L(len)
a=10e-4;
b=0.6e-4;
l=0.002*len*(log((2*len)/(a+b))+ 0.2505 + ((a+b)/(3*len)) + (1/4));
MATLAB FUNCTION FOR CALCULATINGMUTUAL-INDUCTANCE FOR SAME FILAMENT LENGTHS:
function m1=Ms(l,d,w)
GMD=exp( log(d) - ( ((1/12)*((w/d)^2)) + ((1/60)*((w/d)^4)) + ((1/168)*((w/d)^6))+ ((1/360)*((w/d)^8)) + ((1/660)*((w/d)^10)) ) );
Q=log((l/GMD) + ((1+(l/GMD)^2)^(1/2))) - ((1+(GMD/l)^2)^(1/2)) + (GMD/l);
m1=2*l*Q;
MATLAB FUNCTION FOR CALCULATINGMUTUAL-INDUCTANCE FOR DIFFERENT FILAMENT LENGTHS:
function m2 = Md(lm,lp,lq,d,w)
if lp~=0 & lq~=0
Mmp=Ms((lm+lp),d,w);
Mmq=Ms((lm+lq),d,w);
Mp =Ms(lp,d,w);
Mq =Ms(lq,d,w);
m2 =((Mmp+Mmq)-(Mp+Mq))/2;
elseif lp==0 & lq~=0
Mmp=Ms((lm+lp),d,w);
Mmq=Ms((lm+lq),d,w);
Mp =0;
Mq =Ms(lq,d,w);
m2 =((Mmp+Mmq)-(Mp+Mq))/2;
elseif lp~=0 & lq==0
Mmp=Ms((lm+lp),d,w);
Mmq=Ms((lm+lq),d,w);
Mp =Ms(lp,d,w);
Mq =0;
m2 =((Mmp+Mmq)-(Mp+Mq))/2;
end
MATLAB FUNCTION FOR CALCULATINGTOTAL-INDUCTANCE:
%FILAMENT LENGTHS
l1 = 300e-4;
l2 = 300e-4;
l3 = 300e-4;
l4 = 280e-4;
l5 = 280e-4;
l6 = 260e-4;
l7 = 260e-4;
l8 = 150e-4;
lMQ = 60e-4;
%SELF-INDUCTANCE in uH
Lind=L(l1)+L(l2)+L(l3)+L(l4)+L(l5)+L(l6)+L(l7)+L(l8)+L(lMQ)
M15 =Md(280e-4,20e-4,0,20e-4,10e-4);
M51 =Ms(280e-4,20e-4,10e-4);
M26 =Md(260e-4,20e-4,20e-4,20e-4,10e-4);
M62 =Ms(260e-4,20e-4,10e-4);
M37 =Md(260e-4,20e-4,20e-4,20e-4,10e-4);
M73 =Ms(260e-4,20e-4,10e-4);
M48 =Md(150e-4,20e-4,110e-4,20e-4,10e-4);
M84 =Ms(150e-4,20e-4,10e-4);
M3MQ=Md(15e-4,285e-4,0,170e-4,10e-4);
MMQ3=Ms(15e-4,170e-4,10e-4);
%POSITIVE MUTUAL INDUCTANCE in nH
Mpos=M15+M51+M26+M62+M37+M73+M48+M84+M3MQ+MMQ3
M13=Ms(300e-4,300e-4,10e-4);
M31=Ms(300e-4,300e-4,10e-4);
M17=Md(260e-4,20e-4,20e-4,280e-4,10e-4);
M71=Ms(260e-4,280e-4,10e-4);
M35=Md(280e-4,20e-4,0,280e-4,10e-4);
M53=Ms(280e-4,280e-4,10e-4);
M57=Md(260e-4,0,20e-4,260e-4,10e-4);
M75=Ms(260e-4,260e-4,10e-4);
M24=Md(280e-4,0,20e-4,300e-4,10e-4);
M42=Ms(280e-4,300e-4,10e-4);
M28=Md(150e-4,20e-4,130e-4,280e-4,10e-4);
M82=Ms(150e-4,280e-4,10e-4);
M46=Md(260e-4,20e-4,0,280e-4,10e-4);
M64=Ms(260e-4,280e-4,10e-4);
M68=Md(150e-4,0,110e-4,260e-4,10e-4);
M86=Ms(150e-4,260e-4,10e-4);
M1MQ=Md(15e-4,285e-4,0,130e-4,10e-4);
MMQ1=Ms(15e-4,130e-4,10e-4);
M5MQ=Md(15e-4,265e-4,0,110e-4,10e-4);
MMQ5=Ms(15e-4,110e-4,10e-4);
%NEGATIVE MUTUAL INDUCTANCE in nH
Mneg=M13+M31+M17+M71+M53+M35+M57+M75+M24+M42+M28+M82+M64+M46+M68+M86+M1MQ+MMQ1+M5MQ+MM
Q5
Total = (Lind*1e3)+Mpos-Mneg
RESULTS:
Total inductance = 2.4963nH
CALCULATION OF CAPACITANCE (Cp):
Epsilon=8.854e-12;
Wmq=10e-6; %WIDTH OF MQ
Hmq=4.79e-6; %HEIGHT OF MQ
Tmq=0.6e-6; %THICKNESS OF MQ
a=(Wmq-(Tmq/2))/Hmq;
c=(2*Hmq)/Tmq;
b=log(1 + c + sqrt(c*(c+2)));
CMQ=3.9*Epsilon*(a+((2*3.14)/b)) %CAPACITANCE OF MQ
Wmg=10e-6; %WIDTH OF MG
Hmg=6.04e-6; %HEIGHT OF MG
Tmg=0.6e-6; %THICKNESS OF MQ
