SlideShare a Scribd company logo
1 of 31
Download to read offline
FIVE
The Second Law of Thermodynamics
5.1FE

D

5.2FE

D

5.3FE

A

T
283
  L 
1
1

0.05667.
max
TH
300

5.4FE

C


T
293
W
10
  L  
1
1

0.3805 

.
 W
 10
TH
473
QL   QL 

5.5FE

B

5.7FE

A

 16.3 kW
QL 

C

5.6FE

T
293
COP  H 

7.325.
TH  L 293 
T
253

Q
20
COP  L  
2.
W 10
T
293
From Eq. 5.11, COP  L


2.
TH  L TH 
T
293

5.8FE

C

T
293
Use Eq. 5.10: COP  H 

7.325.
TH  L 293 
T
253

Q
2000
COP 
7.325  H 
.
W
W
5.9FE

A

TH 
439.5 K

W 
273 kJ/hr

T
293
  L  
1
1

0.214
TH
373

5.10FE C

T2
573

1 0.717 
ln

0.481 kJ/K
T1
293

5.11FE C

  v ln
S mc

5.12FE D

  v (T2  1 )  
W mc
T
10 0.717 
(356.6 
773) 
2986 kJ
k k
1/

 
p
where T2  1  2 
T
p
1 
5.13FE D

0.2857

400 
 
773

6000 



356.6 K

The heat gained by the ice is lost by the water:  melt  i  w  p , w  w . (We
h
m m c
T
assume not all the ice melts.) The entropy change is:

T
Q
5.02 
333
273
 i  S w   w c p , w ln 2 
S 
m
 
20 4.18 
ln

0.213 kJ/K
Ti
293
273
293

72
5.14FE A

The final temperature is 0 The heat lost by the iron is:
C.

Q  Fe c p (T1  2 )  
m
T
10 0.448  
300 1344 kJ
  Fe c p ln
S m

T2 Q
273 1344
  
10 0.448 
ln


0.881 kJ/K
T1 Tice
673 273

5.15FE C
k k
1/

5.16FE D

5.17FE D

 
p
2000 

First, find T2: T2  1  2 
T
 
673

1066 K .

p
400 
1 
With Q = 0:   v (T2  1 )  
W mc
T
2 0.717 
(1066 
673)  kJ
563
0.2857

State 1 is at the inlet and state 2 at the outlet. Use enthalpies found in Tables C.3 and C.2:

wT  1  2 
h h 3658 
2637 
1021 kJ/kg
5.18FE C

State 2 at the same entropy as state 1:
is

s2 s1 
7.1677 
1.0259  2' 
x 6.6441.
h2' 
317.6 
0.9244 
2319 
2462 kJ/kg.

x2' 
0.9244
wT ,max 
3658 
2462 
1197 kJ/kg

5.19FE B

Ish t pr ue f aoi t n on i T b C2
t t e e t o vpr ao fud n al .
’ e m ar
zi
e .

5.20FE: A

wT ,actual
1020



0.85
wT ,isentropic 1200

5.1

30 000 / 3600
output

COP 
. 4
. W 2.083 kW or 2.79 hp

input
W

5.2

output 75000 / 3600
COP 


5.21
input
4

5.3


T
500
2545
 W 10 
  H  
1
1

0.256. QH  
 400 Btu/hr
99,
TL
672

0.256

5.4

output
500


0.3
input 100 
6000 / 3600

5.5

V  
100 1000 / 3600 27.78 m/s

1
1
 
1.23 27.782  
2 0.28 
27.78
V
V
Drag power 2  2 ACD 
2



0.519

Inputpower
W
1 100 
1000  
10 3

 
740 9000
13
3600

73
5.6

A Kelvin-Planck violation is sketched as the first block in the figure below. The
dashed box encloses a refrigerator which is a violation of the Clausius statement:
QH1

QH 1  . QH 2   L  H 1
W
W Q Q
Let QH 2  H 1  H
Q
Q
Then QL  QH with no work required.
This is a violation of the Clausius
statement of the 2nd law.

QH2
W

QL

5.7

No. It is not operating on a cycle.

5.8
QH1

QH2

Impossible.
Assume WR  C . Then (QL ) net  (QH ) net .
W

WC
WR
QL1

5.9

Assume WR  C . Then (QL ) net  (QH ) net .
W

QL2

Impossible. It violates the Clausius statement.

The maximum temperature drop for the seawater is 17
  T
Q mc  20 
4.18  
17 1421 kW
H

p

The efficiency of the proposed engine is

W 100
 

0.0704 or 7.04%

Q 1421
The efficiency of the Carnot engine would be
T
283
  L  
1
1

0.0567 or 5.67%
TH
300
T enet ’c i ii ps b s c iecesh C roe iciency.
h i n r lm sm os l i etxed t a tf
v os a
ie n
e n f
5.10

The maximum possible efficiency is the Carnot efficiency:
T
293
  L  
1
1

0.2038
TH
368
assuming the water is rejected at atmospheric temperature. Then
  T 0.2 4.18   
Q mc   
(95 20) 62.7 kW
H

Then

p

  0.2038 
Wmax  QH 
62.7 
12.8 kW

74
5.11

T
473
a)   L  
1
1

0.679
TH
1473
QL
T
473
b) COP 
 L


0.473
QH  L TH  L 1000
Q
T
QH
T
1473
c) COP 
 H 

1.473
QH  L TH  L 1000
Q
T

5.12

First, we find the power produced:
80 
1000
 Q
W    40 
QL

17.78 kW
H
3600

W 17.78
283
 
0.4444   . TH 
1
509.4 or 236.4
C

40
TH
QH

5.13

Let T be the unknown intermediate temperature. Then
T
560
 
1
and   
1
1
2
1060
T
It is given that   2   . Substitute and find
 0.2 2
1

T
 560 
1
   T 2  T 
1.2 1
.
212
712,300  T  R or 285F
0.
745
1060
T 

5.14

q
T
20
  L   0.6.  L 0.4
1
1
qH
50
TH
For the adiabatic process (see Fig. 5.8)
k
1

TL  2 
v
v
  .  2  1/ 0.4 
0.4
0.1012

TH  3 
v
v3
Then v2 
0.1012 v3 
0.1012  
10 1.012 m 3 /kg. The high temperature is then
pv
200 
1.012
TH  2 2 

705 K or 432.2
C
R
0.287
The low temperature is

TL 0.4TH 0.4 
705.2 282.1 K or 9.1
C
5.15

5.16

The maximum possible efficiency is
T
293
output 43 
0.746
  L  
1
1

0.75.  


0.77. Impossible
actual
TH
1173
input
2500 / 60

T
510
a)   L  
1
1

0.0642 or 6.42%
TH
545
QH
T
545
b) COP 
 H 

15.57
QH  L TH  L 545 
Q
T
510
75
5.17

T
T
T
   1 ,    2 ,    1    1 )(1  2 )  1  2  1
1
1
1
1 (1 
   2
1
2
3
T2
T3
T3
As an example let T1  C, T2 200 and T3   Then
100
C,
300 C.
373
473
373
 
1

0.2114,   
1

0.1745,   
1

0.349
1
2
3
473
573
573


0.2114 
0.1745 
0.2114 
0.1745 
0.349
3

or
5.18

T
273

1 L 
0.75. TH 

1092 K
engine  
TH
1
0.75
T
273
COP  L


0.333
TH  L 1092 
T
273

5.19

T
313
  2 . 1  2   . T22 773 

1
313. T2 492 K or 219
C
1
773
T2

5.20

T
293
T
COP  L .

. T 2 
138600 or T 
372 K =99
C
TH  L T 
T
293 473 
T

5.21

pv
200 
0.03
20.9
TL  4 4 

20.9 K.  
1

0.956 or 95.6%
R
0.287
473

w  qH 0.956  28.7 kJ/kg

30
5.22

p3 V3 15   /1728
144 250


586.3R
mR
0.01 
53.3
400   /1728
144 25
TH 

1173R
0.01 
53.3
586
 
1
0.500 or 50%
1173

p 
p
W  H  L mR H ln 1  L ln 3 
Q
Q
T
T
p2
p4 


Refer to Fig. 5.7: TL 

300
15 

0.01 
53.3 
1173ln
 ln
586
 ft-lbf
177
170.2
26.44 


where
k / k
1

 
T
p2 p3  2 
T
3 

3.5

3.5

1173 
586 


 
15
170.2 psia, p4  
300
 
 26.44 psia
586 
1173 



76
0.4 /1.4

5.23

1
 
TL 600  
15
 

273.4
273.4 K.  
1

0.544
600
3.5

0.287 
273.4
273.4 
v3 

0.7847 m 3 /kg. p4 
4698 
300 kPa

 
100
600 
3.5
600 
v
p2  
100 
1566 kPa. p1 p2 2 
1566  
3 4698 kPa
 
273.4 
v1

p
p
4698
100 

wnet RTH ln 1  L ln 3 
RT
0.287  ln
600

273.4 ln
 kJ/kg
103
p2
p4
1566
300 


5.24

T
530
COPpump  H 
26.5
TH  L 530 
T
510

QH
75, 000
 72,170 Btu/hr


. QL 
  75, 000 
Q
Q
Q
H

L

L

 

QL mwater c p  . 72,170   
T
mwater 4.18 
12. mwater 
6014 lbm/hr

Q
75, 000

COP  H . 26.5 
. W 2830 Btu/hr or 1.11 hp


W
W

5.25

5.26

 1800 / 60
T
Q
293
 4.61 kW or 6.18 hp
COP  H 

6.511  H 
. W 


TH  L 293 
T
248
W
W


T
2
 1800
QL 
 (296  L )
T
60 20 
( 25) 3
2
(296  L )
T

TL
QL
TL
COPac 
 . 
3
. TL2  TL  620 
599
87
0

TH  L W
T
296  L
T
4.61


W 4.61 kW.

TL 
345 K or 72
C
5.27

5.28


Q
500 / 60
a) COPcool  L 
2.36

550
W 5  / 778
 500 / 60   / 778
Q
5 550
b) COPheat  H 

3.36

5  / 778
550
W
5
Q
T
10
2 
10 6
COPref  L  L .

. W 
1465 kJ
W TH  L
T
W
293   
2 10 6

77
5.29

5.30

T
255
COPmax  L 

6.71
TH  L 293 
T
255
 3000 / 60
Q
COPactual  L 

3.73.
Yes, it's possible

0.746
W 10 

(Q )
278
COP1 

13.9  L 1

298 
278
W1

(Q )
253
COP2 

6.325  L 2 .

298 
253
W

 W
But W2  
1

2



(QL ) 2 (QL )1
12

 0.455   000 

. (QL )2 
0.455(QL )1 
5
1.055  kJ/s
8
6.325 13.9
360

5.31

 100
T
373
 W
  L  
1
1

0.707. QH  

141.4 kW.
TH
1273
 0.707
 Q W 
QL     141.4  41.4 kW
100
H
 t
Q 
141.4  
20 60
 H  H 
S

133.3 kJ/K
TH
1273
 t
Q  41.4  
20 60
L  L 
S

133.2 kJ/K
TL
373
 net 
S
133.2 
133.3  kJ/K which is zero except for round-off error.
0.1

5.32

5.33

5.34

5.35

Q
Q

100
100
a)  R  R 
S

0.0932 kJ/K. b)  S  S 
S

0.341 kJ/K
TR 1073
TS
293
Q
200
COP  L . 10 
. W 20 kJ. QH 220 kJ
W
W

200
220
a)  L 
S

0.76 kJ/K and b)  H 
S
0.76 kJ/K
263
289.3
263
where COP  
10
and TH 289.3 K.
TH 
263

 50, 000 / 3600
Q
530
COP  H 
4.91 
. TL 422.1
R
 4  / 778
550
530  L
T
W
50, 000  6
1/

39,820  6
1/
S 
S

15.72 Btu/  and  L 
R
S

15.72 Btu/ 
R
530
422.1
 Q W 
where QL     50, 000  
4 (550 / 778) 
3600 
39,820 Btu/hr.
H
From Problem 5.28 W 
1465 
0.00001 
1465 kJ.
1465 kJ. QH 

