SlideShare a Scribd company logo
1 of 32
Download to read offline
PIPELINE ENGINEERING
FLUID FLOW
Mechanical Energy Balance
g z vdp
V
W Fo∆ ∆+ +
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟ = −∫ ∑
2
2
(1-1)
potential energy expansion work Kinetic energy Work added/ Sum of friction
change change subtracted by losses
compressors
or pumps/expanders
Note that the balance is per unit mass. In differential form
FWVdVvdpgdz o δδ −=++ (1-2)
Rewrite as follows
( )dp g dz V dV F Wo= − ⋅ − ⋅ − +ρ δ δ (1-3)
Divide by dL (L is the length of pipe)
dp
dL
g
dz
dL
V
dV
dL
F
L
W
LTot
o= − ⋅ + ⋅ + −ρ ρ ρ
δ
δ
ρ
δ
δ
(1-4)
or:
dp
dL
dp
dL
dp
dL
dp
dLTot elev accel frict
⎞
⎠
⎟ =
⎞
⎠
⎟ +
⎞
⎠
⎟ +
⎞
⎠
⎟ (1-5)
(
δ
δ
W
L
o
is usually ignored, as the equation applies to a section of pipe)
The above equation is an alternative way of writing the mechanical energy balance. It is not a
different equation.
The differential form of the potential energy change is
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
2
dZ
φ
dL
g
dZ
dL
g= sin φ (1-6)
Friction losses: We use the Fanning or Darcy-Weisbach equation (Often called Darcy equation)
δF
V f
D
dL=
2 2
(1-7)
an equation that applies for single phase fluids, only (two phase fluids are treated separately).
The friction factor, in turn, is obtained from the Moody Diagram below.
Figure 1-1: Moody Diagram
Friction factor equations. (Much needed in the era of computers and excel)
Laminar Flow f =
16
Re
(1-8)
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
3
Turbulent Flow f a
=
0 046.
Re
(1-9)
smooth pipes: a=0.
Iron or steel pipes a=0.16
Turbulent Flow
1
2
37
2 51
10
f D f
= − +
⎛
⎝
⎜
⎞
⎠
⎟log
.
.
Re
ε
(Colebrook eqn) (1-10)
Equivalent length of valves and fittings: Pressure drop for valves and fittings is accounted for
as equivalent length of pipe. Typical values can be obtained from the following Table.
Table 1-1: Equivalent lengths for various fittings.
Fitting eL
D
45O
elbows 15
90O
elbows, std radius 32
90O
elbows, medium radius 26
90O
elbows, long sweep 20
90O
square elbows 60
180O
close return bends 75
180O
medium radius return bends 50
Tee (used as elbow, entering run) 60
Tee (used as elbow, entering branch) 90
Gate Valve (open ) 7
Globe Valve (open ) 300
Angle Valve (open) 170
Pressure Drop Calculations
Piping is known. Need pressure drop. (Pump or compressor is not present.)
Incompressible Flow
a) Isothermal (ρ is constant)
Tot
dp dZ dV dF
= - g +V +
dL dL dL dL
ρ
⎛ ⎞
⎜ ⎟
⎝ ⎠
(1-11)
for a fixed φ ⇒ V constant ⇒ dV = 0
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
4
2
2
L
F V f
D
δ
δ
⎛ ⎞
= ⋅ ⋅⎜ ⎟
⎝ ⎠
(1-12)
∆ ∆p g Z V f
L
D
F= − ⋅ + ⋅ ⋅ +
⎡
⎣
⎢
⎤
⎦
⎥∑ρ 2 2
(1-13)
b) Nonisothermal
It will not have a big error if you use ρ(Taverage), v(Taverage)
Exercise 1-1:
Consider the flow of liquid water (@ 20o
C) through a 200 m, 3” pipe, with an elevation change
of 5 m. What is the pressure drop?
Can the Bernoulli equation assuming incompressible flow be used for gases? The next figure
illustrates it.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
5
Figure 1-2: Error in Bernoulli equation
In conclusion, if
p p
p
out in
in
−
≤ −0 2 0 3. . using the assumption of incompressibility is OK.
Compressible Flow (Gases)
a) Relatively small change in T (known)
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
6
For small pressure drop (something you can check after you are done) can use Bernoulli and
fanning equation as flows
2
V
gdz+vdp+d = -dF
2
⎛ ⎞
⎜ ⎟
⎝ ⎠
(1-14)
Then
2 2 2
g 1 V dF
dz+ dp+ dV = -
v v v v
(1-15)
but
G
V = v
A
, where
V = Velocity (m/sec)
v = Specific volume (m3
/Kg)
G = Mass flow (Kg/sec)
A = Cross sectional area (m2
)
Then,
2
2 2
g 1 G dV dF G dL
dz+ dp+ = - = -2f
v v A v v A D
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
(1-16)
Now put in integral form
g
dz
v
dp
v
G
A
dV
V
G
A D
f dL2
2 2
2
1
∫ ∫ ∫ ∫+ +
⎛
⎝
⎜
⎞
⎠
⎟ = − ⋅
⎛
⎝
⎜
⎞
⎠
⎟ ⋅ ⋅ (1-17)
Assume
in out
av
T +T
T =
2
(1-18)
2
3
in out
av in out
in out
p p
p p p
p p
⎡ ⎤
= + −⎢ ⎥
+⎣ ⎦
which comes from
out
in
av out
in
p p dp
p
p dp
=
∫
∫
(1-19)
in in out out
av
f(T ,P )+ f(T ,P )
f =
2
(1-20)
The integral form will now be
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
7
ρav
in
out
out
in
avg z
dp
v
G
A
V
V
G
A
f
L
D
2
2 2
2⋅ ⋅ + +
⎛
⎝
⎜
⎞
⎠
⎟
⎛
⎝
⎜
⎞
⎠
⎟ = − ⋅
⎛
⎝
⎜
⎞
⎠
⎟ ⋅ ⋅∫∆ ln (1-21)
Now use p v
Z R T
M
⋅ =
⋅ ⋅
, where M: Molecular weight. Then av
av
av av
p M
Z R T
ρ = , which leads to:
( ) ( )2 2 2 2
2 2
av
out in out in
av av av av av
dp M M
p dp p p p p
v Z RT Z RT p
ρ
= ⋅ = − = −
⋅∫ ∫ (1-22)
Therefore;
( )
2 2
2 2 2
ln 2
2
av out
av out in av
av in
VG G L
g z p p f
p A V A D
ρ
ρ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⋅∆ + − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
(1-23)
but,
V
V
Z T
Z T
p
p
out
in
out out
in in
in
out
=
⋅
⋅
⎛
⎝
⎜
⎞
⎠
⎟ ⋅ (1-24)
Then
( )
2 2
2 2 2
ln 2
2
av out out in
av out in av
av in in out
Z T pG G L
g z p p f
p A Z T p A D
ρ
ρ
⎛ ⎞⋅⎛ ⎞ ⎛ ⎞
⋅∆ + − + ⋅ = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
(1-25)
To calculate Zav Kay’s rule is used. This rule states that the reduced pressure and temperature
of the gas is obtained using the average pressure and temperature (as above calculated) and a
pseudo critical pressure and temperature.
,
av
r
C
p
p
p
= (1-26)
,
av
r
C
T
T
T
= (1-27)
In turn the critical pressure and temperatures are obtained as molar averages of the respective
components critical values.
,
,C i C i
i
p y p= ∑ (1-28)
,
,C i C i
i
T y T= ∑ (1-29)
With these values the Z factor comes from the following chart:
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
8
Figure 1-3: Natural Gas Compressibility Chart
Equation (1-25) can be further simplified. First neglect the acceleration term because it is
usually small compared to the others, to obtain:
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
9
( )
2
2 2 2
2 0
2
av
av out in av
av
G L
g z p p f
p A D
ρ
ρ
⎛ ⎞
⋅∆ + − + =⎜ ⎟
⎝ ⎠
(1-30)
Form this equation we can get G, as follows:
( )
2 2
2 22 5
2
32 2
av
in out av av
av av av av av
M p
g z
M p p Z RTD
G
f L Z RT Z RT
π
⎡ ⎤
⋅∆⎢ ⎥−
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎣ ⎦
(1-31)
But the volumetric flow at standard conditions is given by s s s
G
p Q Z RT
M
= where the
subscript s stands for standard conditions. Therefore:
( )
2
2 2
2 22 5
2
2
2
32 2
av
in out
s s av av
s av av av
M p
p p g z
Z T Z RTR D
Q
Mp Z T L f
π
⎡ ⎤
− − ⋅∆⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
(1-32)
Now, if z∆ =0, we get
( )2 22 22 5
2
2
32 2
in outs s
s av av av
p pZ TR D
Q
Mp Z T L f
π ⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦
(1-33)
which can be rearranged as follows:
2 2 2
in outp p K Q− = (1-34)
where
2
2 2 2 5
64 s av av av
s s
Mp Z T f
K L
R Z T Dπ
= and is known to be W×L, a product of a resistant factor W
times the length L. With this, we have
2
2 2 2 5
64 s av av av
s s
Mp Z T f
W
R Z T Dπ
= .
To calculate pressure drop we recognize that average pressures are a function of outp , which is
unknown. Then we propose the following algorithm:
a) Assume (1)
outp and calculate (1)
avp
b) Calculate
2 ( ) ( ) ( )
( )
2 2 2 5
64 i i i
i s av av av
s s
Mp Z T f
K
R Z T Dπ
=
b) Use formula to get a new value 1 2 ( ) 2(i ) i
out inp = p K Q+
−
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
10
d) Continue until
(i+1) (i)
out out
(i)
out
p - p
p
ε≤
Depending on the choice of friction term expression, several formulas have been reported for
equation (1-34). They are summarized in the following table.
Table 1-2: Different forms of compressible flow equations
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
11
Table 1-2 (continued): Different forms of compressible flow equations
Exercise 1-2:
Natural gas (84,000 std m3
/hr at 49 atm and 38o
C) is sent from a gas refinery to a city, through
a 16” pipeline. The distance is 170 Km. The gas reaches the other end at ground temperature,
(5 o
C). The gas to have the following molar fractions: Methane: 98%, ethane: 1.2%, propane:
0.75%, and water: 0.05%. We also assume Re~5 106
and ε/D =0.01.
As a first approximation, we recommend using the Panhandle A equation: 2 2 1.855
in outp p K Q− =
W= 2.552 × 10-4
Tin×s0.855
/D4.586
(Wilson G.G., R. T. Ellington and J. Farwalther, 1991, Institute
of Gas Technology Education Program, Gas distribution Home Study Course) , where s is the
gas gravity (=Mgas/Mair)=0.65 for natural gas), Tin is in o
R and D in inches)
What is the pressure drop?
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
12
Heat Transfer Effects
To account for temperature changes due to heat transfer, we use total energy balance
( ) ogdz+d vp +VdV du = q wδ δ+ + (1-35)
where the following is identified:
- Potential energy change: g dz
- Rate of work done on the fluid element by pressure forces: d(vp)
- Kinetic energy change: VdV
- Internal energy changes: du
- Heat transfer: qδ . This is given per unit mass flowing (Kcal/h)/(m3
/h)
- Work added: owδ . This term is due to pumps and compressors. Since we will treat
these separately, this term is usually set to zero for pipes.
But the heat qδ is given by interactions with the ambient surroundings:
( )o
D
q U T T dL
G
π
δ = − (1-36)
where U is the heat transfer coefficient, To is the outside pipe temperature, DdL dAπ = (see
next figure) and G is the flowrate.
Figure 1-4: Area element
Then, (ignoring δwo because there are no pumps) to get:
( )2
oU T -T DdLV
gdz+dh+d =
2 G
⎛ ⎞
⎜ ⎟
⎝ ⎠
(1-37)
