SlideShare a Scribd company logo
1 of 52
Download to read offline
Axial Compressor
TheoryTheory
Variation of rotor and stator angles
from root to tip
4th March 2010
Prepared by: Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
tip2β
tip1β
Previous discussion covers the theory behind the
calculation of rotor and stator angles at mean
radius.
Further study on previous theory enables
compressor designer to evaluate the change of
angles from root section up to tip section of rotor
and stator (covering all stages in axial compressor).
root1β
root2β
2Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
Variation of rotor angles from root to tip section
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Cw
dr
( )[ ]
( )[ ] ( )d
rdrr
d
Area
c
c
−+××=
≈θ
π
π
θ
2
22
2
2
dr
r ( )[ ] ( )
drrdrdrrdrr
d cdr
c
×× →−×++× ≈
θ
θ 0222 2
2
2
ar
Note: unit width element
r
CA
r
CV
r
Cm
FforcelCentrifuga www
cw
×××
=
××
=
×
==
ρρ 222
1
_
( ) drdC
r
drrdC
rrr
c
w
c
w
×××=
××××
θρ
θρ 2
2
a
r
3Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
dPP +
( ) ( )
c
d
rdrdPPF
θ
π ××××+×+= 12
dP
P +2
dP
P +
( ) ( )
( ) ( ) c
topradial
drdrdPP
d
rdrdPPF
θ
π
θ
π
×+×+
×
×
×××+×+=
a
1
2
2,
2
P +2
P +
P
c
bottomradial drPF θ××=,
c
sideradial
d
dr
dP
PF
θ






××





+×=
2
sin
2
2,
c
c
dPddP
θ
θ
××



+=××



+×



 22
Since dθθθθ very small, 22
sin
cc
dd θθ
≈





c
ddr
dP
P
d
dr
dP
P θ
θ
××





+=××





+×
222
2a
4Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
dPP +
dP
P +2
dP
P +
2
P +2
P +
P
( ) ( ) ccc
ddr
dP
PdrPdrdrdPPF θθθ ××



+−××−×+×+= ( ) ( )
( )c
c
ccc
netradial
drdP
ddrdP
ddr
dP
PdrPdrdrdPPF
θ
θ
θθθ
××+


 ××
××





+−××−×+×+=
2
,
a ( )c
drdP θ××+


 2
a
5Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
netradialcw FF ,=
( )drdP
ddrdP
drdC c
c
c
w
2
××+
××
=××× θ
θ
θρ ( )
r
dr
ddPdrdC
drdPdrdC
cc
w
w
2
2
2






+××=×××
××+=×××
θθρ
θθρ
a
r
dr
d
Cd
dr
dP
c
w
c 2
2




+×
××
=

θ
θρ
a
r
C
dr
Cd
dr
dP
rd
w
dr
w
c 2
0
2
2
1
2
 →

×
=×




+×
≈θ
ρ
θ
a
r
r
dr
d
dr c
2
 →






+×
=×
θ
ρ
a
r
C
dr
dP w
2
1
=×
ρ
Radial equilibrium equation:
6Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
PdvvdPdudh
Pvuh
++=
+=
a
Enthalpy Gibbs equation
( ) PdvPdvvdPdhTds
PdvduTds
+−−=
+=
a
PdvvdPdhdu
PdvvdPdudh
−−=
++=
a
a ( )
dP
dhTds
vdPdhTds
PdvPdvvdPdhTds
ρ
−=
−=
+−−=
a
a
a
ddPdTdsdh
dP
Tdsdh
ρ
ρ
ρ
11
+=a
dP
dr
d
dr
dP
dr
dT
ds
dr
ds
T
dr
dh ρ
ρρ 2
11
−++=a
dPdsdh 1
Dropping second order terms
dr
dP
dr
ds
T
dr
dh
ρ
1
+=
7Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Stagnation Enthalpy
C
hh +=
2
0
2
[ ]CChh
hh
wa +×+=
+=
22
0
0
2
1
2
a
dr
dC
C
dr
dC
C
dr
dh
dr
dh w
w
a
a ++=0
2
a
dPdsdh 1 CdP
2
1
dCdCdPdsdh 1
dr
dP
dr
ds
T
dr
dh
ρ
1
+=Knowing:
r
C
dr
dP w
2
1
=×
ρ
and
dr
dC
C
dr
dC
C
dr
dP
dr
ds
T
dr
dh w
w
a
a +++=0 1
a
ρ
Dropping entropy gradient yields:
dr
dC
C
dr
dC
C
r
C
dr
dh w
w
a
a
w
++=
2
0
a
Vortex energy
equation:
8Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
drdrrdr
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Apart from regions near the walls of the annulus^, the stagnation enthalpy (and
temperature) will be uniform across the annulus at entry to the compressor.temperature) will be uniform across the annulus at entry to the compressor.
If the frequently used design condition of constant specific work at all radii is
applied, then although h0 will increase progressively through the compressor inapplied, then although h0 will increase progressively through the compressor in
the axial direction, its radial distribution will remain uniform. Thus dh0/dr = 0 in
any plane between pair of blade rows.
dr
dC
C
dr
dC
C
r
C w
w
a
a
w
++=
2
0Constant specific work at all radii:
drdrr
^ due to the adverse pressure gradient in compressors, the boundary layers along the annulus walls thicken
as the flow progresses.
9Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
dr
dC
C
dr
dC
C
r
C w
w
a
a
w
++=
2
0
When considering possible sets of design conditions, it is usually desirable to retain the constant
specific work-input condition to provide constant stage pressure ratio up to the blade height. It would be
possible, however, to choose a variation of one of the other variables, say Cw, and determine the variation
of Ca. The radial equilibrium requirement would still be satisfied.
In this note, we use the normal design condition:
(a) Constant specific work input at all radii
(b) An arbitrary whirl velocity distribution which is compatible with (a)
To obtain constant work input, U(C - C ) must remain constant across the annulus. Let us considerTo obtain constant work input, U(Cw2 - Cw1) must remain constant across the annulus. Let us consider
distributions of whirl velocity at inlet and outlet from the rotor blade given by:
R
b
aRC n
w −=1 _2 :
r
r
Rwhere
R
b
aRC n
w =+= Kand
Check whether Cw1 and Cw2 satisfy Uλλλλ(Cw2 - Cw1)Check whether Cw1 and Cw2 satisfy Uλλλλ(Cw2 - Cw1)
R
b
CC
R
b
aR
R
b
aRCC
ww
nn
ww
_
12
12
2
λλ
=−