1465
 
10 5
 H 
S
 kJ/K and  S 
5
S
 kJ/K
5
293
2 
10 6
78
5.36

T
v
0  v ln 2  ln 2
c
R
T1
v1

 / cv
R

 
T
v
or ln 2   2 
ln
T1
v
1 

T
R v
or ln 2 
 ln 2
T1
c v v1

k 
( 1)

R
T  
v
But
  (see Eq. 4.32).  2  2 
k 1

cv
T1  1 
v
To show Eq. 5.29, use Eqs. 5.28:
(k k
1)/

k
1

1  2 
p
v

   
v
p
2   1 

(k
1)

p  
v
 2  1

p1  2 
v

.

k
1

 
v
 1 .

v
2 
k
k
1

k

 
v
 1

v
2 

p1 V 1 200 
0.8

278.7 K
mR
2
0.287
 T
p 
773
 m p ln 2  ln 2  2  
S
c
R
 1.0 ln
2.04 kJ/K
p1 
278.7
 T1



5.37

T1 

5.38

mRT1
V1
p1

1/ k

and V

2

 
p
V 1  1 
p
2 

0.2 
0.287 
313
a) V 1 
=0.1198 m3 ,
150

1/1.4

V

0.2 
0.1889 
313
b) V 1 
=0.0788 m3 ,
150

k k
1/

5.39

5.40

 
p
T2  1  2 
T
p
1 

0.4 /1.4

2000 

 
520

14.7 



0.0445 m3

1/1.289

V

0.2 
0.2968 
313
c) V 1 
=0.1239 m 3 ,
150

0.2 
4.124 
313
d) V 1 
=1.769 m3 ,
150

2

150
 

0.1198  
600
 
2

150
 
0.0788  
600
 

2

150
 

0.1239  
600
 


0.0269 m3

1/1.4

V


0.0460 m3

1/1.409

V

2

150
 

1.769  
600
 


0.246 m3

2117R or 1657 F


p
T
v 
  v ln 2  ln 2 
S m c
R
,
T2  1 2 since V 
T
const

T1
v1 
p1


1500
600
a)  2 
S
0.717 ln
2.31 kJ/K since T2  
300

1500 K
300
120
1500
600
b)  2 
S
0.653ln
2.10 kJ/K since T2  
300

1500 K
300
120
1500
600
c)  2 
S
0.745ln
2.40 kJ/K since T2  
300

1500 K
300
120
1500
600
d)  2 
S
10.08ln

32.4 kJ/K since T2  
300

1500 K
300
120

79
5.41

Q  mRT ln
W
 mc p ln
S

5.42

p1 p1 V 1
p
6000

RT1 ln 1 
6000    ln
500 10 6

10.2 kJ
p2
p2
200
RT 1

T2
p V 1 p2
6000   
500 10 6
200
1
ln

ln

9.51 kJ/K
T1
T1
p1
1073
6000

 T
p V1
v
m 1
,   v ln 2  ln 2
S m c
R

RT1
T1
v1

27.2  
144 10
a) m 

1.592 lbm,
53.3 
470
27.2  
144 10
b) m 
2.42 lbm,
35.1 
470
27.2  
144 10
c) m 

1.54 lbm,
55.15 
470
27.2  
144 10
d) m 

0.111 lbm,
766.4 
470

5.43

5.44
a)
b)
c)
d)

5.45


T

 mcv ln 2

T1


100

0.349 Btu/ 
R
27.7
100
 2.42 
S
0.156 ln

0.485 Btu/ 
R
27.7
100
 
S 1.54 
0.178ln

0.352 Btu/ 
R
27.7
100
 
S 0.111 
2.40 ln

0.342 Btu/ 
R
27.7
 
S 1.592 
0.171ln

400 
0.2
 mcv  .  
W
T
( 200) 

0.717(T2 
313). T2 
626.2 K
0.287 
313

T
v 
T
400 
.2
626.2
  v ln 2  ln 2  mcv ln 2 
S m c
R


.717 ln

0.443 kJ/K

T1
v1 
T1 .287 
313
313



 T
p1 V 1
V2
,  m v ln 2 R ln
S
c

RT1
V1
 T1
80 
4
400
V2

3
m

3.72 kg, 5.2 
3.72  ln
.717

.287 ln
.
  V 2 254 m
.287 
300
300
4 

80 
4
400
V2

m

5.64 kg, 5.2 
5.64 
.653ln

.189 ln
.
195 3
 V 2  m
.189 
300
300
4 

80 
4
400
V2

3
m

3.59 kg, 5.2 
3.59 
.745ln

.297 ln
.
  V 2 255 m
.297 
300
300
4 

80 
4
400
V2

3
m

.259 kg, 5.2 
.259 
10.08ln

4.12 ln
.
  V 2 259 m
4.12 
300
300
4 

m

p1 V 1
, V 1  r2h   2  

 0.1 0.2 0.00628 m3 , Q mc p 
T
RT1
T
T
V 1 2 , W m p ( V 2 V 1 ),  mc p ln 2
S
T1
T1

m

V

2

80
200 
0.00628
a) m 

0.0137 kg, 9 
0.0137  T2 
1.0(
320). T2 
978 K
0.287 
320
978
V2
.00628

.0192 m3 , W 
.0137 
200(.0192 
.00628) 
0.0354 kJ
320
978
 0.0137  ln
S
1.0

0.154 kJ/K
320
200 
0.00628
b) m 

0.0208 kg, 9 0.0208 
0.824(T2 
320). T2 
843 K
0.189 
320
834
V2
.00628

.0164 m3 , W 
.0208 
200(.0164 
.00628) 
0.0420 kJ
320
834
 0.0208 
S
0.842 ln

0.168 kJ/K
320
200 
0.00628
c) m 

0.0132 kg, 9 0.0132 
1.04(T2 
320). T2 
976 K
0.297 
320
976
V2
.00628

.0191 m 3 , W 
.0132 
200(.0191 
.00628) 
0.0340 kJ
320
976
 0.0132  ln
S
1.04

0.153 kJ/K
320
200 
0.00628
d) m 
0.000953 kg, 9 0.000953 
14.21(T2 
320). T2 
984 K
4.124 
320
984
V2
.00628

.0193 m3 , W 
.000953 
200(.0193 
.00628) 
0.00258 kJ
320
984
 0.000953 
S
14.21ln

0.0152 kJ/K
320
5.46

q w  ln
RT

p2
,
p1

  ln
s
R

a) q w 
0.287  ln
300

p2
p1

4000
 kJ/kg
377
50

4000

1.26 kJ/kg 
K
50
4000
b) q w 
0.189  ln
300
 kJ/kg
248
50
4000
 
s
0.189 ln

0.828 kJ/kg 
K
50
 
s
0.287 ln

c) q w 
0.297  ln
300
 
s
0.297 ln

4000
 kJ/kg
390
50

4000

1.30 kJ/kg 
K
50

81
d) q w 
4.124  ln
300
 
s
4.124 ln

5.47

q  p ,
c T

4000

5420 kJ/kg
50

4000

18.1 kJ/kg 
K
50

  p ln
s c

T2
T1

1360

0.231 Btu/lbm-
R
520
1360
b) q 
0.202 
(900   Btu/lbm,  
60) 170
s 0.202 
ln

0.194 Btu/lbm-
R
520
1360
c) q 
0.248 
(900  208 Btu/lbm,  
60)
s 0.248 
ln

0.238 Btu/lbm-
R
520
1360
d) q 
3.42 
(900  2870 Btu/lbm,  
60)
s 3.42 
ln

3.29 Btu/lbm-
R
520

a) q 
0.24 
(900  202 Btu/lbm,  
60)
s 0.24 
ln

5.48

5.49

p1 V 1
100 
2
50

2.38 kg,   
S
2.38 0.287 ln

0.473 kJ/K
RT1
0.287 
293
100
V1
2
where p2 p1
   kPa .
100
50
V2
4
m

a) m 

p1 V 1
100 
2

2.11 kg,
RT1
0.287 
330

Q  mcv 
W
T


( 400) 2.11 
.717(T2 
330). T2 
594 K.  2.11 
S
.717 ln

594

0.889 kJ/K
330

100 
2
b) m 
 kg, Q  mcv   
3.2
W
T 3.2 0.653(T2 
300). T2  K
511
0.189 
330
511
  
S 3.2 .653ln

0.914 kJ/K
330
100 
2
c) m 
2.04 kg, Q  mcv  2.04 
W
T
.745(T2 
300). T2 
593 K
.297 
330
593
 2.04 
S
.745ln
0.891 kJ/K
330
100 
2
d) m 

.147 kg, Q  mcv  
W
T .147 
10.1(T2 
300). T2 
600 K
4.12 
330
600
 
S 0.147 
10.1ln

0.886 kJ/K
330

82
5.50

p2
2000

1.2147 

165. Interpolate from Table F.1E:
p1
14.7
Compare with the constant specific heat prediction:
pr 2 pr1

k k
1/

 
p
T2  1  2 
T
p
1 

5.51

0.2857

2000 

 
520

14.7 


T2 
1974R.

2117R, an error of 7.24%.

p1 V 1
200 
2

4.36 kg. Q  m .
W
u
RT1
0.287 
320
 
40 40
a) 500 
  4.36 
10 60
0.717(T2 
320). T2 
787 K
1000
T
787
 mcv ln 2 4.36 
S
0.717 
ln
2.81 kJ/K
T1
320
b) From Table F.1 u1 228.4 kJ/kg and  
1.767 kJ/kg 
K.
1
 
40 40
500 
  4.36(u2 
10 60
228.4). u2 
563 kJ/kg .
1000
T
764
T2 
764 K and  2.667. Then p2 p1 2 200 
478 kPa
2
T1
320
m

478 

 4.36 
S
2.667 
1.767 
0.287 ln
2.83 kJ/K
200 



5.52

a) Q W mcv  .
T
k / k
1

200, 000
2 
0.171(T2 
520). T2 
1272R or 812
F
778

 
T
1272 

p2 p1  2   
16
366 psia
 
T
520 

1 
200, 000
b)
2 u2 
(
88.62). u2 217.2 Btu/lbm. T2 
1245R or 785
F
778
27.5
pr1 
1.215, p2 27.5.  p2  
16

362 psia
1.215
5.53

3.5

600   
200 10 6
V2
1000
m

0.001427 kg . T2  1
T
293 

1465 K
0.287 
293
V1
200

a) Q mc p  
T 0.001427 
1.0(1465 
293) 
1.67 kJ
b) Find the enthalpies in Table F.1:

Q m(h2  1 ) 0.001427 
h
(1593.7 
293.2) 
1.86 kJ

83
k k
1/

5.54

 
p
2000 

a) T2  1  2   
T
300
670.2 K
 
p
120 
1 
W  
0.2 0.717(670.2 
300)  kJ
53.1
2000
b) ( 
1.702) 
0.287 ln
.  2.51 kJ/kg  u2 481 kJ/kg
K.
2
2
120
W  
0.2 (481 
214) 
53.4 kJ
k k
1/

5.55

 
p
a) T2  1  2 
T
p
1 

0.2857

0.2857

500
 
  
500
20 

 K. W  
199
4 .717(199 
500) 
863 kJ

20
.  
1.296. T2 200 K
2
500
W  
4 (143 
359) 
864 kJ

b)  
2.220 
0.287 ln
2

5.56

a) s1 2.047 
0.85(4.617) 
5.971, h1  
721 0.85(2048) 2462
p2  
800
8.877
 s2 
h2 4462 
 
s 8.877 
5.971 2.91 kJ/kg  and T2  
K
829 C
b) TK solution:
q h2  1 . 2000 h2 
h
2462. h2 4462.