a=(Wmg-(Tmg/2))/Hmg;
c=(2*Hmg)/Tmg;
b=log(1 + c + sqrt(c*(c+2)));
CMG=3.9*Epsilon*(a+((2*3.14)/b)) %CAPACITANCE OF MG
Cp=((CMG*2130e-6)+(CMQ*60e-6))/2 %CAPACITANCE (Cp)
RESULTS:
CAPACITANCE (Cp) = 0.1247pF
CALCULATION OF RESISTANCE (Rs):
%FILAMENT LENGTHS
l1 = 300e-6;
l2 = 300e-6;
l3 = 300e-6;
l4 = 280e-6;
l5 = 280e-6;
l6 = 260e-6;
l7 = 260e-6;
l8 = 150e-6;
lMQ= 60e-6;
W = 10e-6;
del=1/sqrt(3.14*1.26e-6*4e7*4e9) %Delta value for skin effect
RMG=0.0339; %SHEET RESISTANCE OF MG
RMQ=0.0339; %SHEET RESISTANCE OF MQ
%RESISTANCE OF EACH MG FILAMENTS
R1 =((l1-(2*W))*RMG)/(2*del);
R2 =((l2-(4*W))*RMG)/(2*del);
R3 =((l3-(4*W))*RMG)/(2*del);
R4 =((l4-(4*W))*RMG)/(2*del);
R5 =((l5-(4*W))*RMG)/(2*del);
R6 =((l6-(4*W))*RMG)/(2*del);
R7 =((l7-(4*W))*RMG)/(2*del);
R8 =((l8-(2*W))*RMG)/(2*del);
%RESISTANCE OF MQ FILAMENT
R_mq=(lMQ*RMQ)/(del);
%RESISTANCE OF ALL CORNERS
R_corner=7*((W/del)+0.5)*RMG;
%RESISTANCE OF CONTACTS
Rcon=0.25/169;
%TOTAL RESISTANCE
R_tot=R1+R2+R3+R4+R5+R6+R7+R8+R_mq+Rcon+R_corner
RESULTS:
TOTAL RESISTANCE (Rs) = 28.5754 Ohm
CALCULATION OF QUALITYFACTOR:
w=2*3.14*4e9;
L=2.4963e-9;
Rs=28.5754;
Q1=(w*L)./Rs
RESULTS:
Q = 2.1944
MATLAB CODE FOR CALCULATING Qconv OF INDUCTOR:
Qconvis the conventional quality factor measurement of an inductor done as
(-Imag(y11)/Real(y11)) of an inductor.
CODE:
f=[0:10e5:10e9];
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs));
Img_y11 =imag(y11);
Real_y11=real(y11);
Qc =-(Img_y11./Real_y11)
plot(f,Qc)
ylabel('Qconv')
xlabel('frquency')
MATLAB CODE FOR CALCULATING Qbw :
Qbw defines the quality factor of the inductor by the 3db bandwidth of the
inductor Qbw = w/∆𝑤 based on the paper “Estimation Methods for Quality Factors of Inductors Fabricated in Silicon
Integrated Circuit Process Technologies”, Kenneth O,IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33,
NO. 8, AUGUST 1998.
We can see the bandwidth and frequency stability factor are defined only at the resonant frequency, measured
data can be used to extract them at the self-resonant frequency of an inductor. Hence, Qconv helps to measure the
Q factor only at the inductors self-resonance.
However Qbw helps to measure Q factor at a resonant frequency different from the inductor self-resonant
frequency by numerically adding a capacitor (Cnum ) in parallel to the measured data, and by computing the
parameters at the resonant frequency of the resulting RLC circuit.
At moderate to high frequencies, the commonly used Q definition [-Im(y11)/ Re(y11)] can significantly
underestimate and can even give unreasonable results. Data obtained using the new methods suggest that quality
factors remain high and integrated inductors remain useful all the way up to their self-resonant frequencies, contrary