Integrate and solve for hout (use Tav in the heat transfer equation)
( )
( )
2 2
2 1
2
o av out in
out in
U T T DL V V
h h g z z
G
π− ⎡ ⎤−
= + − − −⎢ ⎥
⎣ ⎦
(1-38)
But
V v
G
A
Z
RT
p M
G
A
out out av
av
out
= ⋅ = ⋅ (1-39)
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
13
Finally, to obtain the outlet temperature, one would need to obtain it form the enthalpy and
pressure in the outlet
( )out out out outT = T p ,h (1-40)
The procedure suggested is then:
a) Assume Tout, pout
b) Use mechanical energy balance to obtain (1)
outp
c) Use total energy balance to obtain (1)
outh
d) get temperature (1)
outT
e) Go to b) and continue until convergence
SCENARIO II
One has a turbine or Compressor/pump and needs Wo. We use total energy with δq = 0 and
dz =0
2
o
dV
dh= w -
2
δ (1-41)
Integrating, one obtains:
2
o
W V
w h
G 2
⎛ ⎞
= = ∆ + ∆⎜ ⎟
⎝ ⎠
(1-42)
In this expression, we have wo given in Joules/Kg, W in Joules/sec and h in Joules/Kg. Thus,
the work of the compressor/pump is given by:
2
V
W G h
2
⎡ ⎤⎛ ⎞
= ∆ + ∆⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
(1-43)
For compressors, W is positive, while for turbines, it is negative. However, ∆h is known for
liquids because enthalpy does not vary much with pressure. In addition, there isn’t much
temperature change in pumps). However, for gases, ∆h is much harder to obtain. Therefore we
go back to the Mechanical Energy equation for pumps/compressors. Indeed, the Bernoulli
equation gives
2
V
W G vdp G vdp
2
⎡ ⎤⎛ ⎞
= + ∆ ≈⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∫ ∫ (1-44)
where the acceleration term has been neglected. For pumps, the density is constant, so one
obtains:
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
14
W
G
p=
ρ
∆ (1-45)
For compressors, one needs to obtain an expression of volume knowing that the evolution is
isentropic (or nearly isentropic). Thus, pvn
= constant (n=Cp/Cv for ideal gases n>Cp/Cv for
real gases). Substituting v p vs
n
s
n
= ⋅ ⋅
⎛
⎝
⎜
⎞
⎠
⎟
1
1
1
ρ
integrate to get
1
1
1
n
n
out
in in
in
pn
W G p v
n p
−
⎡ ⎤
⎛ ⎞⎡ ⎤ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
(1-46)
The above expression does not include the compressibility factor. A better expression, which
includes the efficiency, is
1
1
1
1 2
n
n
in out out
in
a in
Z Z pn
W G RT
n pη
−
⎡ ⎤
⎛ ⎞+⎡ ⎤ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
(1-47)
The efficiency factor is usually between 60 to 80% and normally given by the manufacturer.
One expression for such factor is:
1
1
n
n
out
in
in
a
out in
p
T
p
T T
η
−
⎡ ⎤
⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦=
−
(1-48)
Finally, the outlet temperature is obtained from
n n
in in out outp v p v= (1-49)
Using the gas law to obtain /in outv v in terms of temperatures and pressures, substituting and
rearranging, on e obtains:
[ ]
1
1
n
nn
out out n
in in
T p
CR
T p
−
−⎡ ⎤
= =⎢ ⎥
⎣ ⎦
(1-50)
where CR is the compression ratio. Normally, manufacturers recommend not exceeding 300 o
F
at the outlet.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
15
Exercise 1-3:
The natural gas of exercise 1-2, is available originally at 2 atm. Calculate the compression
work needed to reach delivery pressure (49 atm) using one compressor. Calculate the outlet
temperature and determine the duty needed to cool the gas down to the corresponding inlet
conditions. Is it acceptable to use one compressor?
We now discuss the compression ratio. This is limited in compressors to the range 1.2 to 6.
Extra compressors should be added if the CR >6, and after-coolers need to be added to control
the temperature. If more than one compressor is to be used, the practice is to use the same CR
for all.
Exercise 1-4:
Consider two compressors.
- Write the power expression for each one assuming the gas is cooled down to its inlet
temperature after compression.
- Add both expressions to obtain the total work as a function of the intermediate
pressure (the rest should not be a variable)
- Take first derivative and obtain the desired result that CR1=CR2
Exercise 1-5:
Obtain the set of compressors needed to compress the gas of exercise 1-2 properly, that is,
limiting the temperature and using the right CR.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
16
Two Phase Flow
Two phase flow has several regimes, which are depicted in the next figure:
Figure 1-5: Two phase flow regimes
The two extreme cases are:
- Bubble: Vapor and Liquid in Equilibrium (Benzene 40%, Toluene 60%)
- Dispersed: Liquid and gas (air and benzene).
The latter is common in gas pipelines; the former is common in crude pipelines, especially light
crudes.
Dispersed
Annular
Stratified
Froth
Wavy
Slug
Plug
Bubble
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
17
One important thing to recognize is that except for the extreme cases, the phases travel at
different velocities. Typical velocities are shown in the next table:
Table 1-3: Typical velocities of two phase flows
REGIME LIQUID VEL(ft/sec) VAPOR VEL.(ft/sec)
Dispersed Close to vapor > 200
Annular <0.5 > 20
Stratified <0.5 0.5-10
Slug 15 (But less than vapor vel.) 3-50
Plug 2 < 4
Bubble 5-15 0.5-2
To predict the flow patterns, one needs to use the Baker Plot (next Figure) for horizontal pipes
(there is a similar one for vertical pipes).
Figure 1-6: Two phase flow regimes transitions
In this diagram, we have g
g
W
G
A
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
, L
l
g
W
G
W
λ
⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
, (W in lb/h, A in in2
) which are the
superficial velocity of the vapor and the liquid, respectively. In turn, the parameters are given
by 0.463 L gλ ρ ρ= (with densities given in lb/ft3
)
1/3
2/3
1147 L
L
µ
ψ
σ ρ
= (with the surface tension
given in dyn/cm and the viscosity in cp)
We note that:
1) λ and ψ depend on the fluid property only
2) Gl depends on the ratio of flows (Known beforehand. Not a design parameter)
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
18
3) Gg depends on the vapor/gas superficial velocity. It can be modified changing the
diameter
4) Transition boundaries are not at all that sharp.
From this diagram, we notice that following change of regimes in a pipe. As the pressure drop
is large, then the density of the vapor is lower.
1) gλψ ρ ⇒ l gG λψ ρ ⇒ Abscissa decreases
2)
1 1
g
λ ρ
⇒ 1g
g
G
λ ρ
⇒ Ordinate increases
Thus trajectories are always "up" and "to the left". Thus a bubbly flow may become, plug, slug
or annular, an annular may become wavy or dispersed, depending on the starting position in the
plot, and so on.
PRESSURE DROP
Lockart and Martinelli (1949) developed one of the first correlations. It is based on multiplying
the pressure drop obtained by considering the vapor phase occupying the whole pipe, by a
factor
2
TwoPhase VaporPhasep pφ∆ = ∆ (1-51)
In turn, the correction factor is given by b
aXφ = , where LiquidPhase
VaporPhase
p
X
p
∆
=
∆
. The following table
gives some typical values of the corresponding constants:
Table 1-4: Constants for Lockart and Martinelli’s correlation
a b
Bubble 14.2 0.75
Slug 1190 0.82
Stratified 15400 1
(horizontal)
Plug 27.3 0.86
Annular 4.8 -0.3125 D(in) 0.343-0.021 D(in)
We notice that there are several more modern correlations, which will be explored later. In
turn, the pressure drop due to gravity, is given by
(1 ) sing g g l
gravity
dp
g
dL
ε ρ ε ρ θ
⎞
⎡ ⎤= + −⎟ ⎣ ⎦
⎠
(1-52)
where gε is the (void) fraction of gas. We omit the pressure drop due to acceleration.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
19
Hydrate Formation
Hydrates are crystalline structures between water and hydrocarbons. One typical example is
given in the figure below:
Figure 1-7: Methane Hydrate
The next figure shows the Pressure-Temperature diagram of water-hydrocarbon systems. Curve
1-1 represents the curve for vapor pressure of the hydrocarbon.
Figure 1-8: Generic Hydrate P-T diagram
Cage of water molecules
CH4 molecule in the center
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
20
The next figure shows some specific cases of hydrocarbons:
Figure 1-9: Hydrate P-T diagram for various hydrocarbons
Clearly, in high pressure pipelines, favorable thermodynamic conditions for hydrate formation
can be encountered. It is therefore important to keep in mind that these conditions need to be
avoided. These hydrates can be prevented from forming through heating, pressure change (not
a choice in pipelines) and the introduction of inhibitors. These inhibitors are salts, alcohols,
glycols, ammonia and MEA. The most widely used is methanol. The next figure shows the
depression of hydrate formation temperature observed for various hydrates.
Figure 1-10: Hydrate temperature formation depression
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
21
Pipeline Costs
Historical pipeline and compressors installed cost data were obtained from the Oil & Gas
Journal special report on Pipeline Economics, September 3, 2001.
Pipeline per mile cost
distribution for different pipe diameters and compressor installed cost for different horsepower
requirement are plotted in the following figure. All cost figures are updated to 2005 dollars
using Marshal & Swift cost indexes.
y = 43.2x + 100
0
500
1000
1500
2000
2500
3000
0 10 20 30 40 50
Figure 1-11: Pipe average cost (k$/mile) vs. ID
y = 1.65x
0
20000
40000
60000
80000
100000
0 10000 20000 30000 40000
Figure 1-12: Compressor cost (k$) vs. horsepower