Rule Sheet
; This is a closed system, so the first law is q = u2 - u1 + p2*v2 - p1 * v1 or
q = h2 - h1
dels = s2 - s1
; Steam tables based on NBS/NRC Steam Tables by Lester Haar,
; John S. Gallagher, and George S. Kell, Hemisphere Publishing Corp., 1984.
; STEAM STEAM8SI.TKW
Variable Sheet
Status Input

Name

Output

Unit

`

800

0.85

800

T1
p1
h1
s1
v1
x1
phase1
T2
p2
h2
s2

170
2460
5.97
0.204
'SAT
927
4460
8.87

C
kPa
kJ/kg
kJ/(kg*K)
m^3/kg

C
kPa
kJ/kg
kJ/(kg*K)

84

Comment
Thermal Sciences, Potter & Scott
P5-56.tkw Problem 5-56
*STEAM8SI.TKW Steam, 1-8 States, SI Units
Temperature
Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase
Temperature (Enter a guess value.)
Pressure
Enthalpy
Entropy
2000

5.57

v2
x2
phase2
q
dels

0.691
'mngless
'SH
2.9

m^3/kg

kJ/kg
kJ/(kg*K)

Specific Volume
Quality
Phase
Heat transfer
Entropy change

p1 600 psia, T1  2 486F, s1 
T
0.672 
0.4(0.774) 
0.982
u1 
506.6 
0.4(608.4) 
750 kJ/kg, v1 
0.0201 
0.4(0.7501) 
0.320 m 3 / kg
p2 
300 psia 
1.56, u2 
1153, v2 
1.73
 s2 
T2   
486 F
   
S m s 2 (1.56 
0.982) 
1.158 Btu/lbm-
R
Q 
m u W
600 
144(0.77 
0.32)  
450 144(1.733 
0.77)

2 (1153 
750)  
2

1066 Btu
778
Note: The work was estimated using graphical integration (a straight line was assumed
between the saturated vapor point and state 2).

5.58

a) v1  f at 20 w p( v2  1 ) 
v
C.
v
400(0.7726 
0.001) 
309 kJ/kg

q  2  1  2964.4 
u u w
83.9  
309 3189 kJ/kg
or
q h2  1 
h 3273  
84 3189 kJ/kg
 s2  1 
s
s 7.899 
0.2965 7.604 kJ/kg 
K
b) TK solution:
Rule Sheet
;Assume that the water is in a closed system. The first law is q = u2 - u1 + p2*v2 - p1 * v1 or
q = h2 - h1
dels = s2 - s1
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George
S. Kell, Hemisphere Publishing Corp., 1984.
;STEAM STEAM8SI.TKW
Variable Sheet
Input

Name

Output

Unit

`

20
400

T1
p1
h1
s1
v1
x1
phase1

84.2
0.293
0.001
'mngless
'CL

C
kPa
kJ/kg
kJ/(kg*K)
m^3/kg

Comment
Thermal Sciences, Potter & Scott
*STEAM8SI.TKW Steam, 1-8 States, SI Units
P5-58.tkw Problem 5-58
Temperature
Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase

85
400
400

3270
7.9
0.773
'mngless
'SH

q
dels

5.59

T2
p2
h2
s2
v2
x2
phase2

C
kPa
kJ/kg
kJ/(kg*K)
m^3/kg

3190
7.6

kJ/kg
kJ/(kg*K)

Temperature
Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase
*THUNITS.TKW Units for thermo
Heat transfer per unit mass
Entropy change

V 6 
10 3


0.001017  1 (7.671 
x
0.001). x1 
0.0002585
m
2
u1 251.1 
0.0002585(2456.6 
251.1) 251.7 kJ/kg
Q
1000
Q m(u2  1 ) W . u2  1  251.7 
u
u

751.7 kJ/kg
m
2
v2  1 
v 0.003 m 3 / kg and u2 
752 kJ/kg. Locate state 2 by trial-and-error:
v1 

Guess T2   : 0.003 
170 C
0.0011 x2 (0.2428 
0.001). x2 
0.00786
751.7 718.3 x2 (2576.5 
718.3). x2 
0.0178
Guess T2 
177 C: 0.003 
0.0011 x2 (0.2087 
0.0011). x2 0.00915


751.7 750.0 x2 (2581.5 
750.0).  x2 
0.00093

A temperature of 176 C is chosen. We interpolate to find
0.003 0.0011 x2 (0.2136 
0.0011).  x2 
0.00894.
S 2 m( s f x2 s fg ) 2 
(2.101 
0.00894 
4.518) 4.28 kJ/K
5.60

a) Q  m . m  m . 0.1(3674 
W
u
h W
u
1087)  
W 0.1(3279 
1082)

W  kJ and  
39
S 0.1(7.370 
2.797) 
0.457 kJ/K
b) TK solution:
Rule Sheet
;This is a closed system, so the work of a frictionless process is W = INT pdV, and for a
; constant pressure process this becomes
W = m* p1 * (v2 - v1)
delS = m* (s2 - s1)
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George
S. Kell, Hemisphere Publishing Corp., 1984.
; STEAM8SI.TKW
Variable Sheet
Input

Name

Output

Unit

`

T1

250

C

Comment
Thermal Sciences, Potter & Scott
*STEAM8SI.TKW Steam, 1-8 States, SI Units
P5-60.tkw Problem 5-60
Temperature

86
4000

0
600
4000

0.1

5.61

p1
h1
s1
v1
x1
phase1
T2
p2
h2
s2
v2
x2
phase2

kPa
kJ/kg
kJ/(kg*K)
m^3/kg

1090
2.8
0.00125
'SAT

3670
7.37
0.0988
'mngless
'SH

W
m
delS

39
0.457

C
kPa
kJ/kg
kJ/(kg*K)
m^3/kg

kJ
kg
kJ/K

Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase
Temperature
Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase
*THUNITS.TKW Units for thermo
Work
Mass of steam
Entropy change of system

u1 2507 kJ/kg, s1 s2 
7.356 
0.832 x2 (7.077). x2 
0.922.
u2 251 
0.922(2205) 2284 kJ/kg
W m(u1  2 ) 2(2507 
u
2284) 447 kJ

5.62

2
a) v1   
0.4 0.001 
3.992 x1 . x1 
0.1. Then s1 
1.69 and u1 
533
5
p2  MPa 
5
570 kJ/kg. W m(u1  2 ) 
u
5(570 
533)  kJ
185
 u2 
s2 s1 
1.69 
b) TK solution:
Rule Sheet
;This is a closed system, so for an adiabatic process, W = U1 - U2 or
W = m * (u1 - u2)
; First law
v1 = V1/m
; Definition of specific volume
s2 = s1
; for an isentropic process
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George
S. Kell, Hemisphere Publishing Corp., 1984.
; STEAM8SI.TKW
Variable Sheet
Status Input

Name

Output

Unit

`

40

T1
p1
h1
s1

75.9
550
1.69

C
kPa
kJ/kg
kJ/(kg*K)

87

Comment
Thermal Sciences, Potter & Scott
*STEAM8SI.TKW Steam, 1-8 States, SI Units
P5-62.tkw Problem 5-62
Temperature
Pressure
Enthalpy
Entropy
0.4

5000

5

2

v1
x1
phase1
T2
p2
h2
s2
v2
x2
phase2
W
m
u1
u2
V1

m^3/kg
0.1
'SAT
136
577
1.69
0.00107
'mngless
'CL
-190
534
572

C
kPa
kJ/kg
kJ/(kg*K)
m^3/kg

kJ
kg
kJ/kg
kJ/kg
m^3

Specific Volume (transfer value to input)
Quality
Phase
Temperature (starting guess needed)
Pressure
Enthalpy
Entropy
Specific Volume
Quality
Phase
*THUNITS.TKW Units for thermo
Work
Mass
Internal energy, state 1
Internal Energy, state 2
Specific volume, state 1

5.63

Q m 
h 10(1150 
8.02)  420 Btu.  
11,
S 10(1.757 
0.016) 
17.4 Btu/ 
R

5.64

The heat that enters the ice leaves the water:
a) Assume that all the ice does not melt:
20      
1.9 5 330 m 10 4.18(20). m 
1.96 kg and T2  
0C
T
Q
T
 mi (c p )i ln 2i  i  w (c p )w ln 2 w
S
m
T1i Ti
T1w
273 1.96
273

  
330 10 4.18 
ln

0.064 kJ/K
253 273
293
b) Assume that all the ice melts:
 
5 1.9 ln

20      
1.9 5 330 5 5 4.18(T2  40 
0)
4.18(20  2 ). T2  
T
8.0 C
T
Q
T
T
 mi (c p )i ln 2i  i  iw (c p )w ln 2iw  w (c p )w ln 2 w
S
m
m
T1i Ti
T1iw
T1w
  ln
5 1.9

5.65

273 5 
330
281
281


5 4.18ln
 
40 4.18ln

0.378 kJ/K
253
273
273
293

5  /1728
1.2
mi 
0.199 lbm,
mw  lbm
1
0.01745
The heat that enters the ice leaves the water. Assume that not all of the ice melts:

0.199 
0.49    melt     
(32 0) m
143 1 1.0 (60 32). mmelt 
0.178 lbm
492 0.178 
143
492
 0.199 
S
0.49 
ln

 
1 1.0 ln

0.166 Btu/lbm
460
460
520

88
5.66

T
293
  L  
1
1

0.489 or 48.9%. w qH  L  H   L  
q T s T s 300 kJ/kg
TH
573
300
 
s

1.071 
5.705  1 . s1 4.634 kJ/kg 
s
K
573 
293
s1 4.634 
3.254 x1 (2.451). x1 
0.563

5.67

a) For the cycle, the work output equals the heat input:

W  . 500 (275.6 
T s
45.8)( s2 
3.027). s2 
5.203 kJ/kg 
K
At 6 MPa 5.203 
3.027 x2 (2.863). x2 
0.760
b) TK solution:
Rule Sheet
;The net work of a Carnot cycle is the enclosed area on a Ts diagram. The adiabatic ompression
(process 1-2) is entirely within the saturated vapor region, so the specified pressures determine the
upper and lower temperatures.
w = (T2 - T1)*(s3 - s2)
; work = Ts diagram area
s1 = s2
T3 = T2
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and
; George S. Kell, Hemisphere Publishing Corp.,
1984. Stm8si.tkw
Input

Name

Output

`

10
3.027

6000

0
275.6
5.203

500

T1
p1
s1
v1
x1
phase1
T2
p2
s2
v2
x2
phase2
T3
p3
s3
v3
x3
phase3
w

45.83

4.637
0.317
'SAT
275.6
3.027
0.001319
'SAT
6000
0.02498
0.7603
'SAT

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI Units
P5-67.tkw
Problem 5.67
C
Temperature
kPa
Pressure
kJ/(kg*K)
Entropy (transfer value to input)
m^3/kg
Specific Volume
Quality
Phase
C
Temperature
kPa
Pressure
kJ/(kg*K)
Entropy
m^3/kg
Specific Volume
Quality
Phase
C
Temperature (transfer value to input)
kPa
Pressure
kJ/(kg*K)
Entropy (transfer value to input)
m^3/kg
Specific Volume
Quality
Phase
*THUNITS.tkw Units for thermo
kJ/kg

89
5.68

s1 2.046 
0.15(7.077) 2.738 kJ/kg   
K. s 6.664 
2.738 
3.93 kJ/kg 
K
wnet qnet  
s T 3.93(170.4 
60.1) 433 kJ/kg

60.1 
273
 
1

0.249 or 24.9%
170.4 
273
5.69

a) s4 
0.704 
0.2(7.372) 2.178 kJ/kg  s2 
K.
5.704 kJ/kg 
K
qH  H   
T s 573 (5.704 
2.178) 2020 kJ/kg
b) TK solution:
Rule Sheet
s3 = s2
s1 = s4
q12 = T1 * (s2 - s1)
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and
; George S. Kell, Hemisphere Publishing Corp., 1984.
Stm8si.tkw
Variable Sheet
Input Name
Output
Unit
Comment
`
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI Units
P5-69.tkw Problem 5.69
300
T1
C
Temperature
p1
kPa
Pressure
s1
2.18
kJ/(kg*K)
Entropy
x1
Quality
phase1
Phase
300
T2
C
Temperature
p2
8580
kPa
Pressure
s2
5.7
kJ/(kg*K)
Entropy
1
x2
Quality
phase2 'SAT
Phase
50
T3
C
Temperature
p3
kPa
Pressure
s3
5.7
kJ/(kg*K)
Entropy
x3
Quality
phase3
Phase
50
T4
C
Temperature
p4
12.3
kPa
Pressure
s4
2.18
kJ/(kg*K)
Entropy
0.2
x4
Quality
phase4 'SAT
Phase
*THUNITS.tkw Units for thermo
q12
2020
kJ/kg

90
5.70

QL
T
q
253
COP 
 L


3.614  L where w 
s T
QH  L TH  L 323 
Q
T
253
w
s1 s4 0.704 
0.15(7.372) 
1.81, s3 s2 
5.704 kJ/kg 
K
 Q
 s T 0.02 
a) Wout   m 
(5.704 
1.81)(300  
50) 19.5 kW
net
b) 5.704 
0.704 x3 (7.372).