−−





+=−
a==
==
N
r
U
srevNwhererNU
π
π
2
/:,2
a constant “It means metal speed at any
specified radius divided by its
radius is a constant value.”
( )
r
rUb
R
Ub
CCU ww
_
12
22 λλ
λ ==−∴
radius is a constant value.”
U
rU
r
U
r
U
__
_
_
=
=
a
( )
_
Conclusion
“This is independent of radius,
10Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
r
rU =a
( )
_
12 2 UbCCU ww λλ =−
“This is independent of radius,
means the two design
conditions (a) and (b) are
therefore compatible.”
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
dr
dC
C
dr
dC
C
r
C w
w
a
a
w
++=
2
0Constant specific work at all radii:
drdrr
waConstant specific work at all radii:
dr
C
dCCdCC w
2
0=++
dr
C
dCCdCC
dr
r
C
dCCdCC
w
w
wwaa
2
0
+=−
=++
a
Times both side by “dr”
dr
r
C
dCCdCC w
wwaa +=−a
In terms of dimensionless R
Re-arranging
dR
R
C
dCCdCC w
wwaa
2
+=−Note: _
r
r
R =
R
11Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = 1 (first power condition)
R
b
aRC
R
b
aRC ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor exit:
[ ] [ ] dR
R
ab
R
b
Ra
CC
R
R
w
R
a
2
2
1
2
1
1
2
2
22
1
2
1
2
2












++
+=− ∫
dR
R
ab
R
b
Raab
R
b
RaCC
RR
aa
2
2
2
1
2
1
1
3
2
2
1
2
2
22
2_
2
2
2 





+++





++=







−−




∫a
babRab
Rab
R
bRa
abbaab
R
b
RaCC
R
aa
11
ln2
22
22
2
1
2
1
2222222
1
2
222
22
2
2
22
2_
2
2
2
11







+−+





−−−++=







−−

a
( )RabaRaCC
ba
Rab
R
bRa
ba
R
b
RaCC aa
ln22
0
22
ln2
222
1
2
1
222
2_
2
22
2
222
22
2
2
22
2_
2
2
2
+−−=−∴






−+−+−+





−−+=







−−a
12Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
( )RabaRaCC aa ln22 222
2
2
2 +−−=−∴
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = 1 (first power condition)
R
b
aRC
R
b
aRC ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor inlet:
[ ] [ ] dR
R
ab
R
b
Ra
CC
R
R
w
R
a
2
2
1
2
1
1
2
2
22
1
2
1
2
1












−+
+=− ∫
dR
R
ab
R
b
Raab
R
b
RaCC
RR
aa
2
2
2
1
2
1
1
3
2
2
1
2
2
22
2_
1
2
1 





−++





−+=







−−




∫a
babRab
Rab
R
bRa
abbaab
R
b
RaCC
R
aa
11
ln2
22
22
2
1
2
1
2222222
1
2
222
22
2
2
22
2_
1
2
1
11







−−+





+−−−+=







−−

a
( )RabaRaCC
ba
Rab
R
bRa
ba
R
b
RaCC aa
ln22
0
22
ln2
222
1
2
1
222
2_
2
22
2
222
22
2
2
22
2_
1
2
1
−−−=−∴






++−−−+





−−+=







−−a
13Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
( )RabaRaCC aa ln22 222
1
2
1 −−−=−∴
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = 0 (exponential condition)
R
b
aC
R
b
aC ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor exit:






+++





++=







−− ∫ dR
R
ab
R
b
R
a
R
ab
R
b
aCC
RR
aa
22
2
1
2
1
1
23
22
1
2
2
2
2_
2
2
2






−−+





−−−++=







−−





∫
R
ab
R
b
Raabba
R
ab
R
b
aCC
RRRRR
R
aa
2
2
ln2
2
2
1
2
1
22
1
2
2
222
2
2
2
2_
2
2
2
11
a






++−−−+





−−+=







−−

ab
b
R
ab
R
b
Raabb
R
ab
R
b
CC
RRRR
aa 2
2
0
2
2
ln2
2
2
1
2
1
222
2
2
2
22
2
22_
2
2
2
1
a






−+−=−∴

R
ab
RaabCC aa ln2 2
2_
2
2
2
14Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = 0 (exponential condition)
R
b
aC
R
b
aC ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor inlet:






−++





−+=







−− ∫ dR
R
ab
R
b
R
a
R
ab
R
b
aCC
RR
aa
22
2
1
2
1
1
23
22
2
2
2
2_
1
2
1






+−+





+−−−+=







−−





∫
R
ab
R
b
Raabba
R
ab
R
b
aCC
RRRRR
R
aa
2
2
ln2
2
2
1
2
1
22
1
2
2
222
2
2
2
2_
1
2
1
11
a






−+−+−+





+−−=







−−

ab
b
R
ab
R
b
Raabb
R
ab
R
b
CC
RRRR
aa 2
2
0
2
2
ln2
2
2
1
2
1
222
2
2
2
22
2
22_
1
2
1
1
a






++−−=−∴

R
ab
RaabCC aa ln2 2
2_
1
2
1
15Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = -1 (free vortex condition)
R
b
R
a
C
R
b
R
a
C ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor exit:
33
2
3
2
22
2
2
22_
2
2
2
2211
RR
aa dR
abbaabba
CC 



+++



++=





−− ∫
22
2
2
2
22
22
2
2
22_
2
2
2
1
333
1
22222
2
2
22
2
2
2
1
2
1
22
R
aa
aa
R
ab
R
b
R
a
abba
R
ab
R
b
R
a
CC
dR
RRRRRR
CC






−−−+





−−−++=







−−




+++



++=





−− ∫
a
22
22
2
2
2
22
22
2
2
22_
2
2
2
1
222
2
22
2
2
2
1
2
1
22222
aa ab
ba
R
ab
R
b
R
a
abba
R
ab
R
b
R
a
CC
RRRRRR






