SlideShare a Scribd company logo
1 of 40
Aeropropulsion 
Unit 
2-D Analysis in Turbomachinery Flow with Loss 
2005 - 2010 
International School of Engineering, Chulalongkorn University 
Regular Program and International Double Degree Program, Kasetsart University 
Assist. Prof. Anurak Atthasit, Ph.D.
Aeropropulsion 
Unit 
2 
A. ATTHASIT 
Kasetsart University 
Topics 
•2D Blade Design Criterions 
–Diffusion Factor 
–De Haller number 
–Degree of Reaction 
•2-D Flow Analysis: Blade with Loss 
–Isentropic/ Polytropic Loss 
–Loss Coefficient 
–Work Done Factor 
•In-class Practice
Aeropropulsion 
Unit 
3 
A. ATTHASIT 
Kasetsart University 
Cascade field 
2-D Flow
Aeropropulsion 
Unit 
4 
A. ATTHASIT 
Kasetsart University 
Cascade field 
2-D Flow
Aeropropulsion 
Unit 
5 
A. ATTHASIT 
Kasetsart University 
Blade Loading : diffusion factor 
Diffusion factor 
High fluid deflection = high rate of diffusion 
Definition & termology :
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 6 
Blade Loading : diffusion factor 
Diffusion factor 
High velocity gradient ---> high boundary layer thicnkness ---> high losses 
w 
1 2 
max 2 
1 1 
C s 
V V 
V V 2 c D 
V V 
 
  
 
  
2 w 
1 1 
V C s 
D 1 
V 2V c 
 
   
max 1 w 
s 
V V 0.5( C ) 
c 
When    
c 
solidity 
s 
 
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 7 
Diffusion factor 
Diffusion factor 
2 w 
1 1 
V C s 
D 1 
V 2V c 
 
   
Wide range of cascade NACA tests 
Criterian's limit : 
D < 0.6 
Advantage : 
'D' help to construct 
the velocity diagram
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 8 
Blade Loading : de Haller n° 
Criteria for endwall loading or pressure rise : 
De Haller number 2 1 V / V  0.72 
De Haller (1953) 
But lowing value ---> excessive losses
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 9 
Many criterias left for prelim-design 
Degree of reaction 
Degree of reaction (°RcT1 ) : 
T2 
T3 
2 1 2 1 
c 
3 1 3 1 
h h T T 
R 
h h T T 
  
   
  
One stage of compressor 
°Rc desirable is 0.5 (share the burden) 
Stage loading 
t t p t 
2 2 2 
h h c T 
( r ) U U 
   
 
 
   
0.3   0.35
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 10 
Many criterias left for preliminary design 
Flow Coefficient 
a1 a1 C C 
r U 
 
 
  
0.45   0.55 
Flow coefficient
Aeropropulsion 
Unit 
11 
A. ATTHASIT 
Kasetsart University 
Velocity Diagrams 
Velocity Diagrams
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 12 
Velocity Diagrams & Euler's Equation 
Velocity Diagrams 
p t2 t1 2 2 1 1 C (T T ) ( r v r v ) 
2 r 1 r  
 2 1 2 
p t 2 t1 1 2 
1 
u u 
C (T T ) r tan tan 
r u 
   
 
  
     
  
 2 1 2 
p t 2 t1 2 1 
1 
u u 
C (T T ) r tan tan 
r u 
   
 
  
     
 
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 13 
i i i i i i i 
i i i i 
i i i i i 
m PV cos V cos P P 
V cos M 
A RT RT RT R T 
    
  
 
    
Velocity Diagrams & Flow Annulus Area 
Velocity Diagrams 
2 r 1 r  
i 
ti 
i 
ti i M 
m T 
A 
P cos MFP 

Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 14 
Flow with loss : Introduction 
Flow with loss 
Adiabatic Stage Efficiency s  
( 1 ) / 
t3s t1 t3s t1 t3 t1 
s 
t3 t1 t3 t1 t3 t1 
h h T T ( P / P ) 1 
h h T T T / T 1 
  
 
    
   
   
When t t3 t1 T  T T 
/( 1 ) 
t3 t 
s 
t1 t1 
P T 
1 
P T 
  
 
 
   
    
 
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 15 
Flow with loss : Introduction 
Flow with loss 
ti ti ti t t t 
c 
t t t t t t 
dh dT dT / T 1 dP / P 
e 
dh dT dT / T dT / T 
 
 
 
    
Adiabatic Polytropic Efficiency c e 
t3 t1 
c 
t3 t1 
1 ln( P / P ) 
e 
ln(T / T ) 
 
 
 
  0.9 
(Preliminary design) 
When t t3 t1 T  T T 
ec /( 1 ) ec /( 1 ) 
t3 t3 t 
t1 t1 t1 
P T T 
1 
P T T 
      
     
       