5.71

x3 
0.678

a) A refrigeration cycle is a reversed power cycle. Heat is added to the R134a from
4 to 1 and rejected from 2 to 3:
QL
T
q
253
COP 
 L


3.614  L where wnet 
s T
QH  L TH  L 323 
Q
T
253
wnet
wnet   
[50 ( 20)] [0.901 
0.434] 
32.7 kJ/kg
qL COP  net 
w
3.614 
32.7  kJ/kg
118
s4 s3 0.434 
0.0996 x4 (0.9332 
0.0996). x4 
0.401
c) TK solution:
Rule Sheet
q23 = h3 - h2
; for the constant pressure process
q41/ q23 = T4/T3 ; for a Carnot refrigerator
s4 = s3
; R134a tables based on 'Thermodynamic Properties of HFC-134a'
; DuPont Technical Information, which is based upon the Modified
; Benedict-Webb-Rubin equation of state.
R134a8SI.tkw
Variable Sheet
Input

Name

Output

Unit

`

-20

50

1
50

T1
p1
s1
x1
phase1
T2
p2
h2
s2
x2
phase2
T3
p3
h3
s3

C
kPa
kJ/(kg*K)

1320
276
0.913

C
kPa
kJ/kg
kJ/(kg*K)

'SAT
1320
124
0.442

C
kPa
kJ/kg
kJ/(kg*K)

Comment
Thermal Sciences, Potter & Scott
*R1348si.tkw, R134a, 1-8 States, SI units
P5-71.tkw Problem 5.71
Temperature
Pressure
Entropy
Quality
Phase
Temperature
Pressure
Enthalpy
Entropy
Quality
Phase
Temperature
Pressure
Enthalpy
Entropy

91
0

x3
phase3
-20
T4
p4
0.442 s4
x4
phase4
q23
q41

'SAT
133

C
kPa
kJ/(kg*K)

0.402
'SAT
-152
-119

kJ/kg
kJ/kg

Quality
Phase
Temperature
Pressure
Entropy (transfer value to input)
Quality at beginning of heat addition process
Phase
*THUNITS.tkw
Units for thermo
Amount of heat rejected
Amount of heat gained from refrigerated space

5.72

Refer to the numbers in Problem 5.12:
QH QL 40  
40 60 80 000
 

 which verifies the inequality of Clasius.
0
TH TL
509.4
283

5.73

wnet  . 350  (250.4 
s T
s
75.9).  2.006 kJ/kg 
s
K

qH  H  
T s (250.4 
273)(2.006) 
1050 kJ/kg

qL  L  
T s (75.9 
273)(2.006) 
700 kJ/kg
qH qL 1050
700
 

0.0002 which is essentially zero.
TH TL 523.4 348.9
qH qL
30 1.326
 

 .
0
TH TL 473 20.9

5.74

Using values from Problem 5.21:

5.75

a) Using values from Problem 5.66, we have
qH qL 613.5 313.5
300
 

 using qH 
0,

613.5 kJ/kg.
TH TL
573
293
0.489
b) TK solution:
Rule Sheet
;Problem 5.66
eta = (T1 - T4) /T1
q12 = wnet/ eta
q12 = T1 * (s2 - s1) ; the sought value of s1 is shown on the Variable Sheet
Problem 5.75: The cyclic integral of deltaq/T = q12/T1 + 0 + q34/T3 + 0 , but q12/T1 = - q34T3;
therefore , the cyclic integral of delta q/T = 0, as called for by the Clausius inequality for a
reversible cycle.
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and
; George S. Kell, Hemisphere Publishing Corp., 1984.
Stm8si.tkw
Input

Name

Output

`

300

T1

C

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI Units
P5-75.tkw Problem 5.75
Temperature

92
p1
s1
x1
T2
p2
s2
x2
T3
p3
s3
x3
T4
p4
s4

300

1
20

20

614
300

5.76

8580

eta
q12
wnet

4.63

kPa
kJ/(kg*K)

0.489

0.563
8580
5.7

C
kPa
kJ/(kg*K)
C
kPa
kJ/(kg*K)
C
kPa
kJ/(kg*K)

kJ/kg
kJ/kg

Pressure
Entropy (transfer value to input)
Quality
Temperature
Pressure
Entropy
Quality
Temperature
Pressure
Entropy
Quality
Temperature
Pressure
Entropy
*THUNITS.tkw
Units for thermo
Thermal efficiency
Heat input to cycle
Net work of cycle

a) mc (c p )c  c mw (c p ) w  w . 5 
T
T
0.093(200  2 )   T2 
T
10 1.0(
50). T2 
56.7 
F

T2
516.7

5 0.093ln

0.1138 Btu/ 
R
(T1 )c
660
T
516.7
 w mw (c p ) w ln 2   ln
S
10 1.0

0.1305 Btu/ 
R
(T1 ) w
510

 c mc (c p )c ln
S

 universe  c  S w 
S
S 
0.1138 
0.1305 
0.0167 Btu/ 
R
b) TK solution:
Rule Sheet
;mc * cc * (Tc - T2) = mw * cw * (T2 - T1) ; This is the first law applied to system of copper and
;
water, under the assumption that there is no heat transfer.
delSuniv = delSc + delSw
delSc = mc* cc * ln(T2/Tc)
; from delSc = INT (delQ/T) = INT(m * cc*dT/T)
delSw = mw * (s2 -s1)
; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher,
; and Kell, Hemisphere Publishing Corp., 1984.
Stm8e.tkw
Variable Sheet
Input

Name
`

50

0

T1
h1
s1
x1
phase1

Output

Unit

Comment
Thermal Sciences, Potter & Scott
*Stm8e.tkw Steam, 1-8 States, English units
P5-76.tkw
Problem 5.76
F
Initial temperature of water
18.1
B/lbm
Enthalpy
0.0361 B/(lbm*R) Entropy
Quality
'SAT
Phase

93
T2
h2
s2
x2
phase2

56.6
F
Final temp of water and copper (starting guess needed)
24.7
B/lbm
Enthalpy
0.0489 B/(lbm*R) Entropy
0
Quality
'SAT
Phase
*THUNITS.tkw Units for thermo
5
mc
lbm
Mass of copper
0.092 cc
B/(lbm*R) Specific heat of copper
200 Tc
F
Initial temperature of copper
10
mw
lbm
Mass of water
delSuniv 0.0159 B/R
Entropy change of the universe
delSc
-0.113 B/R
Entropy change of the copper
delSw
0.129 B/R
Entropy change of the water
1
cw
B/(lbm*R) Specific heat of water

5.77

a)  universe 0.264 
S
0.156 0.104 Btu/ 
R
0.2
v1   m 3 /kg and from Tables C.1 and C.2 we observe that p2  MPa
0.1
2
2
and T1 212.4 s1 
C,
6.342 kJ/kg  and u1 2600 kJ/kg . Since for a rigid volume
K,
trial-and-error provides
v2  1
v
At p2  MPa: v2 
0.4
0.0011 
0.2(0.4625 
0.0011) 
0.0934
At p2  MPa: v2 
0.3
0.0011 
0.2(0.6058) 
0.122
Obviously, at v2  state 2 lies between 0.3 and 0.4 MPa. Interpolate:
0.1
0.1 
 0.122 
p2 

0.3 0.377 MPa

 0.1  
0.122 
0.0934 

Interpolate to find s2 and u2 :

s2 
1.753  
0.2 5.166 2.786 kJ/kg  u2   
K,
594 0.2 (2551 
594) 
986 kJ/kg
Then
Q W  (u2  1 ) 2 
m
u
(986 
2600) 
3230 kJ (heat flows to surr.)
3230
 universe msystem  S surr 2 
S
s

(2.786 
6.342) 

3.55 kJ/K
30 
273
b) TK solution:
Rule Sheet
v1 = V1 / m
; Definition of specific volume
v2 = v1
; Volume of steam is constant
Q12 = m * (u2 - u1) ;heat added to steam
Q12 = - Qsurr
delS = m* (s2 - s1)
; Entropy change of steam
delSsurr = Qsurr/Tsurr ; entropy change of surroundings
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and
; George S. Kell, Hemisphere Publishing Corp., 1984.
Stm8si.tkw

94
Input

Name
`

0.1
1

0.1
0.2

0.2
2

30

5.78

5.79

T1
p1
s1
v1
x1
phase1
T2
p2
s2
v2
x2
phase2
u1
u2
V1
m
Q12
delS
delSsurr
Qsurr
Tsurr
delSuniv

Variable Sheet
Output
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI Units
P5-77.tkw Problem 5.77
212
C
Initial temperature of steam
1990
kPa
Pressure
6.34
kJ/(kg*K)
Entropy
m^3/kg
Specific Volume (transfer value to input)
Quality
'SAT
Phase
141
C
Temperature
371
kPa
Pressure
2.78
kJ/(kg*K)
Entropy
m^3/kg
Specific Volume (transfer value to input)
Quality
'SAT
Phase
2600
kJ/kg
Initial internal energy
985
kJ/kg
Final internal energy
*THUNITS.tkw Units for thermo
m^3
Volume of steam
kg
Mass of steam
-3230
kJ
Heat added to steam
-7.11
kJ/K
Entropy change of steam
10.7
kJ/K
Entropy change of the surroundings
3230
kJ
Heat added to surroundings
C
Temperature of the surroundings
3.54
kJ/K
Entropy change of the universe

30  
144 6
T1 
486.3R, T2 
1459R , Q  
1 0.24(1459 
486.3) 233 Btu
1
53.3
1459
a)  air  
S
1 0.24 ln

0.264 Btu/ 
R
486.3

233
b)  surr 
S

0.156 Btu/ 
R
1460
c)  universe 0.264 
S
0.156 0.104 Btu/ 
R
2
0.287 
573
120
p1 

164.5 kPa, T2  
573
418 K
2.0
164.5
418
a)  air 2 
S
0.717 ln

0.452 kJ/K
573
222
b) Q 2 
0.717(573 
418) 222 kJ.  universe 
S
0.452 

0.289 kJ/K
300

95
5.80

a) Q m 
h 3(2793 
852) 
5821 kJ.  steam 
S
3(2.331 
6.433) 
12.31 kJ/K
5821
 universe 
S
12.31 

7.56 kJ/K
293
b) TK solution:
Rule Sheet
Q12 = m * (h2 - h1) ; from the first law, Q12 = U2 - U1 + W = m* (u2 - u1 + p1 * (v2 - v1)
; for a quasiequilibrium constant pressure process of a closed system
delSuniv = delSsys+ delSsurr
Q12 = -Q12surr
delSsurr = Q12surr/Tsurr
delSsys = m * (s2 - s1)
; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and
; George S. Kell, Hemisphere Publishing Corp., 1984.
Stm8si.tkw

Input

Name

Output

`
200

1
200

0
3

T1
p1
h1
s1
v1
x1
phase1
T2
p2
h2
s2
v2
x2
phase2
m
delSuniv
delSsys

1554
2793
6.431
0.1273
'SAT
1554
852.4
2.331
0.001156
'SAT
7.553
-12.3

delSsurr

20

19.85

Q12
Q12surr
Tsurr

-5820
5820

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
P5-80.tkw
Problem 5.80
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K)
Entropy
m^3/kg
Specific Volume
Quality
Phase
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K)
Entropy
m^3/kg
Specific Volume
Quality
Phase
kg
Mass of steam in system
kJ/K
Entropy change of the universe
kJ/K
Entropy change of the system
Entropy change of the
kJ/K
surroundings
kJ
Heat added to the system
kJ
Heat added to the surroundings
C
Temperature of the surroundings

96
5.81

s1 
1.53 
0.8(5.598) 
6.008. u1 
504.5 
0.8(2025) 2124 kJ/kg
p2  MPa
0.8

650
C, u 2 
3389, s2 
8.391
 T2 
v2  1 
v .0011 
.8(.8846) 
.709 
400  
10 6
Q
(3389 
2124) 
0.714 kJ
0.709
400  
10 6

0.714
 universe 
S
(8.391 
6.008) 