+++−−−+





−−−++=







−−









a
2_
2
2
2 aa CC =∴

16Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
When n = -1 (free vortex condition)
R
b
R
a
C
R
b
R
a
C ww +=−= 21 ,
dR
R
C
dCCdCC w
wwaa
2
+=−
For rotor inlet:
33
2
3
2
22
2
2
22_
1
2
1
2211
RR
aa dR
abbaabba
CC 



−++



−+=





−− ∫
22
2
2
2
22
22
2
2
22_
1
2
1
1
333
1
22211
2
2
22
2
2
2
1
2
1
22
R
aa
aa
R
ab
R
b
R
a
abba
R
ab
R
b
R
a
CC
dR
RRRRRR
CC






+−−+





+−−−+=







−−




−++



−+=





−− ∫
a
22
22
2
2
2
22
22
2
2
22_
1
2
1
1
222
2
22
2
2
2
1
2
1
22222
aa ab
ba
R
ab
R
b
R
a
abba
R
ab
R
b
R
a
CC
RRRRRR






−+++−−+





+−−−+=







−−









a
2_
1
2
1 aa CC =∴

17Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Degree of Reaction (DOR), ΛΛΛΛ provides a measure of the extent to which the rotor contributes to theDegree of Reaction (DOR), ΛΛΛΛ provides a measure of the extent to which the rotor contributes to the
overall static pressure rise in the stage. It is defined as:
ΛΛΛΛ =
Static enthalpy rise in the rotor
Static enthalpy rise in the stage
Steady flow energy equation:
( ) ( )1 2222
−+−+−
∆
=Λ
CCUCCCC
W
TC rotorp
( )12 ww CCUW −=
Since all the work input to the stage takes
Steady flow energy equation:
( ) ( )
( )
( ) 1
2
1
2
2
2
1
2
2
2
1
12
12
2
2
2
1
2
2
2
1
+
−+−
=Λ
−
−+−+−
=Λ
CCCC
CCU
CCUCCCC
awwa
ww
wwawwa
a
Since all the work input to the stage takes
place in the rotor, the steady flow energy
equation yields:
( )
( )
( )
( )
( )
( )
1
22
1
2
2
2
2
1
2
2
2
1
12
2121
+
−
−
+
−
−
=Λ
+
−
−+−
=Λ
CCU
CC
CCU
CC
CCU
CCCC
wwaa
ww
awwa
a
a
( )221
CCTCW −+∆= ( ) ( )
( )
( )
( )( )
( )
( ) ( )( )
1
22
22
12
2121
12
2
2
2
1
1212
+
−
−+
+
−
−
=Λ
−−
CCU
CCCC
CCU
CC
CCUCCU
ww
wwww
ww
aa
wwww
a
( )
( ) ( )
( ) ( )22
12
2
1
2
2
2
1
2
2
1
2
1
:
2
wwrotorp
rotorp
CCUCCTC
CCUCCTCHence
CCTCW
−+−=∆
−=−+∆
−+∆=
( )
( )
( )( )
( )
( ) ( )
1
22
22
12
1221
12
2
2
2
1
+
+
−
−
=Λ∴
+
−
−+
−
−
−
=Λ
CCCC
CCU
CCCC
CCU
CC
ww
wwww
ww
aa
a
( ) ( )
( ) ( )12
2
2
2
2
2
1
2
1
12
2
2
2
1
2
1
2
1
wwwawarotorp
wwrotorp
CCUCCCCTC
CCUCCTC
−+−−+=∆
−+−=∆
a
a
18Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
( )
( )
( ) 1
22
21
12
21
+
+
−
−
−
=Λ∴
U
CC
CCU
CC ww
ww
aa
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
First power, n = 1First power, n = 1
( )RabaRaCC aa ln22 222
2_
1
2
1 −−−=
( )RabaRaCC ln22 222
2_
2
+−−=
( ) ( )RabaRaCRabaRaCCC aaaa ln22ln22 2222
2
_
2222
1
_
2
2
2
1 +−+−−−−=−
( )RabaRaCC aa ln22 222
2
2
2 +−−=
2_
2
2_
1 aa CC =
RabCC aa ln8
2
2
2
1 =−∴
b
aRC −=
R
b
aRCw −=1
R
b
aRCw +=2
R
b
R
b
aR
R
b
aRCC ww 212 =





−−





+=− aR
R
b
aR
R
b
aRCC ww 212 =





−+





+=+and
ln22ln8 



aRRaRaRRab
R
1:
1
ln2
1
2
2
22
ln8
=
+



−



=+



−















=Λ
RWhen
U
aR
U
RaR
U
aR
R
b
U
Rab
( )
( )
( ) 1
22
21
12
2
2
2
1
+
+
−
−
−
=Λ
U
CC
CCU
CC ww
ww
aa
111
1:
____
___
__
_
  






Λ−=⇒Λ−=⇒−=Λ
=
Ua
U
a
U
a
RWhen( ) 22 12 − UCCU ww
U
R
U
RUU
r
U
r
U
Note =⇒=⇒= _
_
_
_
1
:
11ln121
1ln12 __
_
__
_
__
+





Λ−−





Λ−⇒+


















Λ−
−


















Λ−
=Λ R
RU
RU
RU
RRU
19Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
UUrr
( ) 11ln21
_
+−





Λ−=Λ∴

R
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Exponential, n = 0Exponential, n = 0






++−−=
R
ab
RaabCC aa ln2 2
2_
1
2
1




−+−=
ab
RaabCC ln2 2
2_
2






−++−





++−−=−
R
ab
RaabC
R
ab
RaabCCC aaaa ln2ln2 22
2
_
22
1
_
2
2
2
1






−+−=
R
ab
RaabCC aa ln2 2
2
2
2
2_
2
2_
1 aa CC =






−=−∴
R
ab
abCC aa 4
2
2
2
1
b
andR
b
aCw −=1
R
b
aCw +=2
R
b
R
b
a
R
b
aCC ww 212 =





