SlideShare a Scribd company logo
1 of 49
Download to read offline
Exploratory NEP modeling
Robert M. Edwards
Penn State
814.865.0037
rmenuc@engr.psu.edu
Motivation: System Integration
Steam
Generator &
Electrical:
Pressure
Vessel &
Piping
Core Design:
neutronics
thermal
hydraulics
Mechanical
Pumps, valves
turbines
System
Integration
(Control
Engineering)
DETAILED MODELSDETAILED MODELS
DETAILED MODELS DETAILED MODELS
References
 Scoping Calculations of Power Sources for Nuclear Electric Propulsion,
ORNL CR-191133, 1994
 50 MW 4-year reactor example data
 Brayton Power Conversion System Parametric Design Modeling for NEP,
NASA contractor report CR-191135, 1993
 500 kWe Brayton PCU
 Modular Modeling System (MMS): A Code for the Dynamic Simulation
of Fossil and Nuclear Power Plants: Overview and General Theory, EPRI
CS/NP-2989, 1983
 Preliminary Results of a Dynamic System Model for a Closed-Loop
Brayton Cycle Coupled to a Nuclear Reactor, Steven Wright, Sandia
National Lab.
 “Dynamic Analysis and Control System Design for an Advanced Nuclear
Gas Turbine Power Plant”, a dissertation in Mechanical Engineering,
MIT 1990.
Reactor Kinetics Equations
 output nr, relative reactor power
 input r(t), reactivity
 from control devices
 feedback from temperature, etc
 b is fraction of neutrons that are “delayed”
 
  1,...6icn
dt
dc
cn
t
dt
dn
irri
ir
ir
6
1i
i
r
r


b


br
 

reactor power response to 10 cents
without temperature feedback
0 1 2 3 4 5 6 7 8 9 10
1
1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
power response of reactor without feedback to 10 cents
seconds
relativereactorpower
  br 1.0t
Scoping Calculations of Power
Sources for Nuclear Electric
Propulsion, ORNL CR-191133, 1994
 50 MW, four year life
 82.24 cm diameter, 75.37 cm height
 82.92% enriched Uranium
 5871 fuel pins, 6.4 mm diameter
 Tantalum-181 clad, 0.6355 mm
 Tungsten liner, 0.127 mm
 Uranium-Nitride fuel, 4.826 mm
 Lithium coolant, 16.139 kg/s
 2.75 g/s per fuel pin
 500 oK inlet temperature, 1200 oK outlet
temperature
Reactor Fuel Pin Equations:
for 30 axial nodes, k
  ccinkp
k
ckcc
k
k
ck
f
kfk
f
f
kff
C/T)k(Tcm
R
)k(T)k(T
dt
)k(Td
dt
)k(dT
C/
R
)k(T)k(T
R
)k(T)k(T
dt
)k(dT
C/
R
)k(T)k(T
Q
dt
)k(dT


















 










 


Fuel (Tf)Clad (Tk)Coolant (Tc)
Tc(k)
Tc(k-1)
Rk Rf
Cc Ck Cf
Fuel temperature response to
10% step change in power
0 1 2 3 4 5 6 7 8 9 10
900
905
910
915
920
925
930
935
940
945
Fuel temperature response to 10% step in power
seconds
temperature(K)
SIMULINK Reactor Model
reactor power response to 10 cents
WITH temperature feedback
0 2 4 6 8 10
0.98
1
1.02
1.04
1.06
1.08
1.1
1.12
1.14
power response of reactor with feedback to 10 cents
seconds
relativereactorpower
reactor temperature response to 10
cents WITH temperature feedback
0 2 4 6 8 10
901.9
902
902.1
902.2
902.3
902.4
902.5
902.6
902.7
seconds
temperature(K)
temperature response of reactor with feedback to 10 cents
Brayton Power Conversion System
Parametric Design Modeling for NEP,
NASA contractor report CR-191135, 1993
 500 kWe unit
 Helium-Xenon with cp=0.5 cal/g-K
 Compressor inlet
 375 oK, 1339.18 kPa
 Turbine inlet
 1144.69 oK, 2355.46 kPa
 Lithium Intermediate Heat Exchanger
 1166.7 inlet, 1111.1 oK outlet temperatures
 (considerably smaller DT than 50 MW reactor)
Brayton Code Model
Duct 6
Duct 5
Duct 4
Duct 2
Duct 3
Duct 1
Gas
Cooling
Aux
Cooling
IHX
TurbComp Generator
Recuperator
16
1
5
6 7
1314
15
10
8
12
9
Brayton Code data
 Temperatures, K 375.00 500.67 500.67
500.67 500.67 500.67 871.19 869.82 1144.44
1141.69 1141.69 939.33 936.58 566.05
566.05 375.00 375.00
 Pressures, KPA 1339.18 1874.86 1874.86
2410.53 2410.53 2398.48 2379.17 2367.28
2362.54 2355.46 1867.82 1380.19 1376.05
1359.47 1352.68 1345.91 1339.18
Brayton Code data
 duct dimensions
 Duct 1 diameter, cm 12.91509
 Length, cm 193.7263
 Duct 2 diameter, cm 14.96846
 Length, cm 224.52680
 Duct 3 diameter, cm 18.38337
 Length, cm 275.75050
 Duct 4 diameter, cm 22.70933
 Length, cm 340.64000
 Duct 5 diameter, cm 17.61942
 Length, cm 264.29120
 Duct 6 diameter, cm 15.94148
 Length, cm 239.12220
MMS component equation set:
mass, momentum, energy
 