6.11   kJ/K
10 4
0.709
973

5.82

The enthalpy leaving the heater equals the enthalpy entering the heater:
 1283  
 1.678 lbm/sec
262.2(8 ) ms 
ms
8 48.1. ms 
  S
S S 
out

in

(8 
1.678) 
0.4273  
8 0.0933 
1.678 
1.768 
0.432 Btu/sec-
R
5.83

 
a) Qt m(h2  1 )   2 
h WT
(2609.7 
3658.4) 
2000 
97.4 kJ/s

Qsurr  
QT 97.4 kJ/s


Q
97.4

 m(
S prod Sc.v. s2  1 )  surr  
s
0 2(7.909 
7.168) 

1.80 kW/K
Tsurr
303
b) TK solution:
Rule Sheet
Wdot = mdot * (h1 - h2) +Qdot ; first law for steady flow turbine with zero change in ke and pe
Qdot = - Qdotsurr
delSuniv = delSsys + delSsurr = 0 + delSsurr
delSsurr = mdot* (s2 - s1) + Qdotsurr/Tsurr
Input

Name

Output

`

600
6000

20

T1
p1
h1
s1
v1
x1
phase1
T2
p2
h2
s2

3660
7.17
0.0652
'mngless
'SH
60.1
2610
7.91

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI Units
P5-83.tkw Problem 5.83
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K) Entropy
m^3/kg
Specific Volume
Quality
Phase
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K) Entropy

97
v2
x2
phase2

1

2000
2

0

7.65

m^3/kg

'SAT

Wdot
mdot
Qdot
delSuniv
delSsys

-98.3
0.001

kW
kg/s
kJ/s
kJ/(K*s)
kJ/(K*s)

delSsurr

30

1.8

kJ/(K*s)

Qdotsurr
Tsurr

98.3

kJ/s
C

Specific Volume
Quality
Phase
*THUNITS.tkw Units for thermo
Poer output
Mass rate of flow
Rate of heat transfer to the system
Rate of entropy increase of the universe
Rate of entropy increase of the system
Rate of entropy increase of the
surroundings
Rate of heat transfer to the surroundings
Temperature of the surroundings

0.4 /1.4

5.84

T
323
100 
p2 p1 2  
100

118.3 kPa. T2  
323

T1
273
118.3 



308 K

1000 
(323 
308) 
173.8 m/s
V3  2c p (T2  3 )  2 
T

Note: The factor of 1000 converts kJ to J, so the units will work out.
0.4 /1.4

5.85

V22
100
 
T2   
300
272.5 K.

1.0(300 
272.5). V2 
234.5 m/s
140
2
1000
 
100

m

( 0.01252 ) 
234.5 
0.147 kg/s
0.287 
272.5
Note: We assumed p2  kPa since the exiting pressure was not given.
100
0.4 / 1.4

5.86

85
 
T2 423  
130
 

5.87

90 
a) T2 
1173  
800
 


374.6 K.

V22  2
40

1.0(423 
374.6). V2 
309 m/s
2
1000

0.4 /1.4

628.4 K. wT 
1.0(628.4 
1173) 
545 kJ/kg

90
.  2.525 kJ/kg  h2 
K.
682 kJ/kg
2
800
wT h2  1 ) 
(
h
(682 
1246) 
564 kJ/kg

b)  
3.152 
0.287 ln
2

5.88

a) s1 s2 
1.636, h1 
1180,

p2 
800 psia 
1449 kJ/kg
 h2 
s2 
1.636 

 
WC m(h2  1 ) 
h
6(1449 
1180)  / 550 2280 hp
778
Note: The factor 778 converts Btu to ft-lbf, and 550 converts ft-lbf/sec to hp.

98
b) TK solution:
Rule Sheet
Wdotin = mdot * (h2 - h1) ; First law, assuming negligible change in ke and pe and no heat
transfer
s2 = s1 ; for a reversible adiabatic process
; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher, ; and Kell, Hemisphere
Publishing Corp., 198

Variable Sheet
Input

Name

Output

Unit

`

300

1

800
1.64

6

5.89

T1
p1
h1
s1
x1
phase1
T2
p2
h2
s2
x2
phase2
Wdotin
mdot

67
1180
1.64
'SAT
888
1450

F
psi
B/lbm
B/(lbm*R)

F
psi
B/lbm
B/(lbm*R)

'mngless
'SH
2280

hp
lbm/s

Comment
Thermal Sciences, Potter & Scott
*Stm8e.tkw Steam, 1-8 States, English units
P5-88.tkw
Problem 5.88
Temperature
Pressure
Enthalpy
Entropy
Quality
Phase
Temperature
Pressure
Enthalpy
Entropy (transfer value to input)
Quality
Phase
*THUNITS.tkw Units for thermo
Power input to compressor
Mass flow rate

s2 s1 
7.168 
0.649 x2 (7.502). x2 
0.869
 h
h2  
192 0.869(2393) 2271 kJ/kg. WT m 2(3658 
2271) 
2774 kW

5.90

a) s2 s1 
1.681 
0.175 x2 (1.745). x2 
0.863

h2  
94 0.863(1022) 
976 Btu/lbm. wT  
h 1512  
976 536 Btu/lbm
 3000  / 778
W
550
wactual  T 

382 Btu/lbm
 20, 000 / 3600
m
w
382
  actual 

0.713 or 71.3%
T
ws
536

99
b) TK solution:
Rule Sheet
;State 1 = turbine throttle state. State 2 = Ideal (isentropic turbine exhaust state. State 3 = actual
turbine exhaust state
wi = h1 - h2
; first law for ideal turbine with negligible changes in ke and pe
s2 = s1
; for isentropic turbine. Note that the rule below for a state identified by p2
and ;s2 in model Stm8e.tkw is modified so that it is unnecessary to transfer value of s2 from
output to input manually..
if and (given('p2),known('s2)) then call pands(p2,s2;T2,h2,v2,x2,phase2)
wa = Wdot/ mdot ; actual turbine work
etat = wa / wi ; definition of turbine efficiency
; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher,
; and Kell, Hemisphere Publishing Corp., 1984. Stm8e.tkw

Input

Name

Output

`

1000
800

2

2

T1
p1
h1
s1
x1
phase1
T2
p2
h2
s2
x2
phase2
T3
p3
h3
s3
x3
phase3

wi
wa
3000 Wdot
20000 mdot
etat

1510
1.68
'mngless
'SH
126
976
1.68
0.863
'SAT

536
382

0.712

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8e.tkw Steam, 1-8 States, English
P5-90.tkw Problem 5.90
F
Temperature
psi
Pressure
B/lbm
Enthalpy
B/(lbm*R) Entropy
Quality
Phase
F
Temperature
psi
Pressure
B/lbm
Enthalpy
B/(lbm*R) Entropy
Quality
Phase
F
Temperature
psi
Pressure
B/lbm
Enthalpy
B/(lbm*R) Entropy
Quality
Phase
*THUNITS.tkw Units for thermo
B/lbm
Work of ideal turbine
B/lbm
Work of actual turbine
hp
Power output of actual turbine
lbm/h
Mass rate of flow
Turbine efficiency

100
5.91

s2 s1 
7.839 
0.832 x2 (7.077). x2 
0.990. h1 
3694 kJ/kg
 3.5(3694 
h2 251 
0.990(2358) 2585 kJ/kg. WT 
2585) 
3880 kW

5.92

T1 600
C


3677,
 h1 
s2 s1 7.435 
 

 0.198 kg/s
WT m(h1  2 ). 200 m(3678 
h
2666). m 
b) TK solution:
a) h2 2666, x2 
1.0,

Rule Sheet
Wdot = mdot * (h1 - h2) ;
First law, assuming negligible change in ke and pe
s1 = s2
; for isentropic turbine. Note that the rule below for a state identified by T1 and s1 in
;model Stm8e.tkw is altered to make it unnecessary to transfer value of s1 from output to input.
if and (given('T1),known('s1)) then call Tands(T1,s1;p1,h1,v1,x1,phase1)
; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher,
; and Kell, Hemisphere Publishing Corp., 1984.
Stm8si.tkw

Input

Name

Output

`

600

T1
p1
h1
s1
x1
phase1
T2
p2
h2
s2
x2
phase2

80

1

200

5.93

Wdot
mdot

3530
3680
7.43
'mngless
'SH
93.5
2670
7.43
'SAT

0.197

Variable Sheet
Unit
Comment
Thermal Sciences, Potter & Scott
*Stm8si.tkw Steam, 1-8 States, SI uniits
P5-92.tkw Problem 5.92
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K)
Entropy
Quality
Phase
C
Temperature
kPa
Pressure
kJ/kg
Enthalpy
kJ/(kg*K)
Entropy
Quality
Phase
*thunits.tkw
Units for thermo
kW
Power output
kg/s
Mass rate of flow

h1 
1984 kJ/kg, s2 s1 
6.710 
0.261 x2 (8.464). x2 
0.762. h2 a 
2534
2923-2534
Then h2 s 73.5 
.762(2460) 
1948 kJ/kg. 

.399 or 39.9%
2923 
1948

5.94

a) h1 
1474, s1 s2 
1.759 
0.2198 x2 (1.6426), x2 
0.937
h2 s 
120.9 
0.937(1006) 
1064. wT 
0.85(1474 
1064) 
348 Btu/lbm
 
 348. m 
 6.09 lbm/sec
b) W mw . 3000  / 778 m 
550
T

T

101
5.95

The efficiency is the actual kinetic energy increase divided by the maximum possible
increase:
 a (V22  12 )a
KE
V

 2
 s (V2  12 ) s
KE
V
0.2857

T2 s

 
p
1 2 
T
p1 

0.2857

100
 
293 
 
115
 

281.5 K

V22  12  p (T2  1 )  2  
V
c
T
10 2 1000 
(281.5 
293).
1502  2
10
 2
0.97
152  2
10
5.96

or

V2  m/s
152

97%

The 1st law:
V22  12 2(h1  2 ) 2 
V
h
(2874  2 ) 
h
1000
.
To find h2 we use s2 = s1 = 7.759 kJ/kg K and p2 = 100 kPa. Therefore h2 = 2841 kJ/kg.
(V 2  2 )
V
V22  2
20
 22 12 a .
0.85 
.
V2 
238 m/s
2
(2874 
2841) 
1000
(V2  1 ) s
V

102

More Related Content

What's hot

Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Yuri Melliza
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problemsYuri Melliza
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)Yuri Melliza
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
Thermodynamics t3
Thermodynamics t3Thermodynamics t3
Thermodynamics t3zirui lau
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
 
ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1Yuri Melliza
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Catherine Maria Centanaro Chavez
 
Thermodynamics t2
Thermodynamics t2Thermodynamics t2
Thermodynamics t2zirui lau
 
Thermodynamic assignment 2
Thermodynamic assignment 2Thermodynamic assignment 2
Thermodynamic assignment 2Lahiru Dilshan
 
Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Aaba Tambe
 
Thermo problem set no. 1
Thermo problem set no. 1Thermo problem set no. 1
Thermo problem set no. 1Yuri Melliza
 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)Mike Mentzos
 
Open and closed thermodynamic system
Open and closed thermodynamic systemOpen and closed thermodynamic system
Open and closed thermodynamic systemphysics101
 

What's hot (20)

Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC
 
Ideal gas-processes
Ideal gas-processesIdeal gas-processes
Ideal gas-processes
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problems
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
Thermodynamics t3
Thermodynamics t3Thermodynamics t3
Thermodynamics t3
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
 
Thermodynamics t2
Thermodynamics t2Thermodynamics t2
Thermodynamics t2
 
NASA 2004 PP
NASA 2004 PPNASA 2004 PP
NASA 2004 PP
 
Thermodynamic assignment 2
Thermodynamic assignment 2Thermodynamic assignment 2
Thermodynamic assignment 2
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1Chapter 5 thermodynamics 1
Chapter 5 thermodynamics 1
 
Thermo problem set no. 1
Thermo problem set no. 1Thermo problem set no. 1
Thermo problem set no. 1
 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
 
Open and closed thermodynamic system
Open and closed thermodynamic systemOpen and closed thermodynamic system
Open and closed thermodynamic system
 
Unit3
Unit3Unit3
Unit3
 

Similar to thermal science Ch 05

Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Pankaj Nishant
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2Yuri Melliza
 
Counter flow
Counter flowCounter flow
Counter flowqusay7
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008rhysemo
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008rhysemo
 
11. pyschrometrics copy
11. pyschrometrics copy11. pyschrometrics copy
11. pyschrometrics copyRafeeq Ahmed
 
Tablas termodinamica completas_cengel
Tablas termodinamica completas_cengelTablas termodinamica completas_cengel
Tablas termodinamica completas_cengelSol Engene
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)nhalieza
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10Malaysia
 
Mechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualMechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualGloverTBL
 
Thermodynamics Hw#4
Thermodynamics Hw#4Thermodynamics Hw#4
Thermodynamics Hw#4littlepine13
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercoolingCik Minn
 
UNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdfUNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdfYOGESH AHIRE
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYssuser5a6db81
 
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...Komandur Sunder Raj, P.E.
 