−−





+=− a
R
b
a
R
b
aCC ww 212 =





−+





+=+
2
4
 −







−








−
aababRa
R
ab
ab
a
ab
abR
1
2
1
111
2
2
22
4
+


 −
=+



−


 −
=Λ
+





−




 −
=+





−













−
=+





−



















−
=Λ
aaRaaaR
U
a
Ub
ababR
U
a
Ub
R
R
ab
U
a
R
b
U
R
ab
a
( )
( )
( ) 1
22
21
12
2
2
2
1
+
+
−
−
−
=Λ
U
CC
CCU
CC ww
ww
aa
111
1:
11
___
__
_






Λ−=⇒Λ−=⇒−=Λ
=
+



=+



−



=Λ
Ua
U
a
U
a
RWhen
UUU
a( ) 22 12 − UCCU ww
U
R
U
RUU
r
U
r
U
Note =⇒=⇒= _
_
_
_
1
:
1
12
11
121
_
_
_
____
+


















Λ−
−





Λ−⇒+


















Λ−−





Λ−
=Λ

RRU
URU
UU
20Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
UUrr
1
2
11
_
+





−





Λ−=Λ∴








R
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Free vortex, n = -1Free vortex, n = -1
2_
1
2
1 aa CC =
2_
2
CC = 0
2
2
2
1 =− aa CC
2_
2
2_
1 aa CC =
2
2
2 aa CC = 021 =− aa CC
ba
and
R
b
R
a
Cw −=1
R
b
R
a
Cw +=2
R
b
R
b
a
a
R
b
R
a
CC ww 212 =





−−





+=−
R
a
R
b
R
a
R
b
R
a
CC ww 212 =





−+





+=+





2
a
( )
( )
( ) 1
22
21
12
2
2
2
1
+
+
−
−
−
=Λ
U
CC
CCU
CC ww
ww
aa
RR
=
+



−=+



−=+










−


















=Λ
1:
1101
2
2
22
0
RWhen
UR
a
UR
a
U
R
a
R
b
U
( ) 22 12 − UCCU ww
   






Λ−=⇒Λ−=⇒−=Λ
=
____
___
__
_
111
1:
U
Ua
U
a
U
a
RWhen
U
R
U
RUU
r
U
r
U
Note =⇒=⇒= _
_
_
_
1
:
+


















Λ−
−=+


















Λ−
−=+


















Λ−
−=Λ 2
____
1
1
1
1
1
1
RUR
R
U
UR
U
21Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
UUrr






Λ−−=Λ∴

_
2
1
1
1
R
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
( )
_
( )
_
12 2 TCUbCCUW spww λλ ∆==−=
_
TC
b
p∆
=∴ _
2 U
b
λ
=∴
Note: this is applicable for all cases (i.e. n = 1, 0 and -1)Note: this is applicable for all cases (i.e. n = 1, 0 and -1)
22Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
 −CU






 −
= −
a
w
C
C
CU1
tanβ
Variation of rotor and stator angles
can therefore be calculated as a
function of radius.






= −
a
w
C
C1
tanα
function of radius.
23Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
Example: RB211-24G
RB211-24G’s axial compressors at ISO conditions:
a. Pressure ratio = 20
b. Mass flow rate = 100 kg/s
c. LP axial compressor = 7 stages
24Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
c. LP axial compressor = 7 stages
d. HP axial compressor = 6 stages
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
25Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
26Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
beta 1
beta 2
alpha 1
alpha 2
root
tip
mean radius
a1 = alpha 1
a2 = alpha 2
b1 = beta 1
b2 = beta 2
fv = free vortex (n = -1)
exp = exponential (n = 0)
fp = first power (n = 1)
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
27Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
dhr = de Haller number for rotor
dhs = de Haller number for stator
fv = free vortex (n = -1)
exp = exponential (n = 0)
fp = first power (n = 1)
root mean radius tip
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
28Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
29Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
30Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
31Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
32Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
33Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
34Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
35Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
36Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
37Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
38Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
39Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
40Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
41Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 1RB211-24G HP compressor: stage 1
42Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 2RB211-24G HP compressor: stage 2
43Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 2RB211-24G HP compressor: stage 2
44Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 3RB211-24G HP compressor: stage 3
45Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 3RB211-24G HP compressor: stage 3
46Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 4RB211-24G HP compressor: stage 4
47Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 4RB211-24G HP compressor: stage 4
48Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 5RB211-24G HP compressor: stage 5
49Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 5RB211-24G HP compressor: stage 5
50Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 6RB211-24G HP compressor: stage 6
51Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip
RB211-24G HP compressor: stage 6RB211-24G HP compressor: stage 6
52Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
End of document

More Related Content

What's hot

Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusorAnurak Atthasit
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbM SAQIB
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 dAnurak Atthasit
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)anasimdad007
 
Senior Design Final Report
Senior Design Final ReportSenior Design Final Report
Senior Design Final ReportJames Feldhacker
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 dAnurak Atthasit
 
Aircraft propulsion performance of propellers
Aircraft propulsion   performance of propellersAircraft propulsion   performance of propellers
Aircraft propulsion performance of propellersAnurak Atthasit
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 dAnurak Atthasit
 
Aircraft propulsion component performance
Aircraft propulsion   component performanceAircraft propulsion   component performance
Aircraft propulsion component performanceAnurak Atthasit
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
pengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalpengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalToroi Aritonang
 
Aircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAnurak Atthasit
 
Experimental radial tipped centrifugal fan
Experimental radial tipped centrifugal fanExperimental radial tipped centrifugal fan
Experimental radial tipped centrifugal fanC.Cesar Nascimento
 

What's hot (20)

Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusor
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
Diesel cyclease
Diesel cycleaseDiesel cyclease
Diesel cyclease
 
AIAA Paper
AIAA PaperAIAA Paper
AIAA Paper
 
Ankit
AnkitAnkit
Ankit
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)
 
Senior Design Final Report
Senior Design Final ReportSenior Design Final Report
Senior Design Final Report
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
 
Aircraft propulsion performance of propellers
Aircraft propulsion   performance of propellersAircraft propulsion   performance of propellers
Aircraft propulsion performance of propellers
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
 
Performance parameters
Performance parametersPerformance parameters
Performance parameters
 