 
 
r






r

r

r
r





 r



r
r









r







r
P/huuses
dt
dP
V
dt
d
VhWqhmhm
V
1
dt
dh
hP,fuses
dt
d
VhWqhmhm
Vdt
d
dt
dP
K
m
PP
L
A
dt
md
mm
V
1
dt
d
oo
sooii
o
Ph
o
sooii
ho
o
2
i
oi
i
oi
o




Ideal Gas Assumption
RT
1
P
TRc
P
h
RT
P
Tch
h
P
2
pP
h
p


r



r

r

SIMULINK “duct” model
duct model equation implementation
 function sys=mdlDerivatives(t,x,u,V,L,Af,cp,R,K,mo)
 delp=u(1)-x(1);
 rhoo=x(1)/(R*x(2));rhoi=u(1)/(R*u(2));rhobar=(rhoo+rhoi)/2;
 if mo==0
 if delp<=0
 mdi=0;
 else
 mdi=K*sqrt(delp*rhobar);
 end
 else
 xd(3)=Af/L*(u(1)-x(1)-(u(3)/K)^2/rhobar);
 %Vi=x(3)/rhoi/Af;Vo=u(3)/rhoo/Af; this term creates numerical
 %problems and is neglected.
 %xd(3)=xd(3)+(x(3)*Vi-u(3)*Vo)/L
 mdi=x(3);
 end
 drholdt=(mdi-u(3))/V;
 Tbar=(u(2)+x(2))/2;
 Pbar=(u(1)+x(1))/2;
 dp=1/(R*Tbar);
 dh=-Pbar/(R*cp*Tbar^2);
 term1=(mdi*cp*u(2)-u(3)*cp*x(2)+u(4)-cp*Tbar*V*drholdt);
 xd(1)=(rhobar*drholdt-dh/V*term1)/(dh+dp*rhobar);
 xd(2)=(term1/(rhobar*V) + xd(1)/rhobar)/cp;
 sys=xd'
Duct model response to set
change in inlet pressure
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.35
2.4
2.45
2.5
2.55
2.6
x 10
6
outlet pressure response to inlet pressure step, duct 1
time in seconds
pressureinpascal
Response without the dynamic
form of the momentum equation
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.38
2.4
2.42
2.44
2.46
2.48
2.5
x 10
6
outlet pressure response to inlet pressure step, duct 1
time in seconds
pressureinpascal
Interconnecting the duct
components to form a loop
Interconnecting ducts to form
a heat exchanger
Compressor and Turbine models
from performance data
 A representation of Wright’s data
Mass flow
Speed 1
Speed 2
Pressure ratio
compressor
turbine
Speed 1
A linear generalization of
Wright’s data
1.2 1.4 1.6 1.8 2
2
4
6
8
10
12
14
16massflowkg/s
pressure ratio
compressor/turbine performance characteristics
compressor
turbine
Maps that execute
1.2 1.4 1.6 1.8 2
2
4
6
8
10
12
14
16
compressor
turbine
50000 RPM
50000 RPM
Compressor/Turbine Thermal
model
T4s
T3
T2
T2s
T
s
T1
T4
Compressor Thermal
equations
 Compressor
 Turbine
   

