to the estimation by Qconv.
FOR 1GHZ:
%Added Cnum =2.23pF in parallel for self-resonance at 1GHZ
f=[0.5:10e5:3e9];
c=223e-14
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
Cnum=(1./(2*3.14*f*c*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum);
Img_y11 =imag(y11);
Real_y11=real(y11);
Q =-(Img_y11./Real_y11)
subplot(1,2,1)
plot(f,Q)
ylabel('Qc-1GHZ')
xlabel('frquency')
Qc = abs(1./y11)
subplot(1,2,2)
plot(f,Qc)
ylabel('Magnitude of(1/y11)-1GHZ')
xlabel('frquency')
b=powerbw(Qc)
Qbw=(2*3.14*1e9)./b
RESULT:
Qbw at 1GHZ = 1.7667e+13
FOR 2GHZ:
%Added Cnum =1.25pF in parallel for self-resonance at 2GHZ
f=[0.5:10e5:10e9];
c=125e-14
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
Cnum=(1./(2*3.14*f*c*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum);
Img_y11 =imag(y11);
Real_y11=real(y11);
Q =-(Img_y11./Real_y11)
subplot(1,2,1)
plot(f,Q)
ylabel('Qc-2GHZ')
xlabel('frquency')
Qc = abs(1./y11)
subplot(1,2,2)
plot(f,Qc)
ylabel('Magnitude of(1/y11)-2GHZ')
xlabel('frquency')
b=powerbw(Qc)
Qbw=(2*3.14*2e9)./b
RESULT:
Qbw at 2GHZ = 5.8346e+13
FOR 3GHZ:
%Added Cnum =0.695pF in parallel for self-resonance at 3GHZ
f=[0.5:10e5:3e9];
c=6.95e-13
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
Cnum=(1./(2*3.14*f*c*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum);
Img_y11 =imag(y11);
Real_y11=real(y11);
Q =-(Img_y11./Real_y11)
subplot(1,2,1)
plot(f,Q)
ylabel('Qc-3GHZ')
xlabel('frquency')
Qc = abs(1./y11)
subplot(1,2,2)
plot(f,Qc)
ylabel('Magnitude of(1/y11)-3GHZ')
xlabel('frquency')
b=powerbw(Qc)
Qbw=(2*3.14*3e9)./b
RESULT:
Qbw at 3GHZ = 9.0707e+13
FOR 4GHZ:
%Added Cnum =0.401pF in parallel for self-resonance at 4GHZ
f=[0.5:10e5:3e9];
c=4.01e-13
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
Cnum=(1./(2*3.14*f*c*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum);
Img_y11 =imag(y11);
Real_y11=real(y11);
Q =-(Img_y11./Real_y11)
subplot(1,2,1)
plot(f,Q)
ylabel('Qc-4GHZ')
xlabel('frequency')
Qc = abs(1./y11)
subplot(1,2,2)
plot(f,Qc)
ylabel('Magnitude of(1/y11)-4GHZ')
xlabel('frequency')
b=powerbw(Qc)
Qbw=(2*3.14*4e9)./b
RESULT:
Qbw at 4GHZ = 1.1696e+14
FOR 5GHZ:
%Added Cnum =0.233pF for self-resonance at 5GHZ
f=[0.5:10e5:3e9];
c=2.33e-13
cp =1.2470e-13;
l =2.4963e-9;
Rs =28.5754;
Rsub=10;
Cp1 =(1./(2*3.14*f*cp*i));
Cnum=(1./(2*3.14*f*c*i));
L =(2*3.14*f*l*i);
y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum);
Img_y11 =imag(y11);
Real_y11=real(y11);
Q =-(Img_y11./Real_y11)
subplot(1,2,1)
plot(f,Q)
ylabel('Qc-5GHZ')
xlabel('frequency')
Qc = abs(1./y11)
subplot(1,2,2)
plot(f,Qc)
ylabel('Magnitude of(1/y11)-5GHZ')
xlabel('frequency')
b=powerbw(Qc)
Qbw=(2*3.14*5e9)./b
RESULT:
Qbw at 5GHZ = 1.3339e+14
ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS  USING THE 3DB BANDWIDTH