Similar to thermal science Ch 05 (20)

Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]
 
Thermodynamics, part 6
Thermodynamics, part 6Thermodynamics, part 6
Thermodynamics, part 6
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2
 
Counter flow
Counter flowCounter flow
Counter flow
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
 
11. pyschrometrics copy
11. pyschrometrics copy11. pyschrometrics copy
11. pyschrometrics copy
 
Tablas termodinamica completas_cengel
Tablas termodinamica completas_cengelTablas termodinamica completas_cengel
Tablas termodinamica completas_cengel
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10
 
Mc conkey 10-pb
Mc conkey 10-pbMc conkey 10-pb
Mc conkey 10-pb
 
Mechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualMechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manual
 
Thermodynamics Hw#4
Thermodynamics Hw#4Thermodynamics Hw#4
Thermodynamics Hw#4
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercooling
 
UNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdfUNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdf
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab
 
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
 
Ch.10
Ch.10Ch.10
Ch.10
 

Recently uploaded

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 

thermal science Ch 05

  • 1. FIVE The Second Law of Thermodynamics 5.1FE D 5.2FE D 5.3FE A T 283   L  1 1  0.05667. max TH 300 5.4FE C  T 293 W 10   L   1 1  0.3805   .  W  10 TH 473 QL   QL  5.5FE B 5.7FE A  16.3 kW QL  C 5.6FE T 293 COP  H   7.325. TH  L 293  T 253 Q 20 COP  L   2. W 10 T 293 From Eq. 5.11, COP  L   2. TH  L TH  T 293 5.8FE C T 293 Use Eq. 5.10: COP  H   7.325. TH  L 293  T 253 Q 2000 COP  7.325  H  . W W 5.9FE A TH  439.5 K W  273 kJ/hr T 293   L   1 1  0.214 TH 373 5.10FE C T2 573  1 0.717  ln  0.481 kJ/K T1 293 5.11FE C   v ln S mc 5.12FE D   v (T2  1 )   W mc T 10 0.717  (356.6  773)  2986 kJ k k 1/   p where T2  1  2  T p 1  5.13FE D 0.2857 400    773  6000    356.6 K The heat gained by the ice is lost by the water:  melt  i  w  p , w  w . (We h m m c T assume not all the ice melts.) The entropy change is: T Q 5.02  333 273  i  S w   w c p , w ln 2  S  m   20 4.18  ln  0.213 kJ/K Ti 293 273 293 72
  • 2. 5.14FE A The final temperature is 0 The heat lost by the iron is: C. Q  Fe c p (T1  2 )   m T 10 0.448   300 1344 kJ   Fe c p ln S m T2 Q 273 1344    10 0.448  ln   0.881 kJ/K T1 Tice 673 273 5.15FE C k k 1/ 5.16FE D 5.17FE D   p 2000   First, find T2: T2  1  2  T   673  1066 K .  p 400  1  With Q = 0:   v (T2  1 )   W mc T 2 0.717  (1066  673)  kJ 563 0.2857 State 1 is at the inlet and state 2 at the outlet. Use enthalpies found in Tables C.3 and C.2: wT  1  2  h h 3658  2637  1021 kJ/kg 5.18FE C State 2 at the same entropy as state 1: is s2 s1  7.1677  1.0259  2'  x 6.6441. h2'  317.6  0.9244  2319  2462 kJ/kg. x2'  0.9244 wT ,max  3658  2462  1197 kJ/kg 5.19FE B Ish t pr ue f aoi t n on i T b C2 t t e e t o vpr ao fud n al . ’ e m ar zi e . 5.20FE: A wT ,actual 1020    0.85 wT ,isentropic 1200 5.1 30 000 / 3600 output  COP  . 4 . W 2.083 kW or 2.79 hp  input W 5.2 output 75000 / 3600 COP    5.21 input 4 5.3  T 500 2545  W 10    H   1 1  0.256. QH    400 Btu/hr 99, TL 672  0.256 5.4 output 500   0.3 input 100  6000 / 3600 5.5 V   100 1000 / 3600 27.78 m/s 1 1   1.23 27.782   2 0.28  27.78 V V Drag power 2  2 ACD  2    0.519  Inputpower W 1 100  1000   10 3    740 9000 13 3600 73
  • 3. 5.6 A Kelvin-Planck violation is sketched as the first block in the figure below. The dashed box encloses a refrigerator which is a violation of the Clausius statement: QH1 QH 1  . QH 2   L  H 1 W W Q Q Let QH 2  H 1  H Q Q Then QL  QH with no work required. This is a violation of the Clausius statement of the 2nd law. QH2 W QL 5.7 No. It is not operating on a cycle. 5.8 QH1 QH2 Impossible. Assume WR  C . Then (QL ) net  (QH ) net . W WC WR QL1 5.9 Assume WR  C . Then (QL ) net  (QH ) net . W QL2 Impossible. It violates the Clausius statement. The maximum temperature drop for the seawater is 17   T Q mc  20  4.18   17 1421 kW H p The efficiency of the proposed engine is  W 100    0.0704 or 7.04%  Q 1421 The efficiency of the Carnot engine would be T 283   L   1 1  0.0567 or 5.67% TH 300 T enet ’c i ii ps b s c iecesh C roe iciency. h i n r lm sm os l i etxed t a tf v os a ie n e n f 5.10 The maximum possible efficiency is the Carnot efficiency: T 293   L   1 1  0.2038 TH 368 assuming the water is rejected at atmospheric temperature. Then   T 0.2 4.18    Q mc    (95 20) 62.7 kW H Then p   0.2038  Wmax  QH  62.7  12.8 kW 74
  • 4. 5.11 T 473 a)   L   1 1  0.679 TH 1473 QL T 473 b) COP   L   0.473 QH  L TH  L 1000 Q T QH T 1473 c) COP   H   1.473 QH  L TH  L 1000 Q T 5.12 First, we find the power produced: 80  1000  Q W    40  QL  17.78 kW H 3600  W 17.78 283   0.4444   . TH  1 509.4 or 236.4 C  40 TH QH 5.13 Let T be the unknown intermediate temperature. Then T 560   1 and    1 1 2 1060 T It is given that   2   . Substitute and find  0.2 2 1 T  560  1    T 2  T  1.2 1 . 212 712,300  T  R or 285F 0. 745 1060 T   5.14 q T 20   L   0.6.  L 0.4 1 1 qH 50 TH For the adiabatic process (see Fig. 5.8) k 1 TL  2  v v   .  2  1/ 0.4  0.4 0.1012  TH  3  v v3 Then v2  0.1012 v3  0.1012   10 1.012 m 3 /kg. The high temperature is then pv 200  1.012 TH  2 2   705 K or 432.2 C R 0.287 The low temperature is TL 0.4TH 0.4  705.2 282.1 K or 9.1 C 5.15 5.16 The maximum possible efficiency is T 293 output 43  0.746   L   1 1  0.75.     0.77. Impossible actual TH 1173 input 2500 / 60 T 510 a)   L   1 1  0.0642 or 6.42% TH 545 QH T 545 b) COP   H   15.57 QH  L TH  L 545  Q T 510 75
  • 5. 5.17 T T T    1 ,    2 ,    1    1 )(1  2 )  1  2  1 1 1 1 1 (1     2 1 2 3 T2 T3 T3 As an example let T1  C, T2 200 and T3   Then 100 C, 300 C. 373 473 373   1  0.2114,    1  0.1745,    1  0.349 1 2 3 473 573 573  0.2114  0.1745  0.2114  0.1745  0.349 3 or 5.18 T 273  1 L  0.75. TH   1092 K engine   TH 1 0.75 T 273 COP  L   0.333 TH  L 1092  T 273 5.19 T 313   2 . 1  2   . T22 773   1 313. T2 492 K or 219 C 1 773 T2 5.20 T 293 T COP  L .  . T 2  138600 or T  372 K =99 C TH  L T  T 293 473  T 5.21 pv 200  0.03 20.9 TL  4 4   20.9 K.   1  0.956 or 95.6% R 0.287 473 w  qH 0.956  28.7 kJ/kg  30 5.22 p3 V3 15   /1728 144 250   586.3R mR 0.01  53.3 400   /1728 144 25 TH   1173R 0.01  53.3 586   1 0.500 or 50% 1173  p  p W  H  L mR H ln 1  L ln 3  Q Q T T p2 p4   Refer to Fig. 5.7: TL  300 15   0.01  53.3  1173ln  ln 586  ft-lbf 177 170.2 26.44    where k / k 1   T p2 p3  2  T 3  3.5 3.5 1173  586      15 170.2 psia, p4   300    26.44 psia 586  1173    76
  • 6. 0.4 /1.4 5.23 1   TL 600   15   273.4 273.4 K.   1  0.544 600 3.5 0.287  273.4 273.4  v3   0.7847 m 3 /kg. p4  4698  300 kPa    100 600  3.5 600  v p2   100  1566 kPa. p1 p2 2  1566   3 4698 kPa   273.4  v1  p p 4698 100   wnet RTH ln 1  L ln 3  RT 0.287  ln 600  273.4 ln  kJ/kg 103 p2 p4 1566 300    5.24 T 530 COPpump  H  26.5 TH  L 530  T 510  QH 75, 000  72,170 Btu/hr   . QL    75, 000  Q Q Q H L L    QL mwater c p  . 72,170    T mwater 4.18  12. mwater  6014 lbm/hr  Q 75, 000  COP  H . 26.5  . W 2830 Btu/hr or 1.11 hp   W W 5.25 5.26  1800 / 60 T Q 293  4.61 kW or 6.18 hp COP  H   6.511  H  . W    TH  L 293  T 248 W W  T 2  1800 QL   (296  L ) T 60 20  ( 25) 3 2 (296  L ) T  TL QL TL COPac   .  3 . TL2  TL  620  599 87 0  TH  L W T 296  L T 4.61  W 4.61 kW. TL  345 K or 72 C 5.27 5.28  Q 500 / 60 a) COPcool  L  2.36  550 W 5  / 778  500 / 60   / 778 Q 5 550 b) COPheat  H   3.36  5  / 778 550 W 5 Q T 10 2  10 6 COPref  L  L .  . W  1465 kJ W TH  L T W 293    2 10 6 77
  • 7. 5.29 5.30 T 255 COPmax  L   6.71 TH  L 293  T 255  3000 / 60 Q COPactual  L   3.73. Yes, it's possible  0.746 W 10   (Q ) 278 COP1   13.9  L 1  298  278 W1  (Q ) 253 COP2   6.325  L 2 .  298  253 W  W But W2   1 2   (QL ) 2 (QL )1 12   0.455   000   . (QL )2  0.455(QL )1  5 1.055  kJ/s 8 6.325 13.9 360 5.31  100 T 373  W   L   1 1  0.707. QH    141.4 kW. TH 1273  0.707  Q W  QL     141.4  41.4 kW 100 H  t Q  141.4   20 60  H  H  S  133.3 kJ/K TH 1273  t Q  41.4   20 60 L  L  S  133.2 kJ/K TL 373  net  S 133.2  133.3  kJ/K which is zero except for round-off error. 0.1 5.32 5.33 5.34 5.35 Q Q  100 100 a)  R  R  S  0.0932 kJ/K. b)  S  S  S  0.341 kJ/K TR 1073 TS 293 Q 200 COP  L . 10  . W 20 kJ. QH 220 kJ W W  200 220 a)  L  S  0.76 kJ/K and b)  H  S 0.76 kJ/K 263 289.3 263 where COP   10 and TH 289.3 K. TH  263  50, 000 / 3600 Q 530 COP  H  4.91  . TL 422.1 R  4  / 778 550 530  L T W 50, 000  6 1/  39,820  6 1/ S  S  15.72 Btu/  and  L  R S  15.72 Btu/  R 530 422.1  Q W  where QL     50, 000   4 (550 / 778)  3600  39,820 Btu/hr. H From Problem 5.28 W  1465  0.00001  1465 kJ. 1465 kJ. QH  1465   10 5  H  S  kJ/K and  S  5 S  kJ/K 5 293 2  10 6 78