   
Aeropropulsion 
Unit 
16 
A. ATTHASIT 
Kasetsart University 
Flow with loss : Life is still not easy … 
Flow with loss 
Adiabatic Polytropic Efficiency 
Adiabatic Stage Efficiency 
When 
are 
unknown …
Aeropropulsion 
Unit 
17 
A. ATTHASIT 
Kasetsart University 
Flow with loss : Experiment data 
Flow with loss 
Cascade tests result : 
• The optimum angle (minimum loss) 
• Profile drag coefficient (cascade efficiency) 
(must be increased to account for end losses (e.g., tip leakage, wall boundary layer or cavity leakage)
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 18 
Flow with loss : Cascade data 
Flow with loss 
Total pressure loss coefficient 
t ,drop ti te 
c 2 
dynamic i 
P P P 
P V / 2 
 
 
 
  
Remark : 
• Rotor - relative reference 
• Stator - fixed reference
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 19 
Flow with loss : Total pressure loss coefficient 
Flow with loss 
t ,drop ti te 
c 2 
dynamic i 
P P P 
P V / 2 
 
 
 
  Example for Rotor 
t1R t 2R 
cr 2 
1 1R 
P P 
V / 2 
 
 
 
 
2 2 
t 2R 1 1R 1 1R 
cr cr 
t1R t1R t1R 
P V PM 
1 1 
P 2P 2P 
  
    
2 
t 2R 1R 
cr /( 1 ) 
t1R 2 
1R 
P M / 2 
1 
P 1 
1 M 
2 
  
 
 
 
   
   
   
 
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 20 
Flow with loss : Total pressure loss coefficient 
Flow with loss 
For Rotor 
2 
t 2R 1R 
cr /( 1 ) 
t1R 2 
1R 
P M / 2 
1 
P 1 
1 M 
2 
  
 
 
 
   
   
   
  
For Stator 
2 
t3 2 
cs /( 1 ) 
t 2 2 
2 
P M / 2 
1 
P 1 
1 M 
2 
  
 
 
 
   
   
   
  
How can we evaluate the total 
pressure ratio of a stage ? 
t3 
t1 
P 
P 
 
cs , 2 2 2 R cr , 1R 1R 1 
t3 t 2 2 t 2R t1R 1 
t 2 M 2 M t 2R M t1R M 1 M t1 M 
P P P P P P 
P P P P P P 
  
            
            
           
Aeropropulsion 
Unit 
21 
A. ATTHASIT 
Kasetsart University 
Blockage in the Compressor Annulus 
Axial velocity distribution 
(a)At first stage 
(b)At fourth stage 
1.The change in axial velocity affects the work-absorbing capacity of the stage. 
2.The reduction in work capacity can be accounted for by use of the work-done factor λ which is a number less than unity 
Variation of mean work- done factor with number of stages 
ptetieeiiC(TT)(rvrv)
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 22 
In-class Practice: Ch10P01 
Mean radius stage calculation 
Flow with loss 
Stage calculation 
t1 t1R t1 t1R T ,T ,P ,P 
t2 t2R t2 t2R T ,T ,P ,P 
&Velocity diagram 
t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
   
t T 
Prove 
• Obj: Able to 
use the 
fundamental 
equation 
under the 
correct 
assumptions 
Analysis 
• Obj: 
Understand 
the physical 
meaning of 
each 
parameters 
Calculation 
• Obj: Able to 
solve the 
relations 
under the 
constraints of 
corrected unit, 
constant, … 
etc.
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 23 
Mean radius stage calculation 
Flow with loss 
t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
   
Step 1: Find Triangle "V" at Station 1 
Properties 
Geometry 
V_Compo 
V_Compo 
(relative) 
Properties 
(relative) 
1 T 1 a 1 P 
1 1 1 V  M a 1 1 1 u V cos 1 1 1 v V sin 
1 
t1 
1 
t1 1 M 
m T 
A 
P cos MFP 
 
U r 
1R 1 v r v 2 2 
1R 1 1R V  u v 1R 
1R 
1 
V 
M 
a 
 
t1R 1 1R T  f (T ,M , ) t1R 1 1 t1R P  g( P ,T ,T , )
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 24 
Mean radius stage calculation 
Flow with loss 
Step 2: Find "P&T" at Station 2 
Properties : 
t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
   
cr , 1R 
t 2R 
t 2R t1R 
t1R M 
P 
P P 
P 
 
  
   
  
t2R t1R T T  290.07K 
t2 t1 t T  T  T 
t 2 Still don't know P ,let's keep it later!
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 25 
Mean radius stage calculation 
Flow with loss 
? Step 3: Euler's Equation : 
 2 1 2 
p t 2 t1 1 2 
1 
u u 
C (T T ) r tan tan 
r u 
   
 
  
     
  
Euler's Equation : 
Then 2 is determined 
t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
  
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 26 
Mean radius stage calculation 
Flow with loss 
Step 4: Find Triangle "V" at Station 2 
2 
2 1 2R 2 2 
1 
u 
u u ,v u tan 
u 
   2R V 
1 2 
2 2R 2 
2 
v 
v U v , tan 
u 
     2 V 
Step 5: Find "T&P" at Station 2 t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
   