Fixed Capital Investment were calculated by adding the installed cost of a pipe length (assumed
5000 miles) and the cost of all required recompression stations. The Fixed Capital Investments
obtained are then divided by the pipe length to obtain a per mile cost profile for different flow
rates. The curve in the next figure shows that this cost profile takes a logarithmic shape.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
22
y = 0.001659x + 0.001108
B$ 0.000
B$ 0.001
B$ 0.001
B$ 0.002
B$ 0.002
B$ 0.003
B$ 0.003
B$ 0.004
B$ 0.004
B$ 0.005
B$ 0.005
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
BSCFD
Figure 1-13: Pipeline fixed cost (b$/mile) vs. capacity (BSCFD)
A linear correlation gives the following form:
001108.0)(*001659.0)/$( += BSCFDCapacitymileBFCI
Operating costs for pipelines were estimated as follows; an average of 5 operators is assumed
to be the requirement for each compression station, with an hourly wage of $21. Direct
supervisory and clerical labor is assumed to be 20% of operating labor. Compressor fuel
requirement is estimated at 8,000 Btu / BHP-HR, and fuel cost at $2.5 per million Btu.
Maintenance cost is assumed to be 7% of the FCI for compressors and 3% for pipes while
insurance is 1% for compressors and 0.4% for pipes. Operating cost per pipeline mile versus
capacity is plotted in the next figure:
y = 7E-05x + 4E-05
B$0.000000
B$0.000050
B$0.000100
B$0.000150
B$0.000200
B$0.000250
0 0.5 1 1.5
Figure 1-14: Pipeline per mile annual operating cost vs. capacity
This estimate should be reasonable with about 40% accuracy. Similar linear approximation to
that of the FCI is assumed. Linear regression was used to estimate the operating cost
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
23
dependence of the capacity, ignoring capacities less than 100 MMSCFD. This gave a general
correlation of the following form:
00004.0)(*00007.0)//$(. += BSCFDCapacityyearmileBCostOper
Exercise 1-9:
Consider the pipeline of Exercise 1-8:
- Vary the pipeline maximum pressure (1200 psia) to some lower and higher value.
Adjust the diameter accordingly and calculate the number of recompression
stations.
- Calculate the cost. Can you say that 1200 psia is the right pressure?
Pipeline Looping
Pipeline looping is the practice of designing pipelines with segments run in parallel. This
practice increases the pipeline flow capacity without altering the final pressure. If temperature
is close to ambient temperature, the location of a loop does not change the final delivery
pressure. However, when temperature changes substantially, then the location of a loop has an
influence. Thus, in these cases, for example, it is recommended to loop in the upstream region,
where the gas is hotter. This allows the gas to cool down faster and therefore increase the
delivery pressure.
Consider the following example: A 100 Km length (20” OD) pipeline is used to send 289
MMSFD at an inlet pressure of 1,200 psia and a temperature of 45 o
C. The pipe roughness is
750 µ inches, and a soil temperature of 10 o
C.
Three alternatives were studied for this pipeline. a) No looping, b) Looping the first 25 Km,
and c) Looping the last 25 Km. The results of a simulation are shown in the next figure:
Figure 1-15: Results from Looping
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
24
Exercise 1-10:
Verify the results of figure 1-15 using the simulator.
Retrograde condensation
One very common phenomenon in pipelines is retrograde condensation. Consider the P-T plot
of the next figure. It corresponds to a gas with the following composition: Methane: 93.47 %,
Ethane: 3.52%, Propane: 0.585%, n-butane: 0.16%, i-butane: 0.11%, pentane: 0.055%, i-
pentane 0.05%, hexane: 0.09%, heptane: 0.04%, octane: 0.03%, nonane: 0.01%, CO2: 0.0545,
N2: 1.34%. Assume a 15”, 200 Km pipeline starts at 60 atm and 15 o
C. If the external
temperature is 5 o
C (U=1 BTU/hr-ft2o
F), then it is clear that there will be liquid formation in
this pipeline, even if the operation is isothermal.
Figure 1-16: P-T diagram of example gas and retrograde condensation
Interestingly, if the pressure at the other end is low enough, then the liquid might vaporize
again. This means that the pressure drop regime inside the pipe might change and one has to be
careful in performing the simulations.
Exercise 1-11:
Generate the answers for the above example using the simulator. Change the pipe diameter and
the length to verify the statements.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
25
Pipeline Optimization Process
J-Curve Analysis
Conventional Pipeline design methods, which rely mostly on hand calculations or at best on
simple spreadsheet suggest that the compressor size and the pipe diameter be varied and the
cost of service ($/(m3
*Km) for the first year be plotted as a function of flowrate. Typical
assumptions are that there is no volume buildup in the pipe, the time value of money is
neglected and that the facilities are designed to sustain the flows.
For example, Figure 1-17 shows one such exercise performed for three different diameters and
parametric at different maximum operating pressures (MOP) and compression ratios.
Efficient operating ranges that are flat are preferred
Figure 1-17: J-Curves for various diameters
Exercise 1-12:
Explain why J-curves go through a minimum.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
26
Optimization Parameters
J-Curves are a simplistic first approach but one that can provide a first approximation to the
right diameter and compressors. Thus one needs to establish
- Route: In most cases this is defined by a variety of other factors and given to the
designer.
- Pipeline Initial Capacity: Most pipelines are constructed taking into account the
fact that demand at the receiving end(s) will increase through time. Thus, one is
faced with the decision of designing for future capacity and underutilize the pipeline
for some time or design for current or more short term capacity and use loops to
expand later.
- Expansions: If capacity expansions are considered, then they need to take place
through looping. Not only the new loop has to be designed, but its timing and
capacity be selected.
- Maximum operating pressure: This choice has already been considered in
constructing the J-Curves. However, in more complex situations, one is faced with
multiple delivery points with different delivery pressures, etc.
- Pipe Size: This choice has already been considered in the J-Curve selection but
needs to be revisited anyway in view of the influence of the other factors.
- Load Factor: This factor is the ratio between the average daily volume delivered
divided by the peak volume. If this ratio is too small, then storage facilities for
inventory holding (salt caverns, underground caverns, abandoned reservoirs, etc if
available, or large LNG or high pressure, CNG, storage tanks) are more convenient
than more powerful compressors and larger diameters. The issue to resolve is when
these are substituted by inventory holding sites. In addition, the question remains
where these holding sites should be located.
- Compressor Station Spacing: While an earlier exercise suggests that when
multiple compressors are used it is best to keep the compression ratio equal, this
hypothesis needs verification. Reciprocating compressors are chosen when the
power requirement is smaller than 5,500 Kw. Compression ratios recommended for
centrifugal compressors are generally in the range of 1.25 to 1.35 and smaller than
1.5 for reciprocating compressors.
Exercise 1-13:
Consider the pipeline of Exercise 1-8:
- Assume two compression stations will be used.
- Determine (by inspection and using a simulator what is the best compression ratio
for each compressor. Aim at minimizing total work only.
- Heating and Cooling: Clearly, cooling leads to significant savings because
pressure drop is reduced. However, money needs to be spent to install and run the
coolers. Thus the trade-off needs to be resolved.
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
27
Exercise 1-14:
Consider the shown in the following figure
- The piping is in the ground and is not insulated. Assume a ground temperature of
25o
C and a ground conductivity of 0.7 W/(m o
C). The gas elevation profiles are
provided in the following table:
Km Elevation (m)
0 42
115 7
143 14.93
323 60
550 10
609 120
613 122
630 235
638 470
650 890
- The gas ((1.9% methane, 5% Ethane, 2% propane, 1% n-butane and 0.1% n-
pentane) is supplied at the two points indicated in the diagram at 1,367 kPa and
35o
C in the first station (Km 0), and 1520 kPa and 30o
C in the second (Km 143).
- Determine using simulations a) Piping diameter, b) Compressors at the supply
station, c) cooling required. Do not use a pressure above 5,600 Kpa. Use cost data
provided above.
- Will new compressors be needed/beneficial?
Supply: 10,407,840 m3/d
2,148,200 m3/d
Supply: 5,722,000 m3/d
18,240 m3/d
6,595,200
m3/d
134,400
m3/d
64,600 m3/d
Km 0 115 143 323 550 609 630 Km 650
2,832,000 m3/d
613
638
3,617,400 m3/d
384,000 m3/d
336,,000
m3/d
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
28
OPTIMAL DESIGN
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
29
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
30
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
31
Natural Gas Basic Engineering Copyright: Miguel Bagajewicz.
No reproduction allowed without consent
32