  • 8. 5.36 T v 0  v ln 2  ln 2 c R T1 v1  / cv R   T v or ln 2   2  ln T1 v 1  T R v or ln 2   ln 2 T1 c v v1 k  ( 1) R T   v But   (see Eq. 4.32).  2  2  k 1  cv T1  1  v To show Eq. 5.29, use Eqs. 5.28: (k k 1)/ k 1 1  2  p v      v p 2   1  (k 1) p   v  2  1  p1  2  v . k 1   v  1 .  v 2  k k 1 k   v  1  v 2  p1 V 1 200  0.8  278.7 K mR 2 0.287  T p  773  m p ln 2  ln 2  2   S c R  1.0 ln 2.04 kJ/K p1  278.7  T1   5.37 T1  5.38 mRT1 V1 p1 1/ k and V 2   p V 1  1  p 2  0.2  0.287  313 a) V 1  =0.1198 m3 , 150 1/1.4 V 0.2  0.1889  313 b) V 1  =0.0788 m3 , 150 k k 1/ 5.39 5.40   p T2  1  2  T p 1  0.4 /1.4 2000     520  14.7    0.0445 m3 1/1.289 V 0.2  0.2968  313 c) V 1  =0.1239 m 3 , 150 0.2  4.124  313 d) V 1  =1.769 m3 , 150 2 150    0.1198   600   2 150   0.0788   600   2 150    0.1239   600    0.0269 m3 1/1.4 V  0.0460 m3 1/1.409 V 2 150    1.769   600    0.246 m3 2117R or 1657 F  p T v    v ln 2  ln 2  S m c R , T2  1 2 since V  T const  T1 v1  p1   1500 600 a)  2  S 0.717 ln 2.31 kJ/K since T2   300  1500 K 300 120 1500 600 b)  2  S 0.653ln 2.10 kJ/K since T2   300  1500 K 300 120 1500 600 c)  2  S 0.745ln 2.40 kJ/K since T2   300  1500 K 300 120 1500 600 d)  2  S 10.08ln  32.4 kJ/K since T2   300  1500 K 300 120 79
  • 9. 5.41 Q  mRT ln W  mc p ln S 5.42 p1 p1 V 1 p 6000  RT1 ln 1  6000    ln 500 10 6  10.2 kJ p2 p2 200 RT 1 T2 p V 1 p2 6000    500 10 6 200 1 ln  ln  9.51 kJ/K T1 T1 p1 1073 6000  T p V1 v m 1 ,   v ln 2  ln 2 S m c R  RT1 T1 v1  27.2   144 10 a) m   1.592 lbm, 53.3  470 27.2   144 10 b) m  2.42 lbm, 35.1  470 27.2   144 10 c) m   1.54 lbm, 55.15  470 27.2   144 10 d) m   0.111 lbm, 766.4  470 5.43 5.44 a) b) c) d) 5.45  T   mcv ln 2  T1  100  0.349 Btu/  R 27.7 100  2.42  S 0.156 ln  0.485 Btu/  R 27.7 100   S 1.54  0.178ln  0.352 Btu/  R 27.7 100   S 0.111  2.40 ln  0.342 Btu/  R 27.7   S 1.592  0.171ln 400  0.2  mcv  .   W T ( 200)   0.717(T2  313). T2  626.2 K 0.287  313  T v  T 400  .2 626.2   v ln 2  ln 2  mcv ln 2  S m c R   .717 ln  0.443 kJ/K  T1 v1  T1 .287  313 313    T p1 V 1 V2 ,  m v ln 2 R ln S c  RT1 V1  T1 80  4 400 V2  3 m  3.72 kg, 5.2  3.72  ln .717  .287 ln .   V 2 254 m .287  300 300 4   80  4 400 V2  m  5.64 kg, 5.2  5.64  .653ln  .189 ln . 195 3  V 2  m .189  300 300 4   80  4 400 V2  3 m  3.59 kg, 5.2  3.59  .745ln  .297 ln .   V 2 255 m .297  300 300 4   80  4 400 V2  3 m  .259 kg, 5.2  .259  10.08ln  4.12 ln .   V 2 259 m 4.12  300 300 4   m p1 V 1 , V 1  r2h   2     0.1 0.2 0.00628 m3 , Q mc p  T RT1 T T V 1 2 , W m p ( V 2 V 1 ),  mc p ln 2 S T1 T1 m V 2 80
  • 10. 200  0.00628 a) m   0.0137 kg, 9  0.0137  T2  1.0( 320). T2  978 K 0.287  320 978 V2 .00628  .0192 m3 , W  .0137  200(.0192  .00628)  0.0354 kJ 320 978  0.0137  ln S 1.0  0.154 kJ/K 320 200  0.00628 b) m   0.0208 kg, 9 0.0208  0.824(T2  320). T2  843 K 0.189  320 834 V2 .00628  .0164 m3 , W  .0208  200(.0164  .00628)  0.0420 kJ 320 834  0.0208  S 0.842 ln  0.168 kJ/K 320 200  0.00628 c) m   0.0132 kg, 9 0.0132  1.04(T2  320). T2  976 K 0.297  320 976 V2 .00628  .0191 m 3 , W  .0132  200(.0191  .00628)  0.0340 kJ 320 976  0.0132  ln S 1.04  0.153 kJ/K 320 200  0.00628 d) m  0.000953 kg, 9 0.000953  14.21(T2  320). T2  984 K 4.124  320 984 V2 .00628  .0193 m3 , W  .000953  200(.0193  .00628)  0.00258 kJ 320 984  0.000953  S 14.21ln  0.0152 kJ/K 320 5.46 q w  ln RT p2 , p1   ln s R a) q w  0.287  ln 300 p2 p1 4000  kJ/kg 377 50 4000  1.26 kJ/kg  K 50 4000 b) q w  0.189  ln 300  kJ/kg 248 50 4000   s 0.189 ln  0.828 kJ/kg  K 50   s 0.287 ln c) q w  0.297  ln 300   s 0.297 ln 4000  kJ/kg 390 50 4000  1.30 kJ/kg  K 50 81
  • 11. d) q w  4.124  ln 300   s 4.124 ln 5.47 q  p , c T 4000  5420 kJ/kg 50 4000  18.1 kJ/kg  K 50   p ln s c T2 T1 1360  0.231 Btu/lbm- R 520 1360 b) q  0.202  (900   Btu/lbm,   60) 170 s 0.202  ln  0.194 Btu/lbm- R 520 1360 c) q  0.248  (900  208 Btu/lbm,   60) s 0.248  ln  0.238 Btu/lbm- R 520 1360 d) q  3.42  (900  2870 Btu/lbm,   60) s 3.42  ln  3.29 Btu/lbm- R 520 a) q  0.24  (900  202 Btu/lbm,   60) s 0.24  ln 5.48 5.49 p1 V 1 100  2 50  2.38 kg,    S 2.38 0.287 ln  0.473 kJ/K RT1 0.287  293 100 V1 2 where p2 p1    kPa . 100 50 V2 4 m a) m  p1 V 1 100  2  2.11 kg, RT1 0.287  330 Q  mcv  W T  ( 400) 2.11  .717(T2  330). T2  594 K.  2.11  S .717 ln 594  0.889 kJ/K 330 100  2 b) m   kg, Q  mcv    3.2 W T 3.2 0.653(T2  300). T2  K 511 0.189  330 511    S 3.2 .653ln  0.914 kJ/K 330 100  2 c) m  2.04 kg, Q  mcv  2.04  W T .745(T2  300). T2  593 K .297  330 593  2.04  S .745ln 0.891 kJ/K 330 100  2 d) m   .147 kg, Q  mcv   W T .147  10.1(T2  300). T2  600 K 4.12  330 600   S 0.147  10.1ln  0.886 kJ/K 330 82
  • 12. 5.50 p2 2000  1.2147   165. Interpolate from Table F.1E: p1 14.7 Compare with the constant specific heat prediction: pr 2 pr1 k k 1/   p T2  1  2  T p 1  5.51 0.2857 2000     520  14.7   T2  1974R. 2117R, an error of 7.24%. p1 V 1 200  2  4.36 kg. Q  m . W u RT1 0.287  320   40 40 a) 500    4.36  10 60 0.717(T2  320). T2  787 K 1000 T 787  mcv ln 2 4.36  S 0.717  ln 2.81 kJ/K T1 320 b) From Table F.1 u1 228.4 kJ/kg and   1.767 kJ/kg  K. 1   40 40 500    4.36(u2  10 60 228.4). u2  563 kJ/kg . 1000 T 764 T2  764 K and  2.667. Then p2 p1 2 200  478 kPa 2 T1 320 m 478    4.36  S 2.667  1.767  0.287 ln 2.83 kJ/K 200    5.52 a) Q W mcv  . T k / k 1 200, 000 2  0.171(T2  520). T2  1272R or 812 F 778   T 1272   p2 p1  2    16 366 psia   T 520   1  200, 000 b) 2 u2  ( 88.62). u2 217.2 Btu/lbm. T2  1245R or 785 F 778 27.5 pr1  1.215, p2 27.5.  p2   16  362 psia 1.215 5.53 3.5 600    200 10 6 V2 1000 m  0.001427 kg . T2  1 T 293   1465 K 0.287  293 V1 200 a) Q mc p   T 0.001427  1.0(1465  293)  1.67 kJ b) Find the enthalpies in Table F.1: Q m(h2  1 ) 0.001427  h (1593.7  293.2)  1.86 kJ 83
  • 13. k k 1/ 5.54   p 2000   a) T2  1  2    T 300 670.2 K   p 120  1  W   0.2 0.717(670.2  300)  kJ 53.1 2000 b) (  1.702)  0.287 ln .  2.51 kJ/kg  u2 481 kJ/kg K. 2 2 120 W   0.2 (481  214)  53.4 kJ k k 1/ 5.55   p a) T2  1  2  T p 1  0.2857 0.2857 500      500 20   K. W   199 4 .717(199  500)  863 kJ 20 .   1.296. T2 200 K 2 500 W   4 (143  359)  864 kJ b)   2.220  0.287 ln 2 5.56 a) s1 2.047  0.85(4.617)  5.971, h1   721 0.85(2048) 2462 p2   800 8.877  s2  h2 4462    s 8.877  5.971 2.91 kJ/kg  and T2   K 829 C b) TK solution: q h2  1 . 2000 h2  h 2462. h2 4462. Rule Sheet ; This is a closed system, so the first law is q = u2 - u1 + p2*v2 - p1 * v1 or q = h2 - h1 dels = s2 - s1 ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George S. Kell, Hemisphere Publishing Corp., 1984. ; STEAM STEAM8SI.TKW Variable Sheet Status Input Name Output Unit ` 800 0.85 800 T1 p1 h1 s1 v1 x1 phase1 T2 p2 h2 s2 170 2460 5.97 0.204 'SAT 927 4460 8.87 C kPa kJ/kg kJ/(kg*K) m^3/kg C kPa kJ/kg kJ/(kg*K) 84 Comment Thermal Sciences, Potter & Scott P5-56.tkw Problem 5-56 *STEAM8SI.TKW Steam, 1-8 States, SI Units Temperature Pressure Enthalpy Entropy Specific Volume Quality Phase Temperature (Enter a guess value.) Pressure Enthalpy Entropy
  • 14. 2000 5.57 v2 x2 phase2 q dels 0.691 'mngless 'SH 2.9 m^3/kg kJ/kg kJ/(kg*K) Specific Volume Quality Phase Heat transfer Entropy change p1 600 psia, T1  2 486F, s1  T 0.672  0.4(0.774)  0.982 u1  506.6  0.4(608.4)  750 kJ/kg, v1  0.0201  0.4(0.7501)  0.320 m 3 / kg p2  300 psia  1.56, u2  1153, v2  1.73  s2  T2    486 F     S m s 2 (1.56  0.982)  1.158 Btu/lbm- R Q  m u W 600  144(0.77  0.32)   450 144(1.733  0.77)  2 (1153  750)   2  1066 Btu 778 Note: The work was estimated using graphical integration (a straight line was assumed between the saturated vapor point and state 2). 5.58 a) v1  f at 20 w p( v2  1 )  v C. v 400(0.7726  0.001)  309 kJ/kg q  2  1  2964.4  u u w 83.9   309 3189 kJ/kg or q h2  1  h 3273   84 3189 kJ/kg  s2  1  s s 7.899  0.2965 7.604 kJ/kg  K b) TK solution: Rule Sheet ;Assume that the water is in a closed system. The first law is q = u2 - u1 + p2*v2 - p1 * v1 or q = h2 - h1 dels = s2 - s1 ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George S. Kell, Hemisphere Publishing Corp., 1984. ;STEAM STEAM8SI.TKW Variable Sheet Input Name Output Unit ` 20 400 T1 p1 h1 s1 v1 x1 phase1 84.2 0.293 0.001 'mngless 'CL C kPa kJ/kg kJ/(kg*K) m^3/kg Comment Thermal Sciences, Potter & Scott *STEAM8SI.TKW Steam, 1-8 States, SI Units P5-58.tkw Problem 5-58 Temperature Pressure Enthalpy Entropy Specific Volume Quality Phase 85