/( 1 ) 
2 
2 2 
2 t 2 2 t 2R 
P t 2R 
V T 
T T ,P P 
2C T 
   
  
     
 
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 27 
Mean radius stage calculation 
Step 6: Find the rest at Station 2 
2 2 2 a ,M ,A 
Step 7: Find the rest at Station 3 
t3 t3R t3 t3R P ,P ,T ,T ? 
3 3 P ,T 
3 3 3 3 3 a ,V ,u ,v ,A 
Flow with loss 
t1 t1 
m 
1 3 
2 
1 3 t 
1 
cr cs 
T 288.16K,P 101.3kPa 
1000rad / s,r 0.3048m 
40 , 1,m 22.68kg / s 
u 
M M 0.7, 1.1, T 22.43K 
u 
0.09, 0.03 
1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK 
 
   
  
 
  
  
     
     
  
  
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 28 
t2R t2R T ,P 
cr ,M1R 
Euler Eq. 
2 
Mean radius stage calculation - Summary 
Flow with loss 
t1 t1 m 
1 3 
1 3 2 1 t 
cr cs 
T ,P , ,r 
, , ,m 
M ,M ,u ,u , T 
, 
 
   
  
 
t1 t1R t1 t1R T ,T ,P ,P 
t2 t1 t T  T  T 
cs 2  ,M
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 29 
e d 
1 u 
g 
Design Constrain 
(Performance control) 
Design Overview 
Design constrain 
Where is the starting point… and the next step …? 
Blade Profile Determination 
b 
c t1 T 
t1 P 
 1 3   
m 
1 M 
cr  
cs  
Fixed Parameters 
(input data) 
a m r 
 
3 M 
2 u 
t T 
f 
Variable Parameters 
Obtained Flow Properties
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 30 
Discusion 
Design constrain 
Preliminary design parameters ….? 
a 
b 
c 
d 
t1 T 
t1 P 
 
e 
m r 
1  
3  
 
m 1 M 3 M 
2 u 
1 u 
t T 
cr  
cs  
f 
g 
Nobody can help me ….?!?!
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 31 
Engineering Aproach 
Repeating-Stage, Repeating-Row, Mean-Line Design 
R-S, R-R, M-L 
Input data 
 
1 M 
g 
D 
ec 
t1 1 T  
Variables 
Flow Properties in each station 
Repeating-Stage (Exit condition = Inlet condition) 
Repeating-Row (Mirror-image of each row) 
Mean-Line Design 
Assumption : 
- 1=2=3,1=2=3 
- u1=u2=u3 
- Constant mean radius 
- Polytropic efficiency representing stage losses 
- Two-dimensional flow (extimate annulus area) 
c 
t1 P 
1 t u f T 
Controled parameter 
Simplified 
Your life !
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 32 
Repeating-Stage, Repeating-Row, Mean-Line Design 
R-S, R-R, M-L 
Repeating-row constraint : 1=2=3,1=2=3 
2R 1 2 v  v r v 
or 
1 2 v  v r 
3 2 3R 2 3 1     v  v ,v  v 
And also
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 33 
Repeating-Stage, Repeating-Row, Mean-Line Design 
Diffusion Factor 
R-S, R-R, M-L 
Diffusion factor : High velocity gradient ---> high boundary layer thicnkness ---> high losses 
2R 1R 1R 
1R 1R 
V v v s 
D 1 
V 2V c 
 
   
c 
solidity 
s 
  
2R 1R 1R 3 2 3 2 2 1 
2 
1R 1R 2 2 1 
V v v V v v cos tan tan 
D 1 1 1 cos ... 
V 2V V 2V cos 2 
   
 
    
   
          
2 1   f (D, , )
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 34 
Repeating-Stage, Repeating-Row, Mean-Line Design 
Stage Total Temperature/Pressure Ratio 
R-S, R-R, M-L 
  
2 2 
t3 1 1 
s 2 2 
t1 1 2 
T ( 1)M cos 
1 1 
T 1 ( 1) / 2 M cos 
  
 
  
   
      
    
c 
c 
e /( 1 ) 
t3 t3 e /( 1 ) 
s s 
t1 t1 
P T 
P T 
  
    
 
   
     
  
s 1 1 2 
s s c 
f (M , , , ) 
f ( , ,e ) 
    
   
 
 
From Euler Eq: p t2 t1 p t3 t1 2 1 C (T T ) C (T T ) r( v v ) 
2 1 r  v v & Diffusion Factor ? 
H 
O 
w
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 35 
Repeating-Stage, Repeating-Row, Mean-Line Design 
Degree of Reaction and Stage Efficiency 
R-S, R-R, M-L 
( 1 ) / 
s 
s 
s 
1 
1 
   
 
 