More Related Content

What's hot

Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)anasimdad007
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transferTrupesh Upadhyay
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
thermodynamic and heat transfer examples
thermodynamic and heat transfer examplesthermodynamic and heat transfer examples
thermodynamic and heat transfer examplesfahrenheit
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersVaidyanathan Ramakrishnan
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbM SAQIB
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
002 otto cycle
002 otto cycle002 otto cycle
002 otto cyclephysics101
 
Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Pankaj Nishant
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...KirkMcdowells
 

What's hot (20)

Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)
 
Kaplan turbines
Kaplan turbinesKaplan turbines
Kaplan turbines
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Pelton turbine (1)
Pelton turbine (1)Pelton turbine (1)
Pelton turbine (1)
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
thermodynamic and heat transfer examples
thermodynamic and heat transfer examplesthermodynamic and heat transfer examples
thermodynamic and heat transfer examples
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Compressible Flow
Compressible FlowCompressible Flow
Compressible Flow
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 
Avinash_PPT
Avinash_PPTAvinash_PPT
Avinash_PPT
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
002 otto cycle
002 otto cycle002 otto cycle
002 otto cycle
 
Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]
 
cengel-thermodynamics 2
cengel-thermodynamics 2cengel-thermodynamics 2
cengel-thermodynamics 2
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 

Viewers also liked

Model pembelajaran tutoria pdf
Model pembelajaran tutoria pdfModel pembelajaran tutoria pdf
Model pembelajaran tutoria pdferikvan muhammad
 
Going deeper, seeing further 12 14-16
Going deeper, seeing further 12 14-16Going deeper, seeing further 12 14-16
Going deeper, seeing further 12 14-16jdwyer25
 
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ Mỹ Hoàng
 
Brand management with respective of Cabury
Brand management with respective of CaburyBrand management with respective of Cabury
Brand management with respective of CaburyPrateek Pawar
 
Internal Control in Stores/ Materials Dept.
Internal Control in Stores/ Materials Dept.Internal Control in Stores/ Materials Dept.
Internal Control in Stores/ Materials Dept.Prashant Behera
 
Lauren Schmidt- Turkey Paper Final
Lauren Schmidt- Turkey Paper FinalLauren Schmidt- Turkey Paper Final
Lauren Schmidt- Turkey Paper FinalLauren Schmidt
 