Aircraft propulsion component performance
Aircraft propulsion   component performanceAircraft propulsion   component performance
Aircraft propulsion component performance
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
010
010010
010
 
pengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalpengetahuan tentang sentrifugal
pengetahuan tentang sentrifugal
 
Aircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of FundamentalsAircraft Propulsion - Review of Fundamentals
Aircraft Propulsion - Review of Fundamentals
 
Experimental radial tipped centrifugal fan
Experimental radial tipped centrifugal fanExperimental radial tipped centrifugal fan
Experimental radial tipped centrifugal fan
 

Similar to Axial compressor - variation of rotor and stator angles from root to tip - 4th March 2010

Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
DESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSDESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSPreet_patel
 
5. radial and transverse compo. 2 by-ghumare s m
5. radial and transverse compo.  2 by-ghumare s m5. radial and transverse compo.  2 by-ghumare s m
5. radial and transverse compo. 2 by-ghumare s msmghumare
 
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”Divya Aggarwal
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notesAghilesh V
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptsumanta kundu
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptShalabhMishra10
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909elladanicaj
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manualGopinath.B.L Naidu
 
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems SolutionsSYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems SolutionsPower System Operation
 
Lecture psk qam, digital modulation
Lecture psk qam, digital modulation Lecture psk qam, digital modulation
Lecture psk qam, digital modulation DrAimalKhan
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"Atin Kumar
 

Similar to Axial compressor - variation of rotor and stator angles from root to tip - 4th March 2010 (20)

Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
DESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSDESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORS
 
5. radial and transverse compo. 2 by-ghumare s m
5. radial and transverse compo.  2 by-ghumare s m5. radial and transverse compo.  2 by-ghumare s m
5. radial and transverse compo. 2 by-ghumare s m
 
A.C Drives
A.C DrivesA.C Drives
A.C Drives
 
NASA 2004 PP
NASA 2004 PPNASA 2004 PP
NASA 2004 PP
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
 
centrifugal pump
centrifugal pumpcentrifugal pump
centrifugal pump
 
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”
“ALIGNMENT OF SINGLE MIRROR IN CLOSED LOOP”
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notes
 
thick cylinder
thick cylinder thick cylinder
thick cylinder
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.ppt
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.ppt
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manual
 
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems SolutionsSYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
 
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINESSYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES
 
TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)
 
Lecture psk qam, digital modulation
Lecture psk qam, digital modulation Lecture psk qam, digital modulation
Lecture psk qam, digital modulation
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
 

More from CangTo Cheah

Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aCangTo Cheah
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...CangTo Cheah
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1CangTo Cheah
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1CangTo Cheah
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010CangTo Cheah
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCangTo Cheah
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapperCangTo Cheah
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010CangTo Cheah
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportCangTo Cheah
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012CangTo Cheah
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsCangTo Cheah
 
CL2 compression SOP report_26 May 2016
CL2 compression SOP report_26 May 2016CL2 compression SOP report_26 May 2016
CL2 compression SOP report_26 May 2016CangTo Cheah
 

More from CangTo Cheah (20)

LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_Wheatstone
 
nv and kv
nv and kvnv and kv
nv and kv
 
nt and kt
nt and ktnt and kt
nt and kt
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapper
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection report
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
 
Final stage T2
Final stage T2Final stage T2
Final stage T2
 
CL2 compression SOP report_26 May 2016
CL2 compression SOP report_26 May 2016CL2 compression SOP report_26 May 2016
CL2 compression SOP report_26 May 2016
 

Axial compressor - variation of rotor and stator angles from root to tip - 4th March 2010