  
 
 
s s s c   f ( , , ,e ) 
  2 2 
2 1 2 1 3 2 2 3 p 
c 
3 1 3 1 3 1 t3 t1 
h h T T T T V V / 2C 
R 1 1 
h h T T T T T T 
    
       
    
  
  
2 2 
2 3 p 
c 2 2 
2 3 p 
V V / 2C 1 
R 1 
V V / C 2 
 
    
 
Euler Eq : 
Stage Efficiency :
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 36 
Repeating-Stage, Repeating-Row, Mean-Line Design 
Stage Exit Mach Number 
R-S, R-R, M-L 
1 
1 2 
V 
f ( , ) 
r 
  
 
 
      
3 3 3 1 
2 2 
1 1 1 3 s 1 1 
M V / RT T 1 
1 
M V / RT T 1 ( 1) / 2 M ( 1) / 2 M 
 
    
    
    
1 1 1 1 1 
1 2 1 1 2 1 1 2 
V u / cos u / cos 1 
r v v u (tan tan ) cos (tan tan ) 
  
      
   
   
Inlet velocity/Wheel speed ratio :
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 37 
Repeating-Stage, Repeating-Row, Mean-Line Design 
Stage Loading and Flow Coefficient 
R-S, R-R, M-L 
p t 2 1 
2 
2 1 
C T tan tan 
( r ) tan tan 
  
 
   
  
  
 
1 
1 2 
u 1 
r tan tan 
 
   
  
 
Flow Coefficient : Axial velocity/rotor speed 
Stage Loading : stage work/rotor speed squared 
0.3   0.35 
0.45   0.55
Aeropropulsion 
Unit 
38 
A. ATTHASIT 
Kasetsart University 
Repeating-Stage, Repeating-Row, Mean-Line Design General Solution 
R-S, R-R, M-L c(D0.5,1,e0.9)
Aeropropulsion 
Unit 
Kasetsart University A. ATTHASIT 39 
Repeating-Stage, Repeating-Row, Mean-Line Design 
General Solution 
R-S, R-R, M-L 
c (D  0.5,  1,e  0.9 )
Aeropropulsion 
Unit 
40 
A. ATTHASIT 
Kasetsart University 
Conclusion

More Related Content

What's hot

Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme firstAnurak Atthasit
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performanceAnurak Atthasit
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysisAnurak Atthasit
 
Aircraft propulsion axial flow compressors off design performance
Aircraft propulsion   axial flow compressors off design performanceAircraft propulsion   axial flow compressors off design performance
Aircraft propulsion axial flow compressors off design performanceAnurak Atthasit
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010CangTo Cheah
 
P&w tables of compressible flow functions
P&w tables of compressible flow functionsP&w tables of compressible flow functions
P&w tables of compressible flow functionsJulio Banks
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowJulio Banks
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAnurak Atthasit
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersVaidyanathan Ramakrishnan
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
GDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbGDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbgokulfea
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
Propulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentsPropulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentssundaraero
 
5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors modMetaabAltaher
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 

What's hot (20)

Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme first
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performance
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Aircraft propulsion axial flow compressors off design performance
Aircraft propulsion   axial flow compressors off design performanceAircraft propulsion   axial flow compressors off design performance
Aircraft propulsion axial flow compressors off design performance
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
 
P&w tables of compressible flow functions
P&w tables of compressible flow functionsP&w tables of compressible flow functions
P&w tables of compressible flow functions
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flow
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet Performance
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
GDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbGDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qb
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
Turbo Final 2
Turbo Final 2Turbo Final 2
Turbo Final 2
 
project 2
project 2project 2
project 2
 
Propulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentsPropulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical students
 
5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors mod
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 

Viewers also liked

Technical Support in Thermal Power Generation Sector – Career Opportunities
Technical Support in Thermal Power Generation Sector – Career OpportunitiesTechnical Support in Thermal Power Generation Sector – Career Opportunities
Technical Support in Thermal Power Generation Sector – Career OpportunitiesAnurak Atthasit
 
Sagging the Elephant Reserves
Sagging the Elephant ReservesSagging the Elephant Reserves
Sagging the Elephant ReservesAnurak Atthasit
 
Promenade culturelle thaïlandaise toulouse 2003
Promenade culturelle thaïlandaise toulouse 2003Promenade culturelle thaïlandaise toulouse 2003
Promenade culturelle thaïlandaise toulouse 2003Anurak Atthasit
 
Power Key Elements of a Thermal Power Generation
Power Key Elements of a Thermal Power GenerationPower Key Elements of a Thermal Power Generation
Power Key Elements of a Thermal Power GenerationAnurak Atthasit
 
Centrifugal compressors
Centrifugal compressorsCentrifugal compressors
Centrifugal compressorsArifandy Mulky
 
EASA Part 66 Module 15.4 : Compressors
EASA Part 66 Module 15.4 : CompressorsEASA Part 66 Module 15.4 : Compressors
EASA Part 66 Module 15.4 : Compressorssoulstalker
 