  • 15. 400 400 3270 7.9 0.773 'mngless 'SH q dels 5.59 T2 p2 h2 s2 v2 x2 phase2 C kPa kJ/kg kJ/(kg*K) m^3/kg 3190 7.6 kJ/kg kJ/(kg*K) Temperature Pressure Enthalpy Entropy Specific Volume Quality Phase *THUNITS.TKW Units for thermo Heat transfer per unit mass Entropy change V 6  10 3   0.001017  1 (7.671  x 0.001). x1  0.0002585 m 2 u1 251.1  0.0002585(2456.6  251.1) 251.7 kJ/kg Q 1000 Q m(u2  1 ) W . u2  1  251.7  u u  751.7 kJ/kg m 2 v2  1  v 0.003 m 3 / kg and u2  752 kJ/kg. Locate state 2 by trial-and-error: v1  Guess T2   : 0.003  170 C 0.0011 x2 (0.2428  0.001). x2  0.00786 751.7 718.3 x2 (2576.5  718.3). x2  0.0178 Guess T2  177 C: 0.003  0.0011 x2 (0.2087  0.0011). x2 0.00915  751.7 750.0 x2 (2581.5  750.0).  x2  0.00093  A temperature of 176 C is chosen. We interpolate to find 0.003 0.0011 x2 (0.2136  0.0011).  x2  0.00894. S 2 m( s f x2 s fg ) 2  (2.101  0.00894  4.518) 4.28 kJ/K 5.60 a) Q  m . m  m . 0.1(3674  W u h W u 1087)   W 0.1(3279  1082) W  kJ and   39 S 0.1(7.370  2.797)  0.457 kJ/K b) TK solution: Rule Sheet ;This is a closed system, so the work of a frictionless process is W = INT pdV, and for a ; constant pressure process this becomes W = m* p1 * (v2 - v1) delS = m* (s2 - s1) ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George S. Kell, Hemisphere Publishing Corp., 1984. ; STEAM8SI.TKW Variable Sheet Input Name Output Unit ` T1 250 C Comment Thermal Sciences, Potter & Scott *STEAM8SI.TKW Steam, 1-8 States, SI Units P5-60.tkw Problem 5-60 Temperature 86
  • 16. 4000 0 600 4000 0.1 5.61 p1 h1 s1 v1 x1 phase1 T2 p2 h2 s2 v2 x2 phase2 kPa kJ/kg kJ/(kg*K) m^3/kg 1090 2.8 0.00125 'SAT 3670 7.37 0.0988 'mngless 'SH W m delS 39 0.457 C kPa kJ/kg kJ/(kg*K) m^3/kg kJ kg kJ/K Pressure Enthalpy Entropy Specific Volume Quality Phase Temperature Pressure Enthalpy Entropy Specific Volume Quality Phase *THUNITS.TKW Units for thermo Work Mass of steam Entropy change of system u1 2507 kJ/kg, s1 s2  7.356  0.832 x2 (7.077). x2  0.922. u2 251  0.922(2205) 2284 kJ/kg W m(u1  2 ) 2(2507  u 2284) 447 kJ 5.62 2 a) v1    0.4 0.001  3.992 x1 . x1  0.1. Then s1  1.69 and u1  533 5 p2  MPa  5 570 kJ/kg. W m(u1  2 )  u 5(570  533)  kJ 185  u2  s2 s1  1.69  b) TK solution: Rule Sheet ;This is a closed system, so for an adiabatic process, W = U1 - U2 or W = m * (u1 - u2) ; First law v1 = V1/m ; Definition of specific volume s2 = s1 ; for an isentropic process ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, ; John S. Gallagher, and George S. Kell, Hemisphere Publishing Corp., 1984. ; STEAM8SI.TKW Variable Sheet Status Input Name Output Unit ` 40 T1 p1 h1 s1 75.9 550 1.69 C kPa kJ/kg kJ/(kg*K) 87 Comment Thermal Sciences, Potter & Scott *STEAM8SI.TKW Steam, 1-8 States, SI Units P5-62.tkw Problem 5-62 Temperature Pressure Enthalpy Entropy
  • 17. 0.4 5000 5 2 v1 x1 phase1 T2 p2 h2 s2 v2 x2 phase2 W m u1 u2 V1 m^3/kg 0.1 'SAT 136 577 1.69 0.00107 'mngless 'CL -190 534 572 C kPa kJ/kg kJ/(kg*K) m^3/kg kJ kg kJ/kg kJ/kg m^3 Specific Volume (transfer value to input) Quality Phase Temperature (starting guess needed) Pressure Enthalpy Entropy Specific Volume Quality Phase *THUNITS.TKW Units for thermo Work Mass Internal energy, state 1 Internal Energy, state 2 Specific volume, state 1 5.63 Q m  h 10(1150  8.02)  420 Btu.   11, S 10(1.757  0.016)  17.4 Btu/  R 5.64 The heat that enters the ice leaves the water: a) Assume that all the ice does not melt: 20       1.9 5 330 m 10 4.18(20). m  1.96 kg and T2   0C T Q T  mi (c p )i ln 2i  i  w (c p )w ln 2 w S m T1i Ti T1w 273 1.96 273     330 10 4.18  ln  0.064 kJ/K 253 273 293 b) Assume that all the ice melts:   5 1.9 ln 20       1.9 5 330 5 5 4.18(T2  40  0) 4.18(20  2 ). T2   T 8.0 C T Q T T  mi (c p )i ln 2i  i  iw (c p )w ln 2iw  w (c p )w ln 2 w S m m T1i Ti T1iw T1w   ln 5 1.9 5.65 273 5  330 281 281   5 4.18ln   40 4.18ln  0.378 kJ/K 253 273 273 293 5  /1728 1.2 mi  0.199 lbm, mw  lbm 1 0.01745 The heat that enters the ice leaves the water. Assume that not all of the ice melts: 0.199  0.49    melt      (32 0) m 143 1 1.0 (60 32). mmelt  0.178 lbm 492 0.178  143 492  0.199  S 0.49  ln    1 1.0 ln  0.166 Btu/lbm 460 460 520 88
  • 18. 5.66 T 293   L   1 1  0.489 or 48.9%. w qH  L  H   L   q T s T s 300 kJ/kg TH 573 300   s  1.071  5.705  1 . s1 4.634 kJ/kg  s K 573  293 s1 4.634  3.254 x1 (2.451). x1  0.563 5.67 a) For the cycle, the work output equals the heat input: W  . 500 (275.6  T s 45.8)( s2  3.027). s2  5.203 kJ/kg  K At 6 MPa 5.203  3.027 x2 (2.863). x2  0.760 b) TK solution: Rule Sheet ;The net work of a Carnot cycle is the enclosed area on a Ts diagram. The adiabatic ompression (process 1-2) is entirely within the saturated vapor region, so the specified pressures determine the upper and lower temperatures. w = (T2 - T1)*(s3 - s2) ; work = Ts diagram area s1 = s2 T3 = T2 ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and ; George S. Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw Input Name Output ` 10 3.027 6000 0 275.6 5.203 500 T1 p1 s1 v1 x1 phase1 T2 p2 s2 v2 x2 phase2 T3 p3 s3 v3 x3 phase3 w 45.83 4.637 0.317 'SAT 275.6 3.027 0.001319 'SAT 6000 0.02498 0.7603 'SAT Variable Sheet Unit Comment Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI Units P5-67.tkw Problem 5.67 C Temperature kPa Pressure kJ/(kg*K) Entropy (transfer value to input) m^3/kg Specific Volume Quality Phase C Temperature kPa Pressure kJ/(kg*K) Entropy m^3/kg Specific Volume Quality Phase C Temperature (transfer value to input) kPa Pressure kJ/(kg*K) Entropy (transfer value to input) m^3/kg Specific Volume Quality Phase *THUNITS.tkw Units for thermo kJ/kg 89
  • 19. 5.68 s1 2.046  0.15(7.077) 2.738 kJ/kg    K. s 6.664  2.738  3.93 kJ/kg  K wnet qnet   s T 3.93(170.4  60.1) 433 kJ/kg 60.1  273   1  0.249 or 24.9% 170.4  273 5.69 a) s4  0.704  0.2(7.372) 2.178 kJ/kg  s2  K. 5.704 kJ/kg  K qH  H    T s 573 (5.704  2.178) 2020 kJ/kg b) TK solution: Rule Sheet s3 = s2 s1 = s4 q12 = T1 * (s2 - s1) ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and ; George S. Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw Variable Sheet Input Name Output Unit Comment ` Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI Units P5-69.tkw Problem 5.69 300 T1 C Temperature p1 kPa Pressure s1 2.18 kJ/(kg*K) Entropy x1 Quality phase1 Phase 300 T2 C Temperature p2 8580 kPa Pressure s2 5.7 kJ/(kg*K) Entropy 1 x2 Quality phase2 'SAT Phase 50 T3 C Temperature p3 kPa Pressure s3 5.7 kJ/(kg*K) Entropy x3 Quality phase3 Phase 50 T4 C Temperature p4 12.3 kPa Pressure s4 2.18 kJ/(kg*K) Entropy 0.2 x4 Quality phase4 'SAT Phase *THUNITS.tkw Units for thermo q12 2020 kJ/kg 90
  • 20. 5.70 QL T q 253 COP   L   3.614  L where w  s T QH  L TH  L 323  Q T 253 w s1 s4 0.704  0.15(7.372)  1.81, s3 s2  5.704 kJ/kg  K  Q  s T 0.02  a) Wout   m  (5.704  1.81)(300   50) 19.5 kW net b) 5.704  0.704 x3 (7.372). 5.71 x3  0.678 a) A refrigeration cycle is a reversed power cycle. Heat is added to the R134a from 4 to 1 and rejected from 2 to 3: QL T q 253 COP   L   3.614  L where wnet  s T QH  L TH  L 323  Q T 253 wnet wnet    [50 ( 20)] [0.901  0.434]  32.7 kJ/kg qL COP  net  w 3.614  32.7  kJ/kg 118 s4 s3 0.434  0.0996 x4 (0.9332  0.0996). x4  0.401 c) TK solution: Rule Sheet q23 = h3 - h2 ; for the constant pressure process q41/ q23 = T4/T3 ; for a Carnot refrigerator s4 = s3 ; R134a tables based on 'Thermodynamic Properties of HFC-134a' ; DuPont Technical Information, which is based upon the Modified ; Benedict-Webb-Rubin equation of state. R134a8SI.tkw Variable Sheet Input Name Output Unit ` -20 50 1 50 T1 p1 s1 x1 phase1 T2 p2 h2 s2 x2 phase2 T3 p3 h3 s3 C kPa kJ/(kg*K) 1320 276 0.913 C kPa kJ/kg kJ/(kg*K) 'SAT 1320 124 0.442 C kPa kJ/kg kJ/(kg*K) Comment Thermal Sciences, Potter & Scott *R1348si.tkw, R134a, 1-8 States, SI units P5-71.tkw Problem 5.71 Temperature Pressure Entropy Quality Phase Temperature Pressure Enthalpy Entropy Quality