More Related Content

Viewers also liked

IEDM_2014_paper_slides
IEDM_2014_paper_slidesIEDM_2014_paper_slides
IEDM_2014_paper_slidesDavid Goren
 
Potential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectricPotential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectricJonas Sundqvist
 
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...Ilango Jeyasubramanian
 
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...Ilango Jeyasubramanian
 
PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...
 PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI... PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...
PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...Ilango Jeyasubramanian
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERIlango Jeyasubramanian
 
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGY
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGYRELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGY
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGYIlango Jeyasubramanian
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuitshardikpanchal424
 
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGY
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGYASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGY
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGYIlango Jeyasubramanian
 

Viewers also liked (10)

IEDM_2014_paper_slides
IEDM_2014_paper_slidesIEDM_2014_paper_slides
IEDM_2014_paper_slides
 
Potential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectricPotential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectric
 
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
 
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...
DESIGNED DYNAMIC SEGMENTED LRU AND MODIFIED MOESI PROTOCOL FOR RING CONNECTED...
 
PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...
 PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI... PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...
PARASITICS REDUCTION FOR RFIC CMOS LAYOUT AND IIP3 VS Q-BASED DESIGN ANALYSI...
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
 
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGY
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGYRELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGY
RELIABLE NoC ROUTER ARCHITECTURE DESIGN USING IBM 130NM TECHNOLOGY
 
STANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGNSTANDARD CELL LIBRARY DESIGN
STANDARD CELL LIBRARY DESIGN
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGY
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGYASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGY
ASIC DESIGN OF MINI-STEREO DIGITAL AUDIO PROCESSOR UNDER SMIC 180NM TECHNOLOGY
 

Similar to ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH

Buck converter controlled with ZAD and FPIC for DC-DC signal regulation
Buck converter controlled with ZAD and FPIC for DC-DC signal regulationBuck converter controlled with ZAD and FPIC for DC-DC signal regulation
Buck converter controlled with ZAD and FPIC for DC-DC signal regulationTELKOMNIKA JOURNAL
 
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...Eswar Publications
 
Discrete-wavelet-transform recursive inverse algorithm using second-order est...
Discrete-wavelet-transform recursive inverse algorithm using second-order est...Discrete-wavelet-transform recursive inverse algorithm using second-order est...
Discrete-wavelet-transform recursive inverse algorithm using second-order est...TELKOMNIKA JOURNAL
 
Model predictive-fuzzy-control-of-air-ratio-for-automotive-engines
Model predictive-fuzzy-control-of-air-ratio-for-automotive-enginesModel predictive-fuzzy-control-of-air-ratio-for-automotive-engines
Model predictive-fuzzy-control-of-air-ratio-for-automotive-enginespace130557
 
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorNovelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorIRJET Journal
 
2014.03.31.bach glc-pham-finalizing[conflict]
2014.03.31.bach glc-pham-finalizing[conflict]2014.03.31.bach glc-pham-finalizing[conflict]
2014.03.31.bach glc-pham-finalizing[conflict]Bách Vũ Trọng
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintIJECEIAES
 
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...VLSICS Design
 
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...VLSICS Design
 
Design of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceDesign of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceIAEME Publication
 
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and Sensing
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and SensingLink and Energy Adaptive Design of Sustainable IR-UWB Communications and Sensing
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and SensingDong Zhao
 
Accurate Symbolic Steady State Modeling of Buck Converter
Accurate Symbolic Steady State Modeling of Buck ConverterAccurate Symbolic Steady State Modeling of Buck Converter
Accurate Symbolic Steady State Modeling of Buck ConverterIJECEIAES
 
Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Santhosh Kumar
 
Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...TELKOMNIKA JOURNAL
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReportDaniel K
 