Centrifugal Compressor
Centrifugal CompressorCentrifugal Compressor
Centrifugal CompressorAnkit Singh
 
Numerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit andNumerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit andeSAT Publishing House
 
Combined Cycle Gas Turbine Power Plant Part 1
Combined Cycle Gas Turbine Power Plant Part 1Combined Cycle Gas Turbine Power Plant Part 1
Combined Cycle Gas Turbine Power Plant Part 1Anurak Atthasit
 
Aircraft propulsion fuel injection
Aircraft propulsion   fuel injectionAircraft propulsion   fuel injection
Aircraft propulsion fuel injectionAnurak Atthasit
 

Viewers also liked (15)

Technical Support in Thermal Power Generation Sector – Career Opportunities
Technical Support in Thermal Power Generation Sector – Career OpportunitiesTechnical Support in Thermal Power Generation Sector – Career Opportunities
Technical Support in Thermal Power Generation Sector – Career Opportunities
 
Non Adaptive Behavior
Non Adaptive BehaviorNon Adaptive Behavior
Non Adaptive Behavior
 
Sagging the Elephant Reserves
Sagging the Elephant ReservesSagging the Elephant Reserves
Sagging the Elephant Reserves
 
Silk Road
Silk RoadSilk Road
Silk Road
 
Promenade culturelle thaïlandaise toulouse 2003
Promenade culturelle thaïlandaise toulouse 2003Promenade culturelle thaïlandaise toulouse 2003
Promenade culturelle thaïlandaise toulouse 2003
 
Power Key Elements of a Thermal Power Generation
Power Key Elements of a Thermal Power GenerationPower Key Elements of a Thermal Power Generation
Power Key Elements of a Thermal Power Generation
 
Centrifugal compressors
Centrifugal compressorsCentrifugal compressors
Centrifugal compressors
 
LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
EASA Part 66 Module 15.4 : Compressors
EASA Part 66 Module 15.4 : CompressorsEASA Part 66 Module 15.4 : Compressors
EASA Part 66 Module 15.4 : Compressors
 
Centrifugal Compressor
Centrifugal CompressorCentrifugal Compressor
Centrifugal Compressor
 
Centrifugal compressor
Centrifugal compressor Centrifugal compressor
Centrifugal compressor
 
Numerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit andNumerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit and
 
Combined Cycle Gas Turbine Power Plant Part 1
Combined Cycle Gas Turbine Power Plant Part 1Combined Cycle Gas Turbine Power Plant Part 1
Combined Cycle Gas Turbine Power Plant Part 1
 
Aircraft propulsion fuel injection
Aircraft propulsion   fuel injectionAircraft propulsion   fuel injection
Aircraft propulsion fuel injection
 
Compressors
CompressorsCompressors
Compressors
 

Similar to Aircraft propulsion non ideal turbomachine 2 d

Axial fan design
Axial fan designAxial fan design
Axial fan designMert G
 
2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - graycfpbolivia
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rauschecfpbolivia
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
 
CondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.pptCondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.pptArslanAbbas36
 
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEAnalysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEJoão Baltazar
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodeJoão Baltazar
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...IRJET Journal
 
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...lynxcem
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET Journal
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabadEdhole.com
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...Abrar Hussain
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.pptIyerVasundhara
 

Similar to Aircraft propulsion non ideal turbomachine 2 d (20)

Axial fan design
Axial fan designAxial fan design
Axial fan design
 
NASA 2004 PP
NASA 2004 PPNASA 2004 PP
NASA 2004 PP
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
 
2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - gray
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
 
CondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.pptCondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.ppt
 
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEAnalysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
 
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
 
LifeTimeReport_v7
LifeTimeReport_v7LifeTimeReport_v7
LifeTimeReport_v7
 
DC Component of Fault Current
DC Component of Fault CurrentDC Component of Fault Current
DC Component of Fault Current
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 

Recently uploaded

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 

Recently uploaded (20)