1s2
2
12
1s2
k1k
1
2
1s2
1
s2
k1k
1
2
T)1(T
T
TT
TT
P
P
TT
T
T
P
P
 
 
 s4334
s43
43
k1k
4
3
3
s4
s4
3
k1k
4
3
TTTT
TT
TT
P
P
T
T
T
T
P
P


























SIMULINK compressor block
poscope
mdo mdi
Pi
Ti
mdo
N
Po
To
mdi
J
compressor2
ToTi
Pi
N J
SIMULINK Compressor model
4
J
3
mdi
2
To
1
Po
1/s
po
(u(1)-u(2))*u(3)*cp
mdot*cp*deltat
mp*u(1)+u(2)
mdot
(u(1)-u(2))*2500000
flow equalizer
mn*u(1)+b
Yint
u(3)*(u(1)/u(2))^((k-1)/k)
T2s
(u(1)-(1-eta)*u(2))/eta
T2
u(2)/u(1)
Pr
4
N
3
mdo
2
Ti
1
Pi
SIMULINK model of CBC
Compressor-recuperator
subsystem
turbine – IHX subsystem
constant heat input
Flow response to speed step
transient 28000->30000 RPM
10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8
6.5
6.6
6.7
6.8
6.9
7
7.1
7.2
7.3
flow response to speed step 28000->30000
time (sec)
flow(kg/s)
Turbine inlet temperature to speed
step transient 28000->30000 RPM
0 2 4 6 8 10 12 14 16 18 20
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
turbine inlet temperature to speed step 28000->30000
time (sec)
temperature(K)
Net power output response to speed
step transient 28000->30000 RPM
0 2 4 6 8 10 12 14 16 18 20
1
1.02
1.04
1.06
1.08
1.1
1.12
1.14
1.16
x 10
6
net power output to step in speed 28000 30000
time (sec)
power(watts)
CBC with reactor model
turbine
exhaust
recuperator
exhaust
high
pressurePi
Ti
md0
N
mdRx
rho
Po
To
mdi
J
nr
turbine_ihx
rho
mdot
Pi
Ti
mdo
N
Po
To
mdi
J
compressor-recuperator
Scope9
Scope8
Scope7
Scope6Scope5Scope4
Scope3
Scope2
Scope1
Scope
Output Point1
Output Point
N
Input Point2
Input Point1
Input Point
turbine-ihx with reactor model
5
nr
4
J
3
mdi
2
To
1
Po
Pi
Ti
mdo
N
Po
To
mdi
J
turbine2 -3.797e04
q2
-1.892e04
q
mdot
Ti
peak
Tout
Tf max
Tf av g
Tkav g
Tcav g
rhof b
neppin
Tg
Ti
mdot
Q
TiRx
ihxts
Pi
Ti
mdo
q
Po
To
mdi
ihx_shell
Pi
Ti
mdo
q
Po
To
mdi
duct3
Pi
Ti
mdo
q
Po
To
mdi
duct2
Scope7
Scope6
Scope5
Scope4
Scope3
Scope2
Scope1
Scope
1/0.646
Gain2
109.61
Gain1
.5
Gain
rho (dk) nr
6-delayed
groups
6
rho
5
mdRx
4
N
3
md0
2
Ti
1
Pi
mass flow Response to speed
step 28000 to 30000 RPM
10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8
6.5
6.6
6.7
6.8
6.9
7
7.1
7.2
7.3
flow response to step in speed to 30000 RPM
seconds
flow(kg/s)
turbine inlet temperature Response
to speed step 28000 to 30000 RPM
0 5 10 15 20 25 30 35 40 45 50
1130
1132
1134
1136
1138
1140
1142
turbine inlet temperature to step in speed to 30000 RPM
seconds
temperature(K)
Reactor power Response to
speed step 28000 to 30000 RPM
0 5 10 15 20 25 30 35 40 45 50
1
1.005
1.01
1.015
1.02
1.025
1.03
1.035
power response of reactor to step in speed to 30000 RPM
seconds
relativereactorpower
net power output Response to
speed step 28000 to 30000 RPM
0 5 10 15 20 25 30 35 40 45 50
1.06
1.07
1.08
1.09
1.1
1.11
1.12
1.13
1.14
1.15
x 10
6
seconds
netpoweroutput(watts)
net power output to step in speed to 30000 RPM
Simplified generator model
added:  
I
PP
2
dt
d outin
2 


Speed Response to step -15%
step decrease in load
0 50 100 150 200 250 300 350 400 450 500
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
x 10
4
speed response to -15% step in load
time (sec)
speed(RPM)
Turbine Inlet Temperature
response to -15% in load
0 50 100 150 200 250 300 350 400 450 500
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
turbine inlet temperature to -15% step in load
time (sec)
temperature(K)
Reactor Power Response to
-15% step in load
0 50 100 150 200 250 300 350 400 450 500
1
1.05
1.1
reactor power response to -15% step in load
time (sec)
relativereactorpower
Net Power Output response to
-15% step in load
0 50 100 150 200 250 300 350 400 450 500
9
9.2
9.4
9.6
9.8
10
10.2
10.4
10.6
x 10
5
Net power output to -15% step in load
time (sec)
power(watts)
Summary, exploratory NEP
modeling approach
 representative fuel pin from a 50 MW four
year core
 500 kWe CBC
 MMS equation set
 not suitable for low pressure drops and flows
 simplified compressor/turbine performance
curves
 results consistent with Wright
 more study needed
Possible Improvements
 T=f(h,P), r=f(h,P), h=f(T,P)
 compressor/turbine performance maps
 mass flow as a function of speed and Pr
 efficiency as a function of speed and Pr
 add component metal heat capacities
 data for another Brayton unit
 full power steady state temperatures and pressures around
the unit
 component dimensions, masses, heat capacities
 more detail on the generator, electrical power
distribution system, and ion propulsion