  • 1. Axial Compressor TheoryTheory Variation of rotor and stator angles from root to tip 4th March 2010 Prepared by: Cheah CangTo
  • 2. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip tip2β tip1β Previous discussion covers the theory behind the calculation of rotor and stator angles at mean radius. Further study on previous theory enables compressor designer to evaluate the change of angles from root section up to tip section of rotor and stator (covering all stages in axial compressor). root1β root2β 2Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo Variation of rotor angles from root to tip section
  • 3. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Cw dr ( )[ ] ( )[ ] ( )d rdrr d Area c c −+××= ≈θ π π θ 2 22 2 2 dr r ( )[ ] ( ) drrdrdrrdrr d cdr c ×× →−×++× ≈ θ θ 0222 2 2 2 ar Note: unit width element r CA r CV r Cm FforcelCentrifuga www cw ××× = ×× = × == ρρ 222 1 _ ( ) drdC r drrdC rrr c w c w ×××= ×××× θρ θρ 2 2 a r 3Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 4. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip dPP + ( ) ( ) c d rdrdPPF θ π ××××+×+= 12 dP P +2 dP P + ( ) ( ) ( ) ( ) c topradial drdrdPP d rdrdPPF θ π θ π ×+×+ × × ×××+×+= a 1 2 2, 2 P +2 P + P c bottomradial drPF θ××=, c sideradial d dr dP PF θ       ××      +×= 2 sin 2 2, c c dPddP θ θ ××    +=××    +×     22 Since dθθθθ very small, 22 sin cc dd θθ ≈      c ddr dP P d dr dP P θ θ ××      +=××      +× 222 2a 4Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 5. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip dPP + dP P +2 dP P + 2 P +2 P + P ( ) ( ) ccc ddr dP PdrPdrdrdPPF θθθ ××    +−××−×+×+= ( ) ( ) ( )c c ccc netradial drdP ddrdP ddr dP PdrPdrdrdPPF θ θ θθθ ××+    ×× ××      +−××−×+×+= 2 , a ( )c drdP θ××+    2 a 5Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 6. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip netradialcw FF ,= ( )drdP ddrdP drdC c c c w 2 ××+ ×× =××× θ θ θρ ( ) r dr ddPdrdC drdPdrdC cc w w 2 2 2       +××=××× ××+=××× θθρ θθρ a r dr d Cd dr dP c w c 2 2     +× ×× =  θ θρ a r C dr Cd dr dP rd w dr w c 2 0 2 2 1 2  →  × =×     +× ≈θ ρ θ a r r dr d dr c 2  →       +× =× θ ρ a r C dr dP w 2 1 =× ρ Radial equilibrium equation: 6Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 7. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip PdvvdPdudh Pvuh ++= += a Enthalpy Gibbs equation ( ) PdvPdvvdPdhTds PdvduTds +−−= += a PdvvdPdhdu PdvvdPdudh −−= ++= a a ( ) dP dhTds vdPdhTds PdvPdvvdPdhTds ρ −= −= +−−= a a a ddPdTdsdh dP Tdsdh ρ ρ ρ 11 +=a dP dr d dr dP dr dT ds dr ds T dr dh ρ ρρ 2 11 −++=a dPdsdh 1 Dropping second order terms dr dP dr ds T dr dh ρ 1 += 7Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 8. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Stagnation Enthalpy C hh += 2 0 2 [ ]CChh hh wa +×+= += 22 0 0 2 1 2 a dr dC C dr dC C dr dh dr dh w w a a ++=0 2 a dPdsdh 1 CdP 2 1 dCdCdPdsdh 1 dr dP dr ds T dr dh ρ 1 +=Knowing: r C dr dP w 2 1 =× ρ and dr dC C dr dC C dr dP dr ds T dr dh w w a a +++=0 1 a ρ Dropping entropy gradient yields: dr dC C dr dC C r C dr dh w w a a w ++= 2 0 a Vortex energy equation: 8Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo drdrrdr
  • 9. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Apart from regions near the walls of the annulus^, the stagnation enthalpy (and temperature) will be uniform across the annulus at entry to the compressor.temperature) will be uniform across the annulus at entry to the compressor. If the frequently used design condition of constant specific work at all radii is applied, then although h0 will increase progressively through the compressor inapplied, then although h0 will increase progressively through the compressor in the axial direction, its radial distribution will remain uniform. Thus dh0/dr = 0 in any plane between pair of blade rows. dr dC C dr dC C r C w w a a w ++= 2 0Constant specific work at all radii: drdrr ^ due to the adverse pressure gradient in compressors, the boundary layers along the annulus walls thicken as the flow progresses. 9Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 10. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip dr dC C dr dC C r C w w a a w ++= 2 0 When considering possible sets of design conditions, it is usually desirable to retain the constant specific work-input condition to provide constant stage pressure ratio up to the blade height. It would be possible, however, to choose a variation of one of the other variables, say Cw, and determine the variation of Ca. The radial equilibrium requirement would still be satisfied. In this note, we use the normal design condition: (a) Constant specific work input at all radii (b) An arbitrary whirl velocity distribution which is compatible with (a) To obtain constant work input, U(C - C ) must remain constant across the annulus. Let us considerTo obtain constant work input, U(Cw2 - Cw1) must remain constant across the annulus. Let us consider distributions of whirl velocity at inlet and outlet from the rotor blade given by: R b aRC n w −=1 _2 : r r Rwhere R b aRC n w =+= Kand Check whether Cw1 and Cw2 satisfy Uλλλλ(Cw2 - Cw1)Check whether Cw1 and Cw2 satisfy Uλλλλ(Cw2 - Cw1) R b CC R b aR R b aRCC ww nn ww _ 12 12 2 λλ =−       −−      +=− a== == N r U srevNwhererNU π π 2 /:,2 a constant “It means metal speed at any specified radius divided by its radius is a constant value.” ( ) r rUb R Ub CCU ww _ 12 22 λλ λ ==−∴ radius is a constant value.” U rU r U r U __ _ _ = = a ( ) _ Conclusion “This is independent of radius, 10Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo r rU =a ( ) _ 12 2 UbCCU ww λλ =− “This is independent of radius, means the two design conditions (a) and (b) are therefore compatible.”
  • 11. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip dr dC C dr dC C r C w w a a w ++= 2 0Constant specific work at all radii: drdrr waConstant specific work at all radii: dr C dCCdCC w 2 0=++ dr C dCCdCC dr r C dCCdCC w w wwaa 2 0 +=− =++ a Times both side by “dr” dr r C dCCdCC w wwaa +=−a In terms of dimensionless R Re-arranging dR R C dCCdCC w wwaa 2 +=−Note: _ r r R = R 11Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 12. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = 1 (first power condition) R b aRC R b aRC ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor exit: [ ] [ ] dR R ab R b Ra CC R R w R a 2 2 1 2 1 1 2 2 22 1 2 1 2 2             ++ +=− ∫ dR R ab R b Raab R b RaCC RR aa 2 2 2 1 2 1 1 3 2 2 1 2 2 22 2_ 2 2 2       +++      ++=        −−     ∫a babRab Rab R bRa abbaab R b RaCC R aa 11 ln2 22 22 2 1 2 1 2222222 1 2 222 22 2 2 22 2_ 2 2 2 11        +−+      −−−++=        −−  a ( )RabaRaCC ba Rab R bRa ba R b RaCC aa ln22 0 22 ln2 222 1 2 1 222 2_ 2 22 2 222 22 2 2 22 2_ 2 2 2 +−−=−∴       −+−+−+      −−+=        −−a 12Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo ( )RabaRaCC aa ln22 222 2 2 2 +−−=−∴