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 

Aircraft propulsion non ideal turbomachine 2 d

  • 1. Aeropropulsion Unit 2-D Analysis in Turbomachinery Flow with Loss 2005 - 2010 International School of Engineering, Chulalongkorn University Regular Program and International Double Degree Program, Kasetsart University Assist. Prof. Anurak Atthasit, Ph.D.
  • 2. Aeropropulsion Unit 2 A. ATTHASIT Kasetsart University Topics •2D Blade Design Criterions –Diffusion Factor –De Haller number –Degree of Reaction •2-D Flow Analysis: Blade with Loss –Isentropic/ Polytropic Loss –Loss Coefficient –Work Done Factor •In-class Practice
  • 3. Aeropropulsion Unit 3 A. ATTHASIT Kasetsart University Cascade field 2-D Flow
  • 4. Aeropropulsion Unit 4 A. ATTHASIT Kasetsart University Cascade field 2-D Flow
  • 5. Aeropropulsion Unit 5 A. ATTHASIT Kasetsart University Blade Loading : diffusion factor Diffusion factor High fluid deflection = high rate of diffusion Definition & termology :
  • 6. Aeropropulsion Unit Kasetsart University A. ATTHASIT 6 Blade Loading : diffusion factor Diffusion factor High velocity gradient ---> high boundary layer thicnkness ---> high losses w 1 2 max 2 1 1 C s V V V V 2 c D V V       2 w 1 1 V C s D 1 V 2V c     max 1 w s V V 0.5( C ) c When    c solidity s  
  • 7. Aeropropulsion Unit Kasetsart University A. ATTHASIT 7 Diffusion factor Diffusion factor 2 w 1 1 V C s D 1 V 2V c     Wide range of cascade NACA tests Criterian's limit : D < 0.6 Advantage : 'D' help to construct the velocity diagram
  • 8. Aeropropulsion Unit Kasetsart University A. ATTHASIT 8 Blade Loading : de Haller n° Criteria for endwall loading or pressure rise : De Haller number 2 1 V / V  0.72 De Haller (1953) But lowing value ---> excessive losses
  • 9. Aeropropulsion Unit Kasetsart University A. ATTHASIT 9 Many criterias left for prelim-design Degree of reaction Degree of reaction (°RcT1 ) : T2 T3 2 1 2 1 c 3 1 3 1 h h T T R h h T T        One stage of compressor °Rc desirable is 0.5 (share the burden) Stage loading t t p t 2 2 2 h h c T ( r ) U U         0.3   0.35
  • 10. Aeropropulsion Unit Kasetsart University A. ATTHASIT 10 Many criterias left for preliminary design Flow Coefficient a1 a1 C C r U     0.45   0.55 Flow coefficient
  • 11. Aeropropulsion Unit 11 A. ATTHASIT Kasetsart University Velocity Diagrams Velocity Diagrams
  • 12. Aeropropulsion Unit Kasetsart University A. ATTHASIT 12 Velocity Diagrams & Euler's Equation Velocity Diagrams p t2 t1 2 2 1 1 C (T T ) ( r v r v ) 2 r 1 r   2 1 2 p t 2 t1 1 2 1 u u C (T T ) r tan tan r u               2 1 2 p t 2 t1 2 1 1 u u C (T T ) r tan tan r u             
  • 13. Aeropropulsion Unit Kasetsart University A. ATTHASIT 13 i i i i i i i i i i i i i i i i m PV cos V cos P P V cos M A RT RT RT R T            Velocity Diagrams & Flow Annulus Area Velocity Diagrams 2 r 1 r  i ti i ti i M m T A P cos MFP 
  • 14. Aeropropulsion Unit Kasetsart University A. ATTHASIT 14 Flow with loss : Introduction Flow with loss Adiabatic Stage Efficiency s  ( 1 ) / t3s t1 t3s t1 t3 t1 s t3 t1 t3 t1 t3 t1 h h T T ( P / P ) 1 h h T T T / T 1              When t t3 t1 T  T T /( 1 ) t3 t s t1 t1 P T 1 P T             
  • 15. Aeropropulsion Unit Kasetsart University A. ATTHASIT 15 Flow with loss : Introduction Flow with loss ti ti ti t t t c t t t t t t dh dT dT / T 1 dP / P e dh dT dT / T dT / T        Adiabatic Polytropic Efficiency c e t3 t1 c t3 t1 1 ln( P / P ) e ln(T / T )      0.9 (Preliminary design) When t t3 t1 T  T T ec /( 1 ) ec /( 1 ) t3 t3 t t1 t1 t1 P T T 1 P T T                      
  • 16. Aeropropulsion Unit 16 A. ATTHASIT Kasetsart University Flow with loss : Life is still not easy … Flow with loss Adiabatic Polytropic Efficiency Adiabatic Stage Efficiency When are unknown …
  • 17. Aeropropulsion Unit 17 A. ATTHASIT Kasetsart University Flow with loss : Experiment data Flow with loss Cascade tests result : • The optimum angle (minimum loss) • Profile drag coefficient (cascade efficiency) (must be increased to account for end losses (e.g., tip leakage, wall boundary layer or cavity leakage)