More Related Content

What's hot

Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...João Baltazar
 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusorAnurak Atthasit
 
Aircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAnurak Atthasit
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 dAnurak Atthasit
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Aircraft propulsion component performance
Aircraft propulsion   component performanceAircraft propulsion   component performance
Aircraft propulsion component performanceAnurak Atthasit
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTMassimo Garavaglia
 
Summer 2015 Intern Report
Summer 2015 Intern ReportSummer 2015 Intern Report
Summer 2015 Intern ReportVivek Srivatsa
 
thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05尚儒 吳
 
Pipeline engineering gas
Pipeline engineering  gasPipeline engineering  gas
Pipeline engineering gasoghogho_asemota
 
Simpkin hi eff presentation
Simpkin hi eff presentationSimpkin hi eff presentation
Simpkin hi eff presentationWayne Eastwood
 
Aircraft propulsion matching and off design
Aircraft propulsion   matching and off designAircraft propulsion   matching and off design
Aircraft propulsion matching and off designAnurak Atthasit
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfertmuliya
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemensSirris
 
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...inside-BigData.com
 
Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme firstAnurak Atthasit
 

What's hot (19)

Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusor
 
Aircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of Fundamentals
 
58 64
58 6458 64
58 64
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Aircraft propulsion component performance
Aircraft propulsion   component performanceAircraft propulsion   component performance
Aircraft propulsion component performance
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
 
Summer 2015 Intern Report
Summer 2015 Intern ReportSummer 2015 Intern Report
Summer 2015 Intern Report
 
thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 
Pipeline engineering gas
Pipeline engineering  gasPipeline engineering  gas
Pipeline engineering gas
 
Simpkin hi eff presentation
Simpkin hi eff presentationSimpkin hi eff presentation
Simpkin hi eff presentation
 
Aircraft propulsion matching and off design
Aircraft propulsion   matching and off designAircraft propulsion   matching and off design
Aircraft propulsion matching and off design
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfer
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
 
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...
Thermodynamics of Computation: Far More Than Counting Bit Erasure: Far More T...
 
Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme first
 

Viewers also liked (20)

Beukers LS2014-120 afl 2 (1)
Beukers LS2014-120 afl 2 (1)Beukers LS2014-120 afl 2 (1)
Beukers LS2014-120 afl 2 (1)
 
Special Olympics 2014
Special Olympics 2014Special Olympics 2014
Special Olympics 2014
 
MINDSHARE Vol 2 Issue 3
MINDSHARE Vol 2 Issue 3MINDSHARE Vol 2 Issue 3
MINDSHARE Vol 2 Issue 3
 
مدیریت دانش
مدیریت دانشمدیریت دانش
مدیریت دانش
 
Jorge Alvarez
Jorge AlvarezJorge Alvarez
Jorge Alvarez
 
Triple S - Shared Services Standard
Triple S - Shared Services StandardTriple S - Shared Services Standard
Triple S - Shared Services Standard
 
Student Employee Nominee Form_Edited for Viewing
Student Employee Nominee Form_Edited for ViewingStudent Employee Nominee Form_Edited for Viewing
Student Employee Nominee Form_Edited for Viewing
 
DIBUJOS CRTICOS
DIBUJOS CRTICOSDIBUJOS CRTICOS
DIBUJOS CRTICOS
 
Ahmed adel cv2
Ahmed adel cv2Ahmed adel cv2
Ahmed adel cv2
 
Oncoceutics leerink global healthcare 2015
Oncoceutics leerink global healthcare 2015Oncoceutics leerink global healthcare 2015
Oncoceutics leerink global healthcare 2015
 
Ahmed adel cv2
Ahmed adel cv2Ahmed adel cv2
Ahmed adel cv2
 
Curriculum VITA as Assistant Professor
Curriculum VITA as Assistant ProfessorCurriculum VITA as Assistant Professor
Curriculum VITA as Assistant Professor
 
IBM Brochure 9-88
IBM Brochure 9-88IBM Brochure 9-88
IBM Brochure 9-88
 
TMI Simulator 2001
TMI Simulator 2001TMI Simulator 2001
TMI Simulator 2001
 
Potpourri - Indiana Tech Summer Camp 2015
Potpourri - Indiana Tech Summer Camp 2015Potpourri - Indiana Tech Summer Camp 2015
Potpourri - Indiana Tech Summer Camp 2015
 
Special Olympics 2014 2015
Special Olympics 2014 2015Special Olympics 2014 2015
Special Olympics 2014 2015
 
David H. Edwards in WW II
David H. Edwards in WW IIDavid H. Edwards in WW II
David H. Edwards in WW II
 
El costo de la historia
El costo de la historiaEl costo de la historia
El costo de la historia
 
IDIS399RoughDraft copy
IDIS399RoughDraft copyIDIS399RoughDraft copy
IDIS399RoughDraft copy
 
Be Equipped portfolio
Be Equipped portfolioBe Equipped portfolio
Be Equipped portfolio
 