  • 13. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = 1 (first power condition) R b aRC R b aRC ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor inlet: [ ] [ ] dR R ab R b Ra CC R R w R a 2 2 1 2 1 1 2 2 22 1 2 1 2 1             −+ +=− ∫ dR R ab R b Raab R b RaCC RR aa 2 2 2 1 2 1 1 3 2 2 1 2 2 22 2_ 1 2 1       −++      −+=        −−     ∫a babRab Rab R bRa abbaab R b RaCC R aa 11 ln2 22 22 2 1 2 1 2222222 1 2 222 22 2 2 22 2_ 1 2 1 11        −−+      +−−−+=        −−  a ( )RabaRaCC ba Rab R bRa ba R b RaCC aa ln22 0 22 ln2 222 1 2 1 222 2_ 2 22 2 222 22 2 2 22 2_ 1 2 1 −−−=−∴       ++−−−+      −−+=        −−a 13Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo ( )RabaRaCC aa ln22 222 1 2 1 −−−=−∴
  • 14. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = 0 (exponential condition) R b aC R b aC ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor exit:       +++      ++=        −− ∫ dR R ab R b R a R ab R b aCC RR aa 22 2 1 2 1 1 23 22 1 2 2 2 2_ 2 2 2       −−+      −−−++=        −−      ∫ R ab R b Raabba R ab R b aCC RRRRR R aa 2 2 ln2 2 2 1 2 1 22 1 2 2 222 2 2 2 2_ 2 2 2 11 a       ++−−−+      −−+=        −−  ab b R ab R b Raabb R ab R b CC RRRR aa 2 2 0 2 2 ln2 2 2 1 2 1 222 2 2 2 22 2 22_ 2 2 2 1 a       −+−=−∴  R ab RaabCC aa ln2 2 2_ 2 2 2 14Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 15. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = 0 (exponential condition) R b aC R b aC ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor inlet:       −++      −+=        −− ∫ dR R ab R b R a R ab R b aCC RR aa 22 2 1 2 1 1 23 22 2 2 2 2_ 1 2 1       +−+      +−−−+=        −−      ∫ R ab R b Raabba R ab R b aCC RRRRR R aa 2 2 ln2 2 2 1 2 1 22 1 2 2 222 2 2 2 2_ 1 2 1 11 a       −+−+−+      +−−=        −−  ab b R ab R b Raabb R ab R b CC RRRR aa 2 2 0 2 2 ln2 2 2 1 2 1 222 2 2 2 22 2 22_ 1 2 1 1 a       ++−−=−∴  R ab RaabCC aa ln2 2 2_ 1 2 1 15Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 16. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = -1 (free vortex condition) R b R a C R b R a C ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor exit: 33 2 3 2 22 2 2 22_ 2 2 2 2211 RR aa dR abbaabba CC     +++    ++=      −− ∫ 22 2 2 2 22 22 2 2 22_ 2 2 2 1 333 1 22222 2 2 22 2 2 2 1 2 1 22 R aa aa R ab R b R a abba R ab R b R a CC dR RRRRRR CC       −−−+      −−−++=        −−     +++    ++=      −− ∫ a 22 22 2 2 2 22 22 2 2 22_ 2 2 2 1 222 2 22 2 2 2 1 2 1 22222 aa ab ba R ab R b R a abba R ab R b R a CC RRRRRR       +++−−−+      −−−++=        −−          a 2_ 2 2 2 aa CC =∴  16Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 17. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip When n = -1 (free vortex condition) R b R a C R b R a C ww +=−= 21 , dR R C dCCdCC w wwaa 2 +=− For rotor inlet: 33 2 3 2 22 2 2 22_ 1 2 1 2211 RR aa dR abbaabba CC     −++    −+=      −− ∫ 22 2 2 2 22 22 2 2 22_ 1 2 1 1 333 1 22211 2 2 22 2 2 2 1 2 1 22 R aa aa R ab R b R a abba R ab R b R a CC dR RRRRRR CC       +−−+      +−−−+=        −−     −++    −+=      −− ∫ a 22 22 2 2 2 22 22 2 2 22_ 1 2 1 1 222 2 22 2 2 2 1 2 1 22222 aa ab ba R ab R b R a abba R ab R b R a CC RRRRRR       −+++−−+      +−−−+=        −−          a 2_ 1 2 1 aa CC =∴  17Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 18. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Degree of Reaction (DOR), ΛΛΛΛ provides a measure of the extent to which the rotor contributes to theDegree of Reaction (DOR), ΛΛΛΛ provides a measure of the extent to which the rotor contributes to the overall static pressure rise in the stage. It is defined as: ΛΛΛΛ = Static enthalpy rise in the rotor Static enthalpy rise in the stage Steady flow energy equation: ( ) ( )1 2222 −+−+− ∆ =Λ CCUCCCC W TC rotorp ( )12 ww CCUW −= Since all the work input to the stage takes Steady flow energy equation: ( ) ( ) ( ) ( ) 1 2 1 2 2 2 1 2 2 2 1 12 12 2 2 2 1 2 2 2 1 + −+− =Λ − −+−+− =Λ CCCC CCU CCUCCCC awwa ww wwawwa a Since all the work input to the stage takes place in the rotor, the steady flow energy equation yields: ( ) ( ) ( ) ( ) ( ) ( ) 1 22 1 2 2 2 2 1 2 2 2 1 12 2121 + − − + − − =Λ + − −+− =Λ CCU CC CCU CC CCU CCCC wwaa ww awwa a a ( )221 CCTCW −+∆= ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) 1 22 22 12 2121 12 2 2 2 1 1212 + − −+ + − − =Λ −− CCU CCCC CCU CC CCUCCU ww wwww ww aa wwww a ( ) ( ) ( ) ( ) ( )22 12 2 1 2 2 2 1 2 2 1 2 1 : 2 wwrotorp rotorp CCUCCTC CCUCCTCHence CCTCW −+−=∆ −=−+∆ −+∆= ( ) ( ) ( )( ) ( ) ( ) ( ) 1 22 22 12 1221 12 2 2 2 1 + + − − =Λ∴ + − −+ − − − =Λ CCCC CCU CCCC CCU CC ww wwww ww aa a ( ) ( ) ( ) ( )12 2 2 2 2 2 1 2 1 12 2 2 2 1 2 1 2 1 wwwawarotorp wwrotorp CCUCCCCTC CCUCCTC −+−−+=∆ −+−=∆ a a 18Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo ( ) ( ) ( ) 1 22 21 12 21 + + − − − =Λ∴ U CC CCU CC ww ww aa
  • 19. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip First power, n = 1First power, n = 1 ( )RabaRaCC aa ln22 222 2_ 1 2 1 −−−= ( )RabaRaCC ln22 222 2_ 2 +−−= ( ) ( )RabaRaCRabaRaCCC aaaa ln22ln22 2222 2 _ 2222 1 _ 2 2 2 1 +−+−−−−=− ( )RabaRaCC aa ln22 222 2 2 2 +−−= 2_ 2 2_ 1 aa CC = RabCC aa ln8 2 2 2 1 =−∴ b aRC −= R b aRCw −=1 R b aRCw +=2 R b R b aR R b aRCC ww 212 =      −−      +=− aR R b aR R b aRCC ww 212 =      −+      +=+and ln22ln8     aRRaRaRRab R 1: 1 ln2 1 2 2 22 ln8 = +    −    =+    −                =Λ RWhen U aR U RaR U aR R b U Rab ( ) ( ) ( ) 1 22 21 12 2 2 2 1 + + − − − =Λ U CC CCU CC ww ww aa 111 1: ____ ___ __ _          Λ−=⇒Λ−=⇒−=Λ = Ua U a U a RWhen( ) 22 12 − UCCU ww U R U RUU r U r U Note =⇒=⇒= _ _ _ _ 1 : 11ln121 1ln12 __ _ __ _ __ +      Λ−−      Λ−⇒+                   Λ− −                   Λ− =Λ R RU RU RU RRU 19Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo UUrr ( ) 11ln21 _ +−      Λ−=Λ∴  R