Similar to ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH (20)

Buck converter controlled with ZAD and FPIC for DC-DC signal regulation
Buck converter controlled with ZAD and FPIC for DC-DC signal regulationBuck converter controlled with ZAD and FPIC for DC-DC signal regulation
Buck converter controlled with ZAD and FPIC for DC-DC signal regulation
 
Article 1
Article 1Article 1
Article 1
 
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
 
Discrete-wavelet-transform recursive inverse algorithm using second-order est...
Discrete-wavelet-transform recursive inverse algorithm using second-order est...Discrete-wavelet-transform recursive inverse algorithm using second-order est...
Discrete-wavelet-transform recursive inverse algorithm using second-order est...
 
Model predictive-fuzzy-control-of-air-ratio-for-automotive-engines
Model predictive-fuzzy-control-of-air-ratio-for-automotive-enginesModel predictive-fuzzy-control-of-air-ratio-for-automotive-engines
Model predictive-fuzzy-control-of-air-ratio-for-automotive-engines
 
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorNovelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
 
2014.03.31.bach glc-pham-finalizing[conflict]
2014.03.31.bach glc-pham-finalizing[conflict]2014.03.31.bach glc-pham-finalizing[conflict]
2014.03.31.bach glc-pham-finalizing[conflict]
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
 
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
 
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
ANALYSIS OF SMALL-SIGNAL PARAMETERS OF 2-D MODFET WITH POLARIZATION EFFECTS F...
 
Design of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceDesign of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospace
 
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and Sensing
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and SensingLink and Energy Adaptive Design of Sustainable IR-UWB Communications and Sensing
Link and Energy Adaptive Design of Sustainable IR-UWB Communications and Sensing
 
Modular Approach to Implement Model Predictive Control on Three Phase Voltage...
Modular Approach to Implement Model Predictive Control on Three Phase Voltage...Modular Approach to Implement Model Predictive Control on Three Phase Voltage...
Modular Approach to Implement Model Predictive Control on Three Phase Voltage...
 
Half Cycle Discrete Transformation for Voltage Sag Improvement in an Islanded...
Half Cycle Discrete Transformation for Voltage Sag Improvement in an Islanded...Half Cycle Discrete Transformation for Voltage Sag Improvement in an Islanded...
Half Cycle Discrete Transformation for Voltage Sag Improvement in an Islanded...
 
Accurate Symbolic Steady State Modeling of Buck Converter
Accurate Symbolic Steady State Modeling of Buck ConverterAccurate Symbolic Steady State Modeling of Buck Converter
Accurate Symbolic Steady State Modeling of Buck Converter
 
Performance analysis and enhancement of direct power control of DFIG based wi...
Performance analysis and enhancement of direct power control of DFIG based wi...Performance analysis and enhancement of direct power control of DFIG based wi...
Performance analysis and enhancement of direct power control of DFIG based wi...
 
Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual
 
Analysis
AnalysisAnalysis
Analysis
 
Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...Performance analysis for power-splitting energy harvesting based two-way full...
Performance analysis for power-splitting energy harvesting based two-way full...
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 

ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH

  • 1. THE UNIVERSITY OF TEXAS AT DALLAS ERIK JONSSON SCHOOL OF ENGINEERING & COMPUTER SCIENCE EERF 6330 RFIC DESIGN Kenneth O. SPRING 2016 ACCURATE Q-PREDICTION FOR RFIC SPIRAL INDUCTORS USING THE 3DB BANDWIDTH: BY ILANGO JEYASUBRAMANIAN (ixj150230)
  • 2. ANALYSIS OF SPIRAL INDUCTORUSED IN LNA; INDUCTOR LAYOUT: DRC_CHECK:
  • 3. All the inductance, parasitic resistance and capacitance calculation is based on the following paper, “DESIGN OF PLANAR RECTANGULAR MICROELECTRONIC INDUCTORS“,H. M. GREENHOUSE,SENIOR MEMBER, IEEE. CALCULATION OF TOTAL INDUCTANCE ( L ) : MATLAB FUNCTION FOR CALCULATINGSELF-INDUCTANCE: function l=L(len) a=10e-4; b=0.6e-4; l=0.002*len*(log((2*len)/(a+b))+ 0.2505 + ((a+b)/(3*len)) + (1/4)); MATLAB FUNCTION FOR CALCULATINGMUTUAL-INDUCTANCE FOR SAME FILAMENT LENGTHS: function m1=Ms(l,d,w) GMD=exp( log(d) - ( ((1/12)*((w/d)^2)) + ((1/60)*((w/d)^4)) + ((1/168)*((w/d)^6))+ ((1/360)*((w/d)^8)) + ((1/660)*((w/d)^10)) ) ); Q=log((l/GMD) + ((1+(l/GMD)^2)^(1/2))) - ((1+(GMD/l)^2)^(1/2)) + (GMD/l); m1=2*l*Q; MATLAB FUNCTION FOR CALCULATINGMUTUAL-INDUCTANCE FOR DIFFERENT FILAMENT LENGTHS: function m2 = Md(lm,lp,lq,d,w) if lp~=0 & lq~=0 Mmp=Ms((lm+lp),d,w); Mmq=Ms((lm+lq),d,w); Mp =Ms(lp,d,w); Mq =Ms(lq,d,w); m2 =((Mmp+Mmq)-(Mp+Mq))/2; elseif lp==0 & lq~=0 Mmp=Ms((lm+lp),d,w); Mmq=Ms((lm+lq),d,w); Mp =0; Mq =Ms(lq,d,w); m2 =((Mmp+Mmq)-(Mp+Mq))/2; elseif lp~=0 & lq==0 Mmp=Ms((lm+lp),d,w); Mmq=Ms((lm+lq),d,w); Mp =Ms(lp,d,w); Mq =0; m2 =((Mmp+Mmq)-(Mp+Mq))/2; end MATLAB FUNCTION FOR CALCULATINGTOTAL-INDUCTANCE: %FILAMENT LENGTHS l1 = 300e-4; l2 = 300e-4; l3 = 300e-4;
  • 4. l4 = 280e-4; l5 = 280e-4; l6 = 260e-4; l7 = 260e-4; l8 = 150e-4; lMQ = 60e-4; %SELF-INDUCTANCE in uH Lind=L(l1)+L(l2)+L(l3)+L(l4)+L(l5)+L(l6)+L(l7)+L(l8)+L(lMQ) M15 =Md(280e-4,20e-4,0,20e-4,10e-4); M51 =Ms(280e-4,20e-4,10e-4); M26 =Md(260e-4,20e-4,20e-4,20e-4,10e-4); M62 =Ms(260e-4,20e-4,10e-4); M37 =Md(260e-4,20e-4,20e-4,20e-4,10e-4); M73 =Ms(260e-4,20e-4,10e-4); M48 =Md(150e-4,20e-4,110e-4,20e-4,10e-4); M84 =Ms(150e-4,20e-4,10e-4); M3MQ=Md(15e-4,285e-4,0,170e-4,10e-4); MMQ3=Ms(15e-4,170e-4,10e-4); %POSITIVE MUTUAL INDUCTANCE in nH Mpos=M15+M51+M26+M62+M37+M73+M48+M84+M3MQ+MMQ3 M13=Ms(300e-4,300e-4,10e-4); M31=Ms(300e-4,300e-4,10e-4); M17=Md(260e-4,20e-4,20e-4,280e-4,10e-4); M71=Ms(260e-4,280e-4,10e-4); M35=Md(280e-4,20e-4,0,280e-4,10e-4); M53=Ms(280e-4,280e-4,10e-4); M57=Md(260e-4,0,20e-4,260e-4,10e-4); M75=Ms(260e-4,260e-4,10e-4); M24=Md(280e-4,0,20e-4,300e-4,10e-4); M42=Ms(280e-4,300e-4,10e-4); M28=Md(150e-4,20e-4,130e-4,280e-4,10e-4); M82=Ms(150e-4,280e-4,10e-4); M46=Md(260e-4,20e-4,0,280e-4,10e-4); M64=Ms(260e-4,280e-4,10e-4); M68=Md(150e-4,0,110e-4,260e-4,10e-4); M86=Ms(150e-4,260e-4,10e-4); M1MQ=Md(15e-4,285e-4,0,130e-4,10e-4);