Similar to Exploratory NEP modeling of nuclear reactor kinetics and Brayton power system

Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systemskarina G
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy System
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy SystemOptimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy System
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy SystemJulio Bravo
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rauschecfpbolivia
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)imsong
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSANTIAGO PABLO ALBERTO
 
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind Turbine
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind TurbineMaximum Power Extraction Method for Doubly-fed Induction Generator Wind Turbine
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind TurbineIJECEIAES
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Module 9 (second law &amp; carnot cycle)
Module 9 (second law &amp; carnot cycle)Module 9 (second law &amp; carnot cycle)
Module 9 (second law &amp; carnot cycle)Yuri Melliza
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"Atin Kumar
 
Mathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionMathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionTeerawutSavangboon
 

Similar to Exploratory NEP modeling of nuclear reactor kinetics and Brayton power system (20)

ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Maximum Power Point Tracking Of A Dfig Wind Turbine System.doc
Maximum Power Point Tracking Of A Dfig Wind Turbine System.docMaximum Power Point Tracking Of A Dfig Wind Turbine System.doc
Maximum Power Point Tracking Of A Dfig Wind Turbine System.doc
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
Turbojet Design Project
Turbojet Design ProjectTurbojet Design Project
Turbojet Design Project
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
179 narayan p
179 narayan p179 narayan p
179 narayan p
 
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy System
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy SystemOptimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy System
Optimal Control Tracking Problem of a Hybrid Wind-Solar-Battery Energy System
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
 
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind Turbine
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind TurbineMaximum Power Extraction Method for Doubly-fed Induction Generator Wind Turbine
Maximum Power Extraction Method for Doubly-fed Induction Generator Wind Turbine
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Module 9 (second law &amp; carnot cycle)
Module 9 (second law &amp; carnot cycle)Module 9 (second law &amp; carnot cycle)
Module 9 (second law &amp; carnot cycle)
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
 
Mathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionMathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer Function
 

More from Robert Edwards

External Interface to SIMULINK
External Interface to SIMULINKExternal Interface to SIMULINK
External Interface to SIMULINKRobert Edwards
 
Worldwide Who's Who Press release from LinkedIn
Worldwide Who's Who Press release from LinkedInWorldwide Who's Who Press release from LinkedIn
Worldwide Who's Who Press release from LinkedInRobert Edwards
 
Curriculum VITA as Professor
Curriculum VITA as ProfessorCurriculum VITA as Professor
Curriculum VITA as ProfessorRobert Edwards
 
SBWR Test Loop Slide Show
SBWR Test Loop Slide ShowSBWR Test Loop Slide Show
SBWR Test Loop Slide ShowRobert Edwards
 
Curriculum VITA as Project Associate
Curriculum VITA as Project AssociateCurriculum VITA as Project Associate
Curriculum VITA as Project AssociateRobert Edwards
 
Evan Pugh Scholar Pewter plate
Evan Pugh Scholar Pewter plateEvan Pugh Scholar Pewter plate
Evan Pugh Scholar Pewter plateRobert Edwards
 
IAEA Report-SMRsNP-T-2.2-June2009
IAEA Report-SMRsNP-T-2.2-June2009IAEA Report-SMRsNP-T-2.2-June2009
IAEA Report-SMRsNP-T-2.2-June2009Robert Edwards
 
Special Olympics Summer Games 2015
Special Olympics Summer Games 2015Special Olympics Summer Games 2015
Special Olympics Summer Games 2015Robert Edwards
 
David H. Edwards in WW Imtro
David H. Edwards in WW ImtroDavid H. Edwards in WW Imtro
David H. Edwards in WW ImtroRobert Edwards
 
Curriculum VITA as Associate Professor
Curriculum VITA as Associate ProfessorCurriculum VITA as Associate Professor
Curriculum VITA as Associate ProfessorRobert Edwards
 
REVISED A History of Control Ed. and Res. at Penn State
REVISED A History of Control Ed. and Res. at Penn StateREVISED A History of Control Ed. and Res. at Penn State
REVISED A History of Control Ed. and Res. at Penn StateRobert Edwards
 

More from Robert Edwards (16)

External Interface to SIMULINK
External Interface to SIMULINKExternal Interface to SIMULINK
External Interface to SIMULINK
 
Worldwide Who's Who Press release from LinkedIn
Worldwide Who's Who Press release from LinkedInWorldwide Who's Who Press release from LinkedIn
Worldwide Who's Who Press release from LinkedIn
 
Staples brochure
Staples brochureStaples brochure
Staples brochure
 
Curriculum VITA as Professor
Curriculum VITA as ProfessorCurriculum VITA as Professor
Curriculum VITA as Professor
 
SBWR Test Loop Slide Show
SBWR Test Loop Slide ShowSBWR Test Loop Slide Show
SBWR Test Loop Slide Show
 