Eurostat consommation par habitant
Eurostat consommation par habitantEurostat consommation par habitant
Eurostat consommation par habitantSociété Tripalio
 
Presentacion general starclass 2013
Presentacion general starclass 2013Presentacion general starclass 2013
Presentacion general starclass 2013Un Mundo de Cruceros
 

Viewers also liked (15)

Model pembelajaran tutoria pdf
Model pembelajaran tutoria pdfModel pembelajaran tutoria pdf
Model pembelajaran tutoria pdf
 
REFERENCE LETTER
REFERENCE  LETTERREFERENCE  LETTER
REFERENCE LETTER
 
Going deeper, seeing further 12 14-16
Going deeper, seeing further 12 14-16Going deeper, seeing further 12 14-16
Going deeper, seeing further 12 14-16
 
Մխիթար Սեբաստացի
Մխիթար ՍեբաստացիՄխիթար Սեբաստացի
Մխիթար Սեբաստացի
 
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ
BẠN MUỐN PHÁT TRIỂN THƯƠNG HIỆU MÀ KHÔNG CẦN PHẢI SUY NGHĨ
 
A Call to Action: Making Your Legal Metrics Count
A Call to Action: Making Your Legal Metrics CountA Call to Action: Making Your Legal Metrics Count
A Call to Action: Making Your Legal Metrics Count
 
Brand management with respective of Cabury
Brand management with respective of CaburyBrand management with respective of Cabury
Brand management with respective of Cabury
 
Internal Control in Stores/ Materials Dept.
Internal Control in Stores/ Materials Dept.Internal Control in Stores/ Materials Dept.
Internal Control in Stores/ Materials Dept.
 
Lauren Schmidt- Turkey Paper Final
Lauren Schmidt- Turkey Paper FinalLauren Schmidt- Turkey Paper Final
Lauren Schmidt- Turkey Paper Final
 
Calendario Silversea 2013
Calendario Silversea 2013Calendario Silversea 2013
Calendario Silversea 2013
 
Eurostat consommation par habitant
Eurostat consommation par habitantEurostat consommation par habitant
Eurostat consommation par habitant
 
Wilhelmina Profile
Wilhelmina ProfileWilhelmina Profile
Wilhelmina Profile
 
Articles 64580 documento
Articles 64580 documentoArticles 64580 documento
Articles 64580 documento
 
Productos BGH
Productos BGH Productos BGH
Productos BGH
 
Presentacion general starclass 2013
Presentacion general starclass 2013Presentacion general starclass 2013
Presentacion general starclass 2013
 

Similar to Pipeline engineering gas

2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.pptIyerVasundhara
 
290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.pptBramhendraNaik1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II sureshkcet
 
Chapter 2 internal combustion engine
Chapter 2 internal combustion engineChapter 2 internal combustion engine
Chapter 2 internal combustion engineMuhd Taufik Muhammad
 
BasicHydraulicConcepts
BasicHydraulicConceptsBasicHydraulicConcepts
BasicHydraulicConceptsSatej Colaco
 
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBPresentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBWorld University of Bangladesh
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdfAnyumizaInnocent
 
Introduction to second law thermodynamics
Introduction to second law thermodynamicsIntroduction to second law thermodynamics
Introduction to second law thermodynamicsxdarlord
 
silo.tips_the-pressure-derivative.pdf
silo.tips_the-pressure-derivative.pdfsilo.tips_the-pressure-derivative.pdf
silo.tips_the-pressure-derivative.pdfAliMukhtar24
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidAmir Rafati
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 

Similar to Pipeline engineering gas (20)

2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
Drift flux
Drift fluxDrift flux
Drift flux
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
Fanno Flow
Fanno FlowFanno Flow
Fanno Flow
 
290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
Chapter 2 internal combustion engine
Chapter 2 internal combustion engineChapter 2 internal combustion engine
Chapter 2 internal combustion engine
 
BasicHydraulicConcepts
BasicHydraulicConceptsBasicHydraulicConcepts
BasicHydraulicConcepts
 
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBPresentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdf
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Introduction to second law thermodynamics
Introduction to second law thermodynamicsIntroduction to second law thermodynamics
Introduction to second law thermodynamics
 
silo.tips_the-pressure-derivative.pdf
silo.tips_the-pressure-derivative.pdfsilo.tips_the-pressure-derivative.pdf
silo.tips_the-pressure-derivative.pdf
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 