  • 18. Aeropropulsion Unit Kasetsart University A. ATTHASIT 18 Flow with loss : Cascade data Flow with loss Total pressure loss coefficient t ,drop ti te c 2 dynamic i P P P P V / 2      Remark : • Rotor - relative reference • Stator - fixed reference
  • 19. Aeropropulsion Unit Kasetsart University A. ATTHASIT 19 Flow with loss : Total pressure loss coefficient Flow with loss t ,drop ti te c 2 dynamic i P P P P V / 2      Example for Rotor t1R t 2R cr 2 1 1R P P V / 2     2 2 t 2R 1 1R 1 1R cr cr t1R t1R t1R P V PM 1 1 P 2P 2P       2 t 2R 1R cr /( 1 ) t1R 2 1R P M / 2 1 P 1 1 M 2                
  • 20. Aeropropulsion Unit Kasetsart University A. ATTHASIT 20 Flow with loss : Total pressure loss coefficient Flow with loss For Rotor 2 t 2R 1R cr /( 1 ) t1R 2 1R P M / 2 1 P 1 1 M 2                 For Stator 2 t3 2 cs /( 1 ) t 2 2 2 P M / 2 1 P 1 1 M 2                 How can we evaluate the total pressure ratio of a stage ? t3 t1 P P  cs , 2 2 2 R cr , 1R 1R 1 t3 t 2 2 t 2R t1R 1 t 2 M 2 M t 2R M t1R M 1 M t1 M P P P P P P P P P P P P                                      
  • 21. Aeropropulsion Unit 21 A. ATTHASIT Kasetsart University Blockage in the Compressor Annulus Axial velocity distribution (a)At first stage (b)At fourth stage 1.The change in axial velocity affects the work-absorbing capacity of the stage. 2.The reduction in work capacity can be accounted for by use of the work-done factor λ which is a number less than unity Variation of mean work- done factor with number of stages ptetieeiiC(TT)(rvrv)
  • 22. Aeropropulsion Unit Kasetsart University A. ATTHASIT 22 In-class Practice: Ch10P01 Mean radius stage calculation Flow with loss Stage calculation t1 t1R t1 t1R T ,T ,P ,P t2 t2R t2 t2R T ,T ,P ,P &Velocity diagram t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                           t T Prove • Obj: Able to use the fundamental equation under the correct assumptions Analysis • Obj: Understand the physical meaning of each parameters Calculation • Obj: Able to solve the relations under the constraints of corrected unit, constant, … etc.
  • 23. Aeropropulsion Unit Kasetsart University A. ATTHASIT 23 Mean radius stage calculation Flow with loss t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                           Step 1: Find Triangle "V" at Station 1 Properties Geometry V_Compo V_Compo (relative) Properties (relative) 1 T 1 a 1 P 1 1 1 V  M a 1 1 1 u V cos 1 1 1 v V sin 1 t1 1 t1 1 M m T A P cos MFP  U r 1R 1 v r v 2 2 1R 1 1R V  u v 1R 1R 1 V M a  t1R 1 1R T  f (T ,M , ) t1R 1 1 t1R P  g( P ,T ,T , )
  • 24. Aeropropulsion Unit Kasetsart University A. ATTHASIT 24 Mean radius stage calculation Flow with loss Step 2: Find "P&T" at Station 2 Properties : t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                           cr , 1R t 2R t 2R t1R t1R M P P P P         t2R t1R T T  290.07K t2 t1 t T  T  T t 2 Still don't know P ,let's keep it later!
  • 25. Aeropropulsion Unit Kasetsart University A. ATTHASIT 25 Mean radius stage calculation Flow with loss ? Step 3: Euler's Equation :  2 1 2 p t 2 t1 1 2 1 u u C (T T ) r tan tan r u              Euler's Equation : Then 2 is determined t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                          
  • 26. Aeropropulsion Unit Kasetsart University A. ATTHASIT 26 Mean radius stage calculation Flow with loss Step 4: Find Triangle "V" at Station 2 2 2 1 2R 2 2 1 u u u ,v u tan u    2R V 1 2 2 2R 2 2 v v U v , tan u      2 V Step 5: Find "T&P" at Station 2 t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                           /( 1 ) 2 2 2 2 t 2 2 t 2R P t 2R V T T T ,P P 2C T            
  • 27. Aeropropulsion Unit Kasetsart University A. ATTHASIT 27 Mean radius stage calculation Step 6: Find the rest at Station 2 2 2 2 a ,M ,A Step 7: Find the rest at Station 3 t3 t3R t3 t3R P ,P ,T ,T ? 3 3 P ,T 3 3 3 3 3 a ,V ,u ,v ,A Flow with loss t1 t1 m 1 3 2 1 3 t 1 cr cs T 288.16K,P 101.3kPa 1000rad / s,r 0.3048m 40 , 1,m 22.68kg / s u M M 0.7, 1.1, T 22.43K u 0.09, 0.03 1.4,Cp 1.004kJ / kgK,R 0.287kJ / kgK                          