Curriculum VITA as Project Associate
Curriculum VITA as Project AssociateCurriculum VITA as Project Associate
Curriculum VITA as Project Associate
 
Evan Pugh Scholar Pewter plate
Evan Pugh Scholar Pewter plateEvan Pugh Scholar Pewter plate
Evan Pugh Scholar Pewter plate
 
IAEA Report-SMRsNP-T-2.2-June2009
IAEA Report-SMRsNP-T-2.2-June2009IAEA Report-SMRsNP-T-2.2-June2009
IAEA Report-SMRsNP-T-2.2-June2009
 
bwr-tt102es
bwr-tt102esbwr-tt102es
bwr-tt102es
 
OCampo
OCampoOCampo
OCampo
 
IAEA_report
IAEA_reportIAEA_report
IAEA_report
 
NASA 2004 report
NASA 2004 reportNASA 2004 report
NASA 2004 report
 
Special Olympics Summer Games 2015
Special Olympics Summer Games 2015Special Olympics Summer Games 2015
Special Olympics Summer Games 2015
 
David H. Edwards in WW Imtro
David H. Edwards in WW ImtroDavid H. Edwards in WW Imtro
David H. Edwards in WW Imtro
 
Curriculum VITA as Associate Professor
Curriculum VITA as Associate ProfessorCurriculum VITA as Associate Professor
Curriculum VITA as Associate Professor
 
REVISED A History of Control Ed. and Res. at Penn State
REVISED A History of Control Ed. and Res. at Penn StateREVISED A History of Control Ed. and Res. at Penn State
REVISED A History of Control Ed. and Res. at Penn State
 