Recently uploaded

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 

Pipeline engineering gas

  • 1. PIPELINE ENGINEERING FLUID FLOW Mechanical Energy Balance g z vdp V W Fo∆ ∆+ + ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ = −∫ ∑ 2 2 (1-1) potential energy expansion work Kinetic energy Work added/ Sum of friction change change subtracted by losses compressors or pumps/expanders Note that the balance is per unit mass. In differential form FWVdVvdpgdz o δδ −=++ (1-2) Rewrite as follows ( )dp g dz V dV F Wo= − ⋅ − ⋅ − +ρ δ δ (1-3) Divide by dL (L is the length of pipe) dp dL g dz dL V dV dL F L W LTot o= − ⋅ + ⋅ + −ρ ρ ρ δ δ ρ δ δ (1-4) or: dp dL dp dL dp dL dp dLTot elev accel frict ⎞ ⎠ ⎟ = ⎞ ⎠ ⎟ + ⎞ ⎠ ⎟ + ⎞ ⎠ ⎟ (1-5) ( δ δ W L o is usually ignored, as the equation applies to a section of pipe) The above equation is an alternative way of writing the mechanical energy balance. It is not a different equation. The differential form of the potential energy change is
  • 2. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 2 dZ φ dL g dZ dL g= sin φ (1-6) Friction losses: We use the Fanning or Darcy-Weisbach equation (Often called Darcy equation) δF V f D dL= 2 2 (1-7) an equation that applies for single phase fluids, only (two phase fluids are treated separately). The friction factor, in turn, is obtained from the Moody Diagram below. Figure 1-1: Moody Diagram Friction factor equations. (Much needed in the era of computers and excel) Laminar Flow f = 16 Re (1-8)
  • 3. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 3 Turbulent Flow f a = 0 046. Re (1-9) smooth pipes: a=0. Iron or steel pipes a=0.16 Turbulent Flow 1 2 37 2 51 10 f D f = − + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟log . . Re ε (Colebrook eqn) (1-10) Equivalent length of valves and fittings: Pressure drop for valves and fittings is accounted for as equivalent length of pipe. Typical values can be obtained from the following Table. Table 1-1: Equivalent lengths for various fittings. Fitting eL D 45O elbows 15 90O elbows, std radius 32 90O elbows, medium radius 26 90O elbows, long sweep 20 90O square elbows 60 180O close return bends 75 180O medium radius return bends 50 Tee (used as elbow, entering run) 60 Tee (used as elbow, entering branch) 90 Gate Valve (open ) 7 Globe Valve (open ) 300 Angle Valve (open) 170 Pressure Drop Calculations Piping is known. Need pressure drop. (Pump or compressor is not present.) Incompressible Flow a) Isothermal (ρ is constant) Tot dp dZ dV dF = - g +V + dL dL dL dL ρ ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ (1-11) for a fixed φ ⇒ V constant ⇒ dV = 0
  • 4. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 4 2 2 L F V f D δ δ ⎛ ⎞ = ⋅ ⋅⎜ ⎟ ⎝ ⎠ (1-12) ∆ ∆p g Z V f L D F= − ⋅ + ⋅ ⋅ + ⎡ ⎣ ⎢ ⎤ ⎦ ⎥∑ρ 2 2 (1-13) b) Nonisothermal It will not have a big error if you use ρ(Taverage), v(Taverage) Exercise 1-1: Consider the flow of liquid water (@ 20o C) through a 200 m, 3” pipe, with an elevation change of 5 m. What is the pressure drop? Can the Bernoulli equation assuming incompressible flow be used for gases? The next figure illustrates it.
  • 5. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 5 Figure 1-2: Error in Bernoulli equation In conclusion, if p p p out in in − ≤ −0 2 0 3. . using the assumption of incompressibility is OK. Compressible Flow (Gases) a) Relatively small change in T (known)
  • 6. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 6 For small pressure drop (something you can check after you are done) can use Bernoulli and fanning equation as flows 2 V gdz+vdp+d = -dF 2 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ (1-14) Then 2 2 2 g 1 V dF dz+ dp+ dV = - v v v v (1-15) but G V = v A , where V = Velocity (m/sec) v = Specific volume (m3 /Kg) G = Mass flow (Kg/sec) A = Cross sectional area (m2 ) Then, 2 2 2 g 1 G dV dF G dL dz+ dp+ = - = -2f v v A v v A D ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ (1-16) Now put in integral form g dz v dp v G A dV V G A D f dL2 2 2 2 1 ∫ ∫ ∫ ∫+ + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = − ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅ ⋅ (1-17) Assume in out av T +T T = 2 (1-18) 2 3 in out av in out in out p p p p p p p ⎡ ⎤ = + −⎢ ⎥ +⎣ ⎦ which comes from out in av out in p p dp p p dp = ∫ ∫ (1-19) in in out out av f(T ,P )+ f(T ,P ) f = 2 (1-20) The integral form will now be
  • 7. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 7 ρav in out out in avg z dp v G A V V G A f L D 2 2 2 2⋅ ⋅ + + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = − ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅ ⋅∫∆ ln (1-21) Now use p v Z R T M ⋅ = ⋅ ⋅ , where M: Molecular weight. Then av av av av p M Z R T ρ = , which leads to: ( ) ( )2 2 2 2 2 2 av out in out in av av av av av dp M M p dp p p p p v Z RT Z RT p ρ = ⋅ = − = − ⋅∫ ∫ (1-22) Therefore; ( ) 2 2 2 2 2 ln 2 2 av out av out in av av in VG G L g z p p f p A V A D ρ ρ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⋅∆ + − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ (1-23) but, V V Z T Z T p p out in out out in in in out = ⋅ ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅ (1-24) Then ( ) 2 2 2 2 2 ln 2 2 av out out in av out in av av in in out Z T pG G L g z p p f p A Z T p A D ρ ρ ⎛ ⎞⋅⎛ ⎞ ⎛ ⎞ ⋅∆ + − + ⋅ = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠ (1-25) To calculate Zav Kay’s rule is used. This rule states that the reduced pressure and temperature of the gas is obtained using the average pressure and temperature (as above calculated) and a pseudo critical pressure and temperature. , av r C p p p = (1-26) , av r C T T T = (1-27) In turn the critical pressure and temperatures are obtained as molar averages of the respective components critical values. , ,C i C i i p y p= ∑ (1-28) , ,C i C i i T y T= ∑ (1-29) With these values the Z factor comes from the following chart:
  • 8. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 8 Figure 1-3: Natural Gas Compressibility Chart Equation (1-25) can be further simplified. First neglect the acceleration term because it is usually small compared to the others, to obtain:
  • 9. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 9 ( ) 2 2 2 2 2 0 2 av av out in av av G L g z p p f p A D ρ ρ ⎛ ⎞ ⋅∆ + − + =⎜ ⎟ ⎝ ⎠ (1-30) Form this equation we can get G, as follows: ( ) 2 2 2 22 5 2 32 2 av in out av av av av av av av M p g z M p p Z RTD G f L Z RT Z RT π ⎡ ⎤ ⋅∆⎢ ⎥− ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (1-31) But the volumetric flow at standard conditions is given by s s s G p Q Z RT M = where the subscript s stands for standard conditions. Therefore: ( ) 2 2 2 2 22 5 2 2 2 32 2 av in out s s av av s av av av M p p p g z Z T Z RTR D Q Mp Z T L f π ⎡ ⎤ − − ⋅∆⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (1-32) Now, if z∆ =0, we get ( )2 22 22 5 2 2 32 2 in outs s s av av av p pZ TR D Q Mp Z T L f π ⎡ ⎤− ⎢ ⎥= ⎢ ⎥⎣ ⎦ (1-33) which can be rearranged as follows: 2 2 2 in outp p K Q− = (1-34) where 2 2 2 2 5 64 s av av av s s Mp Z T f K L R Z T Dπ = and is known to be W×L, a product of a resistant factor W times the length L. With this, we have 2 2 2 2 5 64 s av av av s s Mp Z T f W R Z T Dπ = . To calculate pressure drop we recognize that average pressures are a function of outp , which is unknown. Then we propose the following algorithm: a) Assume (1) outp and calculate (1) avp b) Calculate 2 ( ) ( ) ( ) ( ) 2 2 2 5 64 i i i i s av av av s s Mp Z T f K R Z T Dπ = b) Use formula to get a new value 1 2 ( ) 2(i ) i out inp = p K Q+ −
  • 10. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 10 d) Continue until (i+1) (i) out out (i) out p - p p ε≤ Depending on the choice of friction term expression, several formulas have been reported for equation (1-34). They are summarized in the following table. Table 1-2: Different forms of compressible flow equations
  • 11. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 11 Table 1-2 (continued): Different forms of compressible flow equations Exercise 1-2: Natural gas (84,000 std m3 /hr at 49 atm and 38o C) is sent from a gas refinery to a city, through a 16” pipeline. The distance is 170 Km. The gas reaches the other end at ground temperature, (5 o C). The gas to have the following molar fractions: Methane: 98%, ethane: 1.2%, propane: 0.75%, and water: 0.05%. We also assume Re~5 106 and ε/D =0.01. As a first approximation, we recommend using the Panhandle A equation: 2 2 1.855 in outp p K Q− = W= 2.552 × 10-4 Tin×s0.855 /D4.586 (Wilson G.G., R. T. Ellington and J. Farwalther, 1991, Institute of Gas Technology Education Program, Gas distribution Home Study Course) , where s is the gas gravity (=Mgas/Mair)=0.65 for natural gas), Tin is in o R and D in inches) What is the pressure drop?
  • 12. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 12 Heat Transfer Effects To account for temperature changes due to heat transfer, we use total energy balance ( ) ogdz+d vp +VdV du = q wδ δ+ + (1-35) where the following is identified: - Potential energy change: g dz - Rate of work done on the fluid element by pressure forces: d(vp) - Kinetic energy change: VdV - Internal energy changes: du - Heat transfer: qδ . This is given per unit mass flowing (Kcal/h)/(m3 /h) - Work added: owδ . This term is due to pumps and compressors. Since we will treat these separately, this term is usually set to zero for pipes. But the heat qδ is given by interactions with the ambient surroundings: ( )o D q U T T dL G π δ = − (1-36) where U is the heat transfer coefficient, To is the outside pipe temperature, DdL dAπ = (see next figure) and G is the flowrate. Figure 1-4: Area element Then, (ignoring δwo because there are no pumps) to get: ( )2 oU T -T DdLV gdz+dh+d = 2 G ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ (1-37) Integrate and solve for hout (use Tav in the heat transfer equation) ( ) ( ) 2 2 2 1 2 o av out in out in U T T DL V V h h g z z G π− ⎡ ⎤− = + − − −⎢ ⎥ ⎣ ⎦ (1-38) But V v G A Z RT p M G A out out av av out = ⋅ = ⋅ (1-39)