  • 28. Aeropropulsion Unit Kasetsart University A. ATTHASIT 28 t2R t2R T ,P cr ,M1R Euler Eq. 2 Mean radius stage calculation - Summary Flow with loss t1 t1 m 1 3 1 3 2 1 t cr cs T ,P , ,r , , ,m M ,M ,u ,u , T ,        t1 t1R t1 t1R T ,T ,P ,P t2 t1 t T  T  T cs 2  ,M
  • 29. Aeropropulsion Unit Kasetsart University A. ATTHASIT 29 e d 1 u g Design Constrain (Performance control) Design Overview Design constrain Where is the starting point… and the next step …? Blade Profile Determination b c t1 T t1 P  1 3   m 1 M cr  cs  Fixed Parameters (input data) a m r  3 M 2 u t T f Variable Parameters Obtained Flow Properties
  • 30. Aeropropulsion Unit Kasetsart University A. ATTHASIT 30 Discusion Design constrain Preliminary design parameters ….? a b c d t1 T t1 P  e m r 1  3   m 1 M 3 M 2 u 1 u t T cr  cs  f g Nobody can help me ….?!?!
  • 31. Aeropropulsion Unit Kasetsart University A. ATTHASIT 31 Engineering Aproach Repeating-Stage, Repeating-Row, Mean-Line Design R-S, R-R, M-L Input data  1 M g D ec t1 1 T  Variables Flow Properties in each station Repeating-Stage (Exit condition = Inlet condition) Repeating-Row (Mirror-image of each row) Mean-Line Design Assumption : - 1=2=3,1=2=3 - u1=u2=u3 - Constant mean radius - Polytropic efficiency representing stage losses - Two-dimensional flow (extimate annulus area) c t1 P 1 t u f T Controled parameter Simplified Your life !
  • 32. Aeropropulsion Unit Kasetsart University A. ATTHASIT 32 Repeating-Stage, Repeating-Row, Mean-Line Design R-S, R-R, M-L Repeating-row constraint : 1=2=3,1=2=3 2R 1 2 v  v r v or 1 2 v  v r 3 2 3R 2 3 1     v  v ,v  v And also
  • 33. Aeropropulsion Unit Kasetsart University A. ATTHASIT 33 Repeating-Stage, Repeating-Row, Mean-Line Design Diffusion Factor R-S, R-R, M-L Diffusion factor : High velocity gradient ---> high boundary layer thicnkness ---> high losses 2R 1R 1R 1R 1R V v v s D 1 V 2V c     c solidity s   2R 1R 1R 3 2 3 2 2 1 2 1R 1R 2 2 1 V v v V v v cos tan tan D 1 1 1 cos ... V 2V V 2V cos 2                      2 1   f (D, , )
  • 34. Aeropropulsion Unit Kasetsart University A. ATTHASIT 34 Repeating-Stage, Repeating-Row, Mean-Line Design Stage Total Temperature/Pressure Ratio R-S, R-R, M-L   2 2 t3 1 1 s 2 2 t1 1 2 T ( 1)M cos 1 1 T 1 ( 1) / 2 M cos                   c c e /( 1 ) t3 t3 e /( 1 ) s s t1 t1 P T P T                  s 1 1 2 s s c f (M , , , ) f ( , ,e )          From Euler Eq: p t2 t1 p t3 t1 2 1 C (T T ) C (T T ) r( v v ) 2 1 r  v v & Diffusion Factor ? H O w
  • 35. Aeropropulsion Unit Kasetsart University A. ATTHASIT 35 Repeating-Stage, Repeating-Row, Mean-Line Design Degree of Reaction and Stage Efficiency R-S, R-R, M-L ( 1 ) / s s s 1 1          s s s c   f ( , , ,e )   2 2 2 1 2 1 3 2 2 3 p c 3 1 3 1 3 1 t3 t1 h h T T T T V V / 2C R 1 1 h h T T T T T T                    2 2 2 3 p c 2 2 2 3 p V V / 2C 1 R 1 V V / C 2       Euler Eq : Stage Efficiency :
  • 36. Aeropropulsion Unit Kasetsart University A. ATTHASIT 36 Repeating-Stage, Repeating-Row, Mean-Line Design Stage Exit Mach Number R-S, R-R, M-L 1 1 2 V f ( , ) r           3 3 3 1 2 2 1 1 1 3 s 1 1 M V / RT T 1 1 M V / RT T 1 ( 1) / 2 M ( 1) / 2 M              1 1 1 1 1 1 2 1 1 2 1 1 2 V u / cos u / cos 1 r v v u (tan tan ) cos (tan tan )               Inlet velocity/Wheel speed ratio :
  • 37. Aeropropulsion Unit Kasetsart University A. ATTHASIT 37 Repeating-Stage, Repeating-Row, Mean-Line Design Stage Loading and Flow Coefficient R-S, R-R, M-L p t 2 1 2 2 1 C T tan tan ( r ) tan tan            1 1 2 u 1 r tan tan        Flow Coefficient : Axial velocity/rotor speed Stage Loading : stage work/rotor speed squared 0.3   0.35 0.45   0.55
  • 38. Aeropropulsion Unit 38 A. ATTHASIT Kasetsart University Repeating-Stage, Repeating-Row, Mean-Line Design General Solution R-S, R-R, M-L c(D0.5,1,e0.9)
  • 39. Aeropropulsion Unit Kasetsart University A. ATTHASIT 39 Repeating-Stage, Repeating-Row, Mean-Line Design General Solution R-S, R-R, M-L c (D  0.5,  1,e  0.9 )
  • 40. Aeropropulsion Unit 40 A. ATTHASIT Kasetsart University Conclusion