Exploratory NEP modeling of nuclear reactor kinetics and Brayton power system

  • 1. Exploratory NEP modeling Robert M. Edwards Penn State 814.865.0037 rmenuc@engr.psu.edu
  • 2. Motivation: System Integration Steam Generator & Electrical: Pressure Vessel & Piping Core Design: neutronics thermal hydraulics Mechanical Pumps, valves turbines System Integration (Control Engineering) DETAILED MODELSDETAILED MODELS DETAILED MODELS DETAILED MODELS
  • 3. References  Scoping Calculations of Power Sources for Nuclear Electric Propulsion, ORNL CR-191133, 1994  50 MW 4-year reactor example data  Brayton Power Conversion System Parametric Design Modeling for NEP, NASA contractor report CR-191135, 1993  500 kWe Brayton PCU  Modular Modeling System (MMS): A Code for the Dynamic Simulation of Fossil and Nuclear Power Plants: Overview and General Theory, EPRI CS/NP-2989, 1983  Preliminary Results of a Dynamic System Model for a Closed-Loop Brayton Cycle Coupled to a Nuclear Reactor, Steven Wright, Sandia National Lab.  “Dynamic Analysis and Control System Design for an Advanced Nuclear Gas Turbine Power Plant”, a dissertation in Mechanical Engineering, MIT 1990.
  • 4. Reactor Kinetics Equations  output nr, relative reactor power  input r(t), reactivity  from control devices  feedback from temperature, etc  b is fraction of neutrons that are “delayed”     1,...6icn dt dc cn t dt dn irri ir ir 6 1i i r r   b   br   
  • 5. reactor power response to 10 cents without temperature feedback 0 1 2 3 4 5 6 7 8 9 10 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 power response of reactor without feedback to 10 cents seconds relativereactorpower   br 1.0t
  • 6. Scoping Calculations of Power Sources for Nuclear Electric Propulsion, ORNL CR-191133, 1994  50 MW, four year life  82.24 cm diameter, 75.37 cm height  82.92% enriched Uranium  5871 fuel pins, 6.4 mm diameter  Tantalum-181 clad, 0.6355 mm  Tungsten liner, 0.127 mm  Uranium-Nitride fuel, 4.826 mm  Lithium coolant, 16.139 kg/s  2.75 g/s per fuel pin  500 oK inlet temperature, 1200 oK outlet temperature
  • 7. Reactor Fuel Pin Equations: for 30 axial nodes, k   ccinkp k ckcc k k ck f kfk f f kff C/T)k(Tcm R )k(T)k(T dt )k(Td dt )k(dT C/ R )k(T)k(T R )k(T)k(T dt )k(dT C/ R )k(T)k(T Q dt )k(dT                                   Fuel (Tf)Clad (Tk)Coolant (Tc) Tc(k) Tc(k-1) Rk Rf Cc Ck Cf
  • 8. Fuel temperature response to 10% step change in power 0 1 2 3 4 5 6 7 8 9 10 900 905 910 915 920 925 930 935 940 945 Fuel temperature response to 10% step in power seconds temperature(K)
  • 10. reactor power response to 10 cents WITH temperature feedback 0 2 4 6 8 10 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 power response of reactor with feedback to 10 cents seconds relativereactorpower
  • 11. reactor temperature response to 10 cents WITH temperature feedback 0 2 4 6 8 10 901.9 902 902.1 902.2 902.3 902.4 902.5 902.6 902.7 seconds temperature(K) temperature response of reactor with feedback to 10 cents
  • 12. Brayton Power Conversion System Parametric Design Modeling for NEP, NASA contractor report CR-191135, 1993  500 kWe unit  Helium-Xenon with cp=0.5 cal/g-K  Compressor inlet  375 oK, 1339.18 kPa  Turbine inlet  1144.69 oK, 2355.46 kPa  Lithium Intermediate Heat Exchanger  1166.7 inlet, 1111.1 oK outlet temperatures  (considerably smaller DT than 50 MW reactor)
  • 13. Brayton Code Model Duct 6 Duct 5 Duct 4 Duct 2 Duct 3 Duct 1 Gas Cooling Aux Cooling IHX TurbComp Generator Recuperator 16 1 5 6 7 1314 15 10 8 12 9
  • 14. Brayton Code data  Temperatures, K 375.00 500.67 500.67 500.67 500.67 500.67 871.19 869.82 1144.44 1141.69 1141.69 939.33 936.58 566.05 566.05 375.00 375.00  Pressures, KPA 1339.18 1874.86 1874.86 2410.53 2410.53 2398.48 2379.17 2367.28 2362.54 2355.46 1867.82 1380.19 1376.05 1359.47 1352.68 1345.91 1339.18
  • 15. Brayton Code data  duct dimensions  Duct 1 diameter, cm 12.91509  Length, cm 193.7263  Duct 2 diameter, cm 14.96846  Length, cm 224.52680  Duct 3 diameter, cm 18.38337  Length, cm 275.75050  Duct 4 diameter, cm 22.70933  Length, cm 340.64000  Duct 5 diameter, cm 17.61942  Length, cm 264.29120  Duct 6 diameter, cm 15.94148  Length, cm 239.12220
  • 16. MMS component equation set: mass, momentum, energy       r       r  r  r r       r    r r          r        r P/huuses dt dP V dt d VhWqhmhm V 1 dt dh hP,fuses dt d VhWqhmhm Vdt d dt dP K m PP L A dt md mm V 1 dt d oo sooii o Ph o sooii ho o 2 i oi i oi o    
  • 19. duct model equation implementation  function sys=mdlDerivatives(t,x,u,V,L,Af,cp,R,K,mo)  delp=u(1)-x(1);  rhoo=x(1)/(R*x(2));rhoi=u(1)/(R*u(2));rhobar=(rhoo+rhoi)/2;  if mo==0  if delp<=0  mdi=0;  else  mdi=K*sqrt(delp*rhobar);  end  else  xd(3)=Af/L*(u(1)-x(1)-(u(3)/K)^2/rhobar);  %Vi=x(3)/rhoi/Af;Vo=u(3)/rhoo/Af; this term creates numerical  %problems and is neglected.  %xd(3)=xd(3)+(x(3)*Vi-u(3)*Vo)/L  mdi=x(3);  end  drholdt=(mdi-u(3))/V;  Tbar=(u(2)+x(2))/2;  Pbar=(u(1)+x(1))/2;  dp=1/(R*Tbar);  dh=-Pbar/(R*cp*Tbar^2);  term1=(mdi*cp*u(2)-u(3)*cp*x(2)+u(4)-cp*Tbar*V*drholdt);  xd(1)=(rhobar*drholdt-dh/V*term1)/(dh+dp*rhobar);  xd(2)=(term1/(rhobar*V) + xd(1)/rhobar)/cp;  sys=xd'
  • 20. Duct model response to set change in inlet pressure 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.35 2.4 2.45 2.5 2.55 2.6 x 10 6 outlet pressure response to inlet pressure step, duct 1 time in seconds pressureinpascal