  • 13. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 13 Finally, to obtain the outlet temperature, one would need to obtain it form the enthalpy and pressure in the outlet ( )out out out outT = T p ,h (1-40) The procedure suggested is then: a) Assume Tout, pout b) Use mechanical energy balance to obtain (1) outp c) Use total energy balance to obtain (1) outh d) get temperature (1) outT e) Go to b) and continue until convergence SCENARIO II One has a turbine or Compressor/pump and needs Wo. We use total energy with δq = 0 and dz =0 2 o dV dh= w - 2 δ (1-41) Integrating, one obtains: 2 o W V w h G 2 ⎛ ⎞ = = ∆ + ∆⎜ ⎟ ⎝ ⎠ (1-42) In this expression, we have wo given in Joules/Kg, W in Joules/sec and h in Joules/Kg. Thus, the work of the compressor/pump is given by: 2 V W G h 2 ⎡ ⎤⎛ ⎞ = ∆ + ∆⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ (1-43) For compressors, W is positive, while for turbines, it is negative. However, ∆h is known for liquids because enthalpy does not vary much with pressure. In addition, there isn’t much temperature change in pumps). However, for gases, ∆h is much harder to obtain. Therefore we go back to the Mechanical Energy equation for pumps/compressors. Indeed, the Bernoulli equation gives 2 V W G vdp G vdp 2 ⎡ ⎤⎛ ⎞ = + ∆ ≈⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ ∫ ∫ (1-44) where the acceleration term has been neglected. For pumps, the density is constant, so one obtains:
  • 14. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 14 W G p= ρ ∆ (1-45) For compressors, one needs to obtain an expression of volume knowing that the evolution is isentropic (or nearly isentropic). Thus, pvn = constant (n=Cp/Cv for ideal gases n>Cp/Cv for real gases). Substituting v p vs n s n = ⋅ ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 1 1 1 ρ integrate to get 1 1 1 n n out in in in pn W G p v n p − ⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦ (1-46) The above expression does not include the compressibility factor. A better expression, which includes the efficiency, is 1 1 1 1 2 n n in out out in a in Z Z pn W G RT n pη − ⎡ ⎤ ⎛ ⎞+⎡ ⎤ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦ (1-47) The efficiency factor is usually between 60 to 80% and normally given by the manufacturer. One expression for such factor is: 1 1 n n out in in a out in p T p T T η − ⎡ ⎤ ⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦= − (1-48) Finally, the outlet temperature is obtained from n n in in out outp v p v= (1-49) Using the gas law to obtain /in outv v in terms of temperatures and pressures, substituting and rearranging, on e obtains: [ ] 1 1 n nn out out n in in T p CR T p − −⎡ ⎤ = =⎢ ⎥ ⎣ ⎦ (1-50) where CR is the compression ratio. Normally, manufacturers recommend not exceeding 300 o F at the outlet.
  • 15. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 15 Exercise 1-3: The natural gas of exercise 1-2, is available originally at 2 atm. Calculate the compression work needed to reach delivery pressure (49 atm) using one compressor. Calculate the outlet temperature and determine the duty needed to cool the gas down to the corresponding inlet conditions. Is it acceptable to use one compressor? We now discuss the compression ratio. This is limited in compressors to the range 1.2 to 6. Extra compressors should be added if the CR >6, and after-coolers need to be added to control the temperature. If more than one compressor is to be used, the practice is to use the same CR for all. Exercise 1-4: Consider two compressors. - Write the power expression for each one assuming the gas is cooled down to its inlet temperature after compression. - Add both expressions to obtain the total work as a function of the intermediate pressure (the rest should not be a variable) - Take first derivative and obtain the desired result that CR1=CR2 Exercise 1-5: Obtain the set of compressors needed to compress the gas of exercise 1-2 properly, that is, limiting the temperature and using the right CR.
  • 16. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 16 Two Phase Flow Two phase flow has several regimes, which are depicted in the next figure: Figure 1-5: Two phase flow regimes The two extreme cases are: - Bubble: Vapor and Liquid in Equilibrium (Benzene 40%, Toluene 60%) - Dispersed: Liquid and gas (air and benzene). The latter is common in gas pipelines; the former is common in crude pipelines, especially light crudes. Dispersed Annular Stratified Froth Wavy Slug Plug Bubble
  • 17. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 17 One important thing to recognize is that except for the extreme cases, the phases travel at different velocities. Typical velocities are shown in the next table: Table 1-3: Typical velocities of two phase flows REGIME LIQUID VEL(ft/sec) VAPOR VEL.(ft/sec) Dispersed Close to vapor > 200 Annular <0.5 > 20 Stratified <0.5 0.5-10 Slug 15 (But less than vapor vel.) 3-50 Plug 2 < 4 Bubble 5-15 0.5-2 To predict the flow patterns, one needs to use the Baker Plot (next Figure) for horizontal pipes (there is a similar one for vertical pipes). Figure 1-6: Two phase flow regimes transitions In this diagram, we have g g W G A ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ , L l g W G W λ ⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎝ ⎠ , (W in lb/h, A in in2 ) which are the superficial velocity of the vapor and the liquid, respectively. In turn, the parameters are given by 0.463 L gλ ρ ρ= (with densities given in lb/ft3 ) 1/3 2/3 1147 L L µ ψ σ ρ = (with the surface tension given in dyn/cm and the viscosity in cp) We note that: 1) λ and ψ depend on the fluid property only 2) Gl depends on the ratio of flows (Known beforehand. Not a design parameter)
  • 18. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 18 3) Gg depends on the vapor/gas superficial velocity. It can be modified changing the diameter 4) Transition boundaries are not at all that sharp. From this diagram, we notice that following change of regimes in a pipe. As the pressure drop is large, then the density of the vapor is lower. 1) gλψ ρ ⇒ l gG λψ ρ ⇒ Abscissa decreases 2) 1 1 g λ ρ ⇒ 1g g G λ ρ ⇒ Ordinate increases Thus trajectories are always "up" and "to the left". Thus a bubbly flow may become, plug, slug or annular, an annular may become wavy or dispersed, depending on the starting position in the plot, and so on. PRESSURE DROP Lockart and Martinelli (1949) developed one of the first correlations. It is based on multiplying the pressure drop obtained by considering the vapor phase occupying the whole pipe, by a factor 2 TwoPhase VaporPhasep pφ∆ = ∆ (1-51) In turn, the correction factor is given by b aXφ = , where LiquidPhase VaporPhase p X p ∆ = ∆ . The following table gives some typical values of the corresponding constants: Table 1-4: Constants for Lockart and Martinelli’s correlation a b Bubble 14.2 0.75 Slug 1190 0.82 Stratified 15400 1 (horizontal) Plug 27.3 0.86 Annular 4.8 -0.3125 D(in) 0.343-0.021 D(in) We notice that there are several more modern correlations, which will be explored later. In turn, the pressure drop due to gravity, is given by (1 ) sing g g l gravity dp g dL ε ρ ε ρ θ ⎞ ⎡ ⎤= + −⎟ ⎣ ⎦ ⎠ (1-52) where gε is the (void) fraction of gas. We omit the pressure drop due to acceleration.
  • 19. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 19 Hydrate Formation Hydrates are crystalline structures between water and hydrocarbons. One typical example is given in the figure below: Figure 1-7: Methane Hydrate The next figure shows the Pressure-Temperature diagram of water-hydrocarbon systems. Curve 1-1 represents the curve for vapor pressure of the hydrocarbon. Figure 1-8: Generic Hydrate P-T diagram Cage of water molecules CH4 molecule in the center
  • 20. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 20 The next figure shows some specific cases of hydrocarbons: Figure 1-9: Hydrate P-T diagram for various hydrocarbons Clearly, in high pressure pipelines, favorable thermodynamic conditions for hydrate formation can be encountered. It is therefore important to keep in mind that these conditions need to be avoided. These hydrates can be prevented from forming through heating, pressure change (not a choice in pipelines) and the introduction of inhibitors. These inhibitors are salts, alcohols, glycols, ammonia and MEA. The most widely used is methanol. The next figure shows the depression of hydrate formation temperature observed for various hydrates. Figure 1-10: Hydrate temperature formation depression
  • 21. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 21 Pipeline Costs Historical pipeline and compressors installed cost data were obtained from the Oil & Gas Journal special report on Pipeline Economics, September 3, 2001. Pipeline per mile cost distribution for different pipe diameters and compressor installed cost for different horsepower requirement are plotted in the following figure. All cost figures are updated to 2005 dollars using Marshal & Swift cost indexes. y = 43.2x + 100 0 500 1000 1500 2000 2500 3000 0 10 20 30 40 50 Figure 1-11: Pipe average cost (k$/mile) vs. ID y = 1.65x 0 20000 40000 60000 80000 100000 0 10000 20000 30000 40000 Figure 1-12: Compressor cost (k$) vs. horsepower Fixed Capital Investment were calculated by adding the installed cost of a pipe length (assumed 5000 miles) and the cost of all required recompression stations. The Fixed Capital Investments obtained are then divided by the pipe length to obtain a per mile cost profile for different flow rates. The curve in the next figure shows that this cost profile takes a logarithmic shape.