  • 20. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Exponential, n = 0Exponential, n = 0       ++−−= R ab RaabCC aa ln2 2 2_ 1 2 1     −+−= ab RaabCC ln2 2 2_ 2       −++−      ++−−=− R ab RaabC R ab RaabCCC aaaa ln2ln2 22 2 _ 22 1 _ 2 2 2 1       −+−= R ab RaabCC aa ln2 2 2 2 2 2_ 2 2_ 1 aa CC =       −=−∴ R ab abCC aa 4 2 2 2 1 b andR b aCw −=1 R b aCw +=2 R b R b a R b aCC ww 212 =      −−      +=− a R b a R b aCC ww 212 =      −+      +=+ 2 4  −        −         − aababRa R ab ab a ab abR 1 2 1 111 2 2 22 4 +    − =+    −    − =Λ +      −      − =+      −              − =+      −                    − =Λ aaRaaaR U a Ub ababR U a Ub R R ab U a R b U R ab a ( ) ( ) ( ) 1 22 21 12 2 2 2 1 + + − − − =Λ U CC CCU CC ww ww aa 111 1: 11 ___ __ _       Λ−=⇒Λ−=⇒−=Λ = +    =+    −    =Λ Ua U a U a RWhen UUU a( ) 22 12 − UCCU ww U R U RUU r U r U Note =⇒=⇒= _ _ _ _ 1 : 1 12 11 121 _ _ _ ____ +                   Λ− −      Λ−⇒+                   Λ−−      Λ− =Λ  RRU URU UU 20Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo UUrr 1 2 11 _ +      −      Λ−=Λ∴         R
  • 21. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Free vortex, n = -1Free vortex, n = -1 2_ 1 2 1 aa CC = 2_ 2 CC = 0 2 2 2 1 =− aa CC 2_ 2 2_ 1 aa CC = 2 2 2 aa CC = 021 =− aa CC ba and R b R a Cw −=1 R b R a Cw +=2 R b R b a a R b R a CC ww 212 =      −−      +=− R a R b R a R b R a CC ww 212 =      −+      +=+      2 a ( ) ( ) ( ) 1 22 21 12 2 2 2 1 + + − − − =Λ U CC CCU CC ww ww aa RR = +    −=+    −=+           −                   =Λ 1: 1101 2 2 22 0 RWhen UR a UR a U R a R b U ( ) 22 12 − UCCU ww           Λ−=⇒Λ−=⇒−=Λ = ____ ___ __ _ 111 1: U Ua U a U a RWhen U R U RUU r U r U Note =⇒=⇒= _ _ _ _ 1 : +                   Λ− −=+                   Λ− −=+                   Λ− −=Λ 2 ____ 1 1 1 1 1 1 RUR R U UR U 21Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo UUrr       Λ−−=Λ∴  _ 2 1 1 1 R
  • 22. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip ( ) _ ( ) _ 12 2 TCUbCCUW spww λλ ∆==−= _ TC b p∆ =∴ _ 2 U b λ =∴ Note: this is applicable for all cases (i.e. n = 1, 0 and -1)Note: this is applicable for all cases (i.e. n = 1, 0 and -1) 22Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 23. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip  −CU        − = − a w C C CU1 tanβ Variation of rotor and stator angles can therefore be calculated as a function of radius.       = − a w C C1 tanα function of radius. 23Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 24. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip Example: RB211-24G RB211-24G’s axial compressors at ISO conditions: a. Pressure ratio = 20 b. Mass flow rate = 100 kg/s c. LP axial compressor = 7 stages 24Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo c. LP axial compressor = 7 stages d. HP axial compressor = 6 stages
  • 25. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 25Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 26. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 26Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo beta 1 beta 2 alpha 1 alpha 2 root tip mean radius a1 = alpha 1 a2 = alpha 2 b1 = beta 1 b2 = beta 2 fv = free vortex (n = -1) exp = exponential (n = 0) fp = first power (n = 1)
  • 27. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 27Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo dhr = de Haller number for rotor dhs = de Haller number for stator fv = free vortex (n = -1) exp = exponential (n = 0) fp = first power (n = 1) root mean radius tip
  • 28. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 28Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 29. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 29Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 30. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 30Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 31. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 31Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 32. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 32Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 33. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 33Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 34. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 34Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 35. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 35Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 36. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 36Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 37. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 37Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 38. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 38Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 39. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 39Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 40. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 40Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 41. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip 41Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 42. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 1RB211-24G HP compressor: stage 1 42Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 43. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 2RB211-24G HP compressor: stage 2 43Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 44. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 2RB211-24G HP compressor: stage 2 44Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 45. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 3RB211-24G HP compressor: stage 3 45Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 46. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 3RB211-24G HP compressor: stage 3 46Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 47. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 4RB211-24G HP compressor: stage 4 47Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 48. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 4RB211-24G HP compressor: stage 4 48Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 49. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 5RB211-24G HP compressor: stage 5 49Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 50. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 5RB211-24G HP compressor: stage 5 50Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 51. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 6RB211-24G HP compressor: stage 6 51Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo
  • 52. TURBO GROUP – Axial compressor theory - Variation of rotor and stator angles from root to tip RB211-24G HP compressor: stage 6RB211-24G HP compressor: stage 6 52Axial compressor theory - Variation of rotor and stator angles from root to tip - Cheah CangTo End of document