  • 21. Response without the dynamic form of the momentum equation 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.38 2.4 2.42 2.44 2.46 2.48 2.5 x 10 6 outlet pressure response to inlet pressure step, duct 1 time in seconds pressureinpascal
  • 23. Interconnecting ducts to form a heat exchanger
  • 24. Compressor and Turbine models from performance data  A representation of Wright’s data Mass flow Speed 1 Speed 2 Pressure ratio compressor turbine Speed 1
  • 25. A linear generalization of Wright’s data 1.2 1.4 1.6 1.8 2 2 4 6 8 10 12 14 16massflowkg/s pressure ratio compressor/turbine performance characteristics compressor turbine
  • 26. Maps that execute 1.2 1.4 1.6 1.8 2 2 4 6 8 10 12 14 16 compressor turbine 50000 RPM 50000 RPM
  • 28. Compressor Thermal equations  Compressor  Turbine                              1s2 2 12 1s2 k1k 1 2 1s2 1 s2 k1k 1 2 T)1(T T TT TT P P TT T T P P      s4334 s43 43 k1k 4 3 3 s4 s4 3 k1k 4 3 TTTT TT TT P P T T T T P P                          
  • 29. SIMULINK compressor block poscope mdo mdi Pi Ti mdo N Po To mdi J compressor2 ToTi Pi N J
  • 30. SIMULINK Compressor model 4 J 3 mdi 2 To 1 Po 1/s po (u(1)-u(2))*u(3)*cp mdot*cp*deltat mp*u(1)+u(2) mdot (u(1)-u(2))*2500000 flow equalizer mn*u(1)+b Yint u(3)*(u(1)/u(2))^((k-1)/k) T2s (u(1)-(1-eta)*u(2))/eta T2 u(2)/u(1) Pr 4 N 3 mdo 2 Ti 1 Pi
  • 33. turbine – IHX subsystem constant heat input
  • 34. Flow response to speed step transient 28000->30000 RPM 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 flow response to speed step 28000->30000 time (sec) flow(kg/s)
  • 35. Turbine inlet temperature to speed step transient 28000->30000 RPM 0 2 4 6 8 10 12 14 16 18 20 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 turbine inlet temperature to speed step 28000->30000 time (sec) temperature(K)
  • 36. Net power output response to speed step transient 28000->30000 RPM 0 2 4 6 8 10 12 14 16 18 20 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 x 10 6 net power output to step in speed 28000 30000 time (sec) power(watts)
  • 37. CBC with reactor model turbine exhaust recuperator exhaust high pressurePi Ti md0 N mdRx rho Po To mdi J nr turbine_ihx rho mdot Pi Ti mdo N Po To mdi J compressor-recuperator Scope9 Scope8 Scope7 Scope6Scope5Scope4 Scope3 Scope2 Scope1 Scope Output Point1 Output Point N Input Point2 Input Point1 Input Point
  • 38. turbine-ihx with reactor model 5 nr 4 J 3 mdi 2 To 1 Po Pi Ti mdo N Po To mdi J turbine2 -3.797e04 q2 -1.892e04 q mdot Ti peak Tout Tf max Tf av g Tkav g Tcav g rhof b neppin Tg Ti mdot Q TiRx ihxts Pi Ti mdo q Po To mdi ihx_shell Pi Ti mdo q Po To mdi duct3 Pi Ti mdo q Po To mdi duct2 Scope7 Scope6 Scope5 Scope4 Scope3 Scope2 Scope1 Scope 1/0.646 Gain2 109.61 Gain1 .5 Gain rho (dk) nr 6-delayed groups 6 rho 5 mdRx 4 N 3 md0 2 Ti 1 Pi
  • 39. mass flow Response to speed step 28000 to 30000 RPM 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 flow response to step in speed to 30000 RPM seconds flow(kg/s)
  • 40. turbine inlet temperature Response to speed step 28000 to 30000 RPM 0 5 10 15 20 25 30 35 40 45 50 1130 1132 1134 1136 1138 1140 1142 turbine inlet temperature to step in speed to 30000 RPM seconds temperature(K)
  • 41. Reactor power Response to speed step 28000 to 30000 RPM 0 5 10 15 20 25 30 35 40 45 50 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 power response of reactor to step in speed to 30000 RPM seconds relativereactorpower
  • 42. net power output Response to speed step 28000 to 30000 RPM 0 5 10 15 20 25 30 35 40 45 50 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 x 10 6 seconds netpoweroutput(watts) net power output to step in speed to 30000 RPM
  • 43. Simplified generator model added:   I PP 2 dt d outin 2   
  • 44. Speed Response to step -15% step decrease in load 0 50 100 150 200 250 300 350 400 450 500 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 x 10 4 speed response to -15% step in load time (sec) speed(RPM)
  • 45. Turbine Inlet Temperature response to -15% in load 0 50 100 150 200 250 300 350 400 450 500 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 turbine inlet temperature to -15% step in load time (sec) temperature(K)
  • 46. Reactor Power Response to -15% step in load 0 50 100 150 200 250 300 350 400 450 500 1 1.05 1.1 reactor power response to -15% step in load time (sec) relativereactorpower
  • 47. Net Power Output response to -15% step in load 0 50 100 150 200 250 300 350 400 450 500 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 x 10 5 Net power output to -15% step in load time (sec) power(watts)
  • 48. Summary, exploratory NEP modeling approach  representative fuel pin from a 50 MW four year core  500 kWe CBC  MMS equation set  not suitable for low pressure drops and flows  simplified compressor/turbine performance curves  results consistent with Wright  more study needed
  • 49. Possible Improvements  T=f(h,P), r=f(h,P), h=f(T,P)  compressor/turbine performance maps  mass flow as a function of speed and Pr  efficiency as a function of speed and Pr  add component metal heat capacities  data for another Brayton unit  full power steady state temperatures and pressures around the unit  component dimensions, masses, heat capacities  more detail on the generator, electrical power distribution system, and ion propulsion