  • 5. MMQ1=Ms(15e-4,130e-4,10e-4); M5MQ=Md(15e-4,265e-4,0,110e-4,10e-4); MMQ5=Ms(15e-4,110e-4,10e-4); %NEGATIVE MUTUAL INDUCTANCE in nH Mneg=M13+M31+M17+M71+M53+M35+M57+M75+M24+M42+M28+M82+M64+M46+M68+M86+M1MQ+MMQ1+M5MQ+MM Q5 Total = (Lind*1e3)+Mpos-Mneg RESULTS: Total inductance = 2.4963nH CALCULATION OF CAPACITANCE (Cp): Epsilon=8.854e-12; Wmq=10e-6; %WIDTH OF MQ Hmq=4.79e-6; %HEIGHT OF MQ Tmq=0.6e-6; %THICKNESS OF MQ a=(Wmq-(Tmq/2))/Hmq; c=(2*Hmq)/Tmq; b=log(1 + c + sqrt(c*(c+2))); CMQ=3.9*Epsilon*(a+((2*3.14)/b)) %CAPACITANCE OF MQ Wmg=10e-6; %WIDTH OF MG Hmg=6.04e-6; %HEIGHT OF MG Tmg=0.6e-6; %THICKNESS OF MQ a=(Wmg-(Tmg/2))/Hmg; c=(2*Hmg)/Tmg; b=log(1 + c + sqrt(c*(c+2))); CMG=3.9*Epsilon*(a+((2*3.14)/b)) %CAPACITANCE OF MG Cp=((CMG*2130e-6)+(CMQ*60e-6))/2 %CAPACITANCE (Cp) RESULTS: CAPACITANCE (Cp) = 0.1247pF CALCULATION OF RESISTANCE (Rs): %FILAMENT LENGTHS l1 = 300e-6; l2 = 300e-6; l3 = 300e-6; l4 = 280e-6; l5 = 280e-6; l6 = 260e-6; l7 = 260e-6; l8 = 150e-6;
  • 6. lMQ= 60e-6; W = 10e-6; del=1/sqrt(3.14*1.26e-6*4e7*4e9) %Delta value for skin effect RMG=0.0339; %SHEET RESISTANCE OF MG RMQ=0.0339; %SHEET RESISTANCE OF MQ %RESISTANCE OF EACH MG FILAMENTS R1 =((l1-(2*W))*RMG)/(2*del); R2 =((l2-(4*W))*RMG)/(2*del); R3 =((l3-(4*W))*RMG)/(2*del); R4 =((l4-(4*W))*RMG)/(2*del); R5 =((l5-(4*W))*RMG)/(2*del); R6 =((l6-(4*W))*RMG)/(2*del); R7 =((l7-(4*W))*RMG)/(2*del); R8 =((l8-(2*W))*RMG)/(2*del); %RESISTANCE OF MQ FILAMENT R_mq=(lMQ*RMQ)/(del); %RESISTANCE OF ALL CORNERS R_corner=7*((W/del)+0.5)*RMG; %RESISTANCE OF CONTACTS Rcon=0.25/169; %TOTAL RESISTANCE R_tot=R1+R2+R3+R4+R5+R6+R7+R8+R_mq+Rcon+R_corner RESULTS: TOTAL RESISTANCE (Rs) = 28.5754 Ohm CALCULATION OF QUALITYFACTOR: w=2*3.14*4e9; L=2.4963e-9; Rs=28.5754; Q1=(w*L)./Rs RESULTS: Q = 2.1944
  • 7. MATLAB CODE FOR CALCULATING Qconv OF INDUCTOR: Qconvis the conventional quality factor measurement of an inductor done as (-Imag(y11)/Real(y11)) of an inductor. CODE: f=[0:10e5:10e9]; cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs)); Img_y11 =imag(y11); Real_y11=real(y11); Qc =-(Img_y11./Real_y11) plot(f,Qc) ylabel('Qconv') xlabel('frquency')
  • 8. MATLAB CODE FOR CALCULATING Qbw : Qbw defines the quality factor of the inductor by the 3db bandwidth of the inductor Qbw = w/∆𝑤 based on the paper “Estimation Methods for Quality Factors of Inductors Fabricated in Silicon Integrated Circuit Process Technologies”, Kenneth O,IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 8, AUGUST 1998. We can see the bandwidth and frequency stability factor are defined only at the resonant frequency, measured data can be used to extract them at the self-resonant frequency of an inductor. Hence, Qconv helps to measure the Q factor only at the inductors self-resonance. However Qbw helps to measure Q factor at a resonant frequency different from the inductor self-resonant frequency by numerically adding a capacitor (Cnum ) in parallel to the measured data, and by computing the parameters at the resonant frequency of the resulting RLC circuit. At moderate to high frequencies, the commonly used Q definition [-Im(y11)/ Re(y11)] can