  • 22. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 22 y = 0.001659x + 0.001108 B$ 0.000 B$ 0.001 B$ 0.001 B$ 0.002 B$ 0.002 B$ 0.003 B$ 0.003 B$ 0.004 B$ 0.004 B$ 0.005 B$ 0.005 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 BSCFD Figure 1-13: Pipeline fixed cost (b$/mile) vs. capacity (BSCFD) A linear correlation gives the following form: 001108.0)(*001659.0)/$( += BSCFDCapacitymileBFCI Operating costs for pipelines were estimated as follows; an average of 5 operators is assumed to be the requirement for each compression station, with an hourly wage of $21. Direct supervisory and clerical labor is assumed to be 20% of operating labor. Compressor fuel requirement is estimated at 8,000 Btu / BHP-HR, and fuel cost at $2.5 per million Btu. Maintenance cost is assumed to be 7% of the FCI for compressors and 3% for pipes while insurance is 1% for compressors and 0.4% for pipes. Operating cost per pipeline mile versus capacity is plotted in the next figure: y = 7E-05x + 4E-05 B$0.000000 B$0.000050 B$0.000100 B$0.000150 B$0.000200 B$0.000250 0 0.5 1 1.5 Figure 1-14: Pipeline per mile annual operating cost vs. capacity This estimate should be reasonable with about 40% accuracy. Similar linear approximation to that of the FCI is assumed. Linear regression was used to estimate the operating cost
  • 23. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 23 dependence of the capacity, ignoring capacities less than 100 MMSCFD. This gave a general correlation of the following form: 00004.0)(*00007.0)//$(. += BSCFDCapacityyearmileBCostOper Exercise 1-9: Consider the pipeline of Exercise 1-8: - Vary the pipeline maximum pressure (1200 psia) to some lower and higher value. Adjust the diameter accordingly and calculate the number of recompression stations. - Calculate the cost. Can you say that 1200 psia is the right pressure? Pipeline Looping Pipeline looping is the practice of designing pipelines with segments run in parallel. This practice increases the pipeline flow capacity without altering the final pressure. If temperature is close to ambient temperature, the location of a loop does not change the final delivery pressure. However, when temperature changes substantially, then the location of a loop has an influence. Thus, in these cases, for example, it is recommended to loop in the upstream region, where the gas is hotter. This allows the gas to cool down faster and therefore increase the delivery pressure. Consider the following example: A 100 Km length (20” OD) pipeline is used to send 289 MMSFD at an inlet pressure of 1,200 psia and a temperature of 45 o C. The pipe roughness is 750 µ inches, and a soil temperature of 10 o C. Three alternatives were studied for this pipeline. a) No looping, b) Looping the first 25 Km, and c) Looping the last 25 Km. The results of a simulation are shown in the next figure: Figure 1-15: Results from Looping
  • 24. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 24 Exercise 1-10: Verify the results of figure 1-15 using the simulator. Retrograde condensation One very common phenomenon in pipelines is retrograde condensation. Consider the P-T plot of the next figure. It corresponds to a gas with the following composition: Methane: 93.47 %, Ethane: 3.52%, Propane: 0.585%, n-butane: 0.16%, i-butane: 0.11%, pentane: 0.055%, i- pentane 0.05%, hexane: 0.09%, heptane: 0.04%, octane: 0.03%, nonane: 0.01%, CO2: 0.0545, N2: 1.34%. Assume a 15”, 200 Km pipeline starts at 60 atm and 15 o C. If the external temperature is 5 o C (U=1 BTU/hr-ft2o F), then it is clear that there will be liquid formation in this pipeline, even if the operation is isothermal. Figure 1-16: P-T diagram of example gas and retrograde condensation Interestingly, if the pressure at the other end is low enough, then the liquid might vaporize again. This means that the pressure drop regime inside the pipe might change and one has to be careful in performing the simulations. Exercise 1-11: Generate the answers for the above example using the simulator. Change the pipe diameter and the length to verify the statements.
  • 25. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 25 Pipeline Optimization Process J-Curve Analysis Conventional Pipeline design methods, which rely mostly on hand calculations or at best on simple spreadsheet suggest that the compressor size and the pipe diameter be varied and the cost of service ($/(m3 *Km) for the first year be plotted as a function of flowrate. Typical assumptions are that there is no volume buildup in the pipe, the time value of money is neglected and that the facilities are designed to sustain the flows. For example, Figure 1-17 shows one such exercise performed for three different diameters and parametric at different maximum operating pressures (MOP) and compression ratios. Efficient operating ranges that are flat are preferred Figure 1-17: J-Curves for various diameters Exercise 1-12: Explain why J-curves go through a minimum.
  • 26. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 26 Optimization Parameters J-Curves are a simplistic first approach but one that can provide a first approximation to the right diameter and compressors. Thus one needs to establish - Route: In most cases this is defined by a variety of other factors and given to the designer. - Pipeline Initial Capacity: Most pipelines are constructed taking into account the fact that demand at the receiving end(s) will increase through time. Thus, one is faced with the decision of designing for future capacity and underutilize the pipeline for some time or design for current or more short term capacity and use loops to expand later. - Expansions: If capacity expansions are considered, then they need to take place through looping. Not only the new loop has to be designed, but its timing and capacity be selected. - Maximum operating pressure: This choice has already been considered in constructing the J-Curves. However, in more complex situations, one is faced with multiple delivery points with different delivery pressures, etc. - Pipe Size: This choice has already been considered in the J-Curve selection but needs to be revisited anyway in view of the influence of the other factors. - Load Factor: This factor is the ratio between the average daily volume delivered divided by the peak volume. If this ratio is too small, then storage facilities for inventory holding (salt caverns, underground caverns, abandoned reservoirs, etc if available, or large LNG or high pressure, CNG, storage tanks) are more convenient than more powerful compressors and larger diameters. The issue to resolve is when these are substituted by inventory holding sites. In addition, the question remains where these holding sites should be located. - Compressor Station Spacing: While an earlier exercise suggests that when multiple compressors are used it is best to keep the compression ratio equal, this hypothesis needs verification. Reciprocating compressors are chosen when the power requirement is smaller than 5,500 Kw. Compression ratios recommended for centrifugal compressors are generally in the range of 1.25 to 1.35 and smaller than 1.5 for reciprocating compressors. Exercise 1-13: Consider the pipeline of Exercise 1-8: - Assume two compression stations will be used. - Determine (by inspection and using a simulator what is the best compression ratio for each compressor. Aim at minimizing total work only. - Heating and Cooling: Clearly, cooling leads to significant savings because pressure drop is reduced. However, money needs to be spent to install and run the coolers. Thus the trade-off needs to be resolved.
  • 27. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 27 Exercise 1-14: Consider the shown in the following figure - The piping is in the ground and is not insulated. Assume a ground temperature of 25o C and a ground conductivity of 0.7 W/(m o C). The gas elevation profiles are provided in the following table: Km Elevation (m) 0 42 115 7 143 14.93 323 60 550 10 609 120 613 122 630 235 638 470 650 890 - The gas ((1.9% methane, 5% Ethane, 2% propane, 1% n-butane and 0.1% n- pentane) is supplied at the two points indicated in the diagram at 1,367 kPa and 35o C in the first station (Km 0), and 1520 kPa and 30o C in the second (Km 143). - Determine using simulations a) Piping diameter, b) Compressors at the supply station, c) cooling required. Do not use a pressure above 5,600 Kpa. Use cost data provided above. - Will new compressors be needed/beneficial? Supply: 10,407,840 m3/d 2,148,200 m3/d Supply: 5,722,000 m3/d 18,240 m3/d 6,595,200 m3/d 134,400 m3/d 64,600 m3/d Km 0 115 143 323 550 609 630 Km 650 2,832,000 m3/d 613 638 3,617,400 m3/d 384,000 m3/d 336,,000 m3/d
  • 28. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 28 OPTIMAL DESIGN
  • 29. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 29
  • 30. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 30
  • 31. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 31
  • 32. Natural Gas Basic Engineering Copyright: Miguel Bagajewicz. No reproduction allowed without consent 32