significantly underestimate and can even give unreasonable results. Data obtained using the new methods suggest that quality factors remain high and integrated inductors remain useful all the way up to their self-resonant frequencies, contrary to the estimation by Qconv. FOR 1GHZ: %Added Cnum =2.23pF in parallel for self-resonance at 1GHZ f=[0.5:10e5:3e9]; c=223e-14 cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i)); Cnum=(1./(2*3.14*f*c*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum); Img_y11 =imag(y11); Real_y11=real(y11); Q =-(Img_y11./Real_y11) subplot(1,2,1) plot(f,Q) ylabel('Qc-1GHZ') xlabel('frquency') Qc = abs(1./y11) subplot(1,2,2) plot(f,Qc) ylabel('Magnitude of(1/y11)-1GHZ') xlabel('frquency')
  • 9. b=powerbw(Qc) Qbw=(2*3.14*1e9)./b RESULT: Qbw at 1GHZ = 1.7667e+13 FOR 2GHZ: %Added Cnum =1.25pF in parallel for self-resonance at 2GHZ f=[0.5:10e5:10e9]; c=125e-14 cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i)); Cnum=(1./(2*3.14*f*c*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum); Img_y11 =imag(y11); Real_y11=real(y11); Q =-(Img_y11./Real_y11) subplot(1,2,1) plot(f,Q) ylabel('Qc-2GHZ')
  • 10. xlabel('frquency') Qc = abs(1./y11) subplot(1,2,2) plot(f,Qc) ylabel('Magnitude of(1/y11)-2GHZ') xlabel('frquency') b=powerbw(Qc) Qbw=(2*3.14*2e9)./b RESULT: Qbw at 2GHZ = 5.8346e+13 FOR 3GHZ: %Added Cnum =0.695pF in parallel for self-resonance at 3GHZ f=[0.5:10e5:3e9]; c=6.95e-13 cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i)); Cnum=(1./(2*3.14*f*c*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum); Img_y11 =imag(y11); Real_y11=real(y11);
  • 11. Q =-(Img_y11./Real_y11) subplot(1,2,1) plot(f,Q) ylabel('Qc-3GHZ') xlabel('frquency') Qc = abs(1./y11) subplot(1,2,2) plot(f,Qc) ylabel('Magnitude of(1/y11)-3GHZ') xlabel('frquency') b=powerbw(Qc) Qbw=(2*3.14*3e9)./b RESULT: Qbw at 3GHZ = 9.0707e+13 FOR 4GHZ: %Added Cnum =0.401pF in parallel for self-resonance at 4GHZ f=[0.5:10e5:3e9]; c=4.01e-13 cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i));
  • 12. Cnum=(1./(2*3.14*f*c*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum); Img_y11 =imag(y11); Real_y11=real(y11); Q =-(Img_y11./Real_y11) subplot(1,2,1) plot(f,Q) ylabel('Qc-4GHZ') xlabel('frequency') Qc = abs(1./y11) subplot(1,2,2) plot(f,Qc) ylabel('Magnitude of(1/y11)-4GHZ') xlabel('frequency') b=powerbw(Qc) Qbw=(2*3.14*4e9)./b RESULT: Qbw at 4GHZ = 1.1696e+14 FOR 5GHZ: %Added Cnum =0.233pF for self-resonance at 5GHZ
  • 13. f=[0.5:10e5:3e9]; c=2.33e-13 cp =1.2470e-13; l =2.4963e-9; Rs =28.5754; Rsub=10; Cp1 =(1./(2*3.14*f*cp*i)); Cnum=(1./(2*3.14*f*c*i)); L =(2*3.14*f*l*i); y11 =(1./(Cp1+Rsub))+(1./(L+Rs))+ (1./Cnum); Img_y11 =imag(y11); Real_y11=real(y11); Q =-(Img_y11./Real_y11) subplot(1,2,1) plot(f,Q) ylabel('Qc-5GHZ') xlabel('frequency') Qc = abs(1./y11) subplot(1,2,2) plot(f,Qc) ylabel('Magnitude of(1/y11)-5GHZ') xlabel('frequency') b=powerbw(Qc) Qbw=(2*3.14*5e9)./b RESULT: Qbw at 5GHZ = 1.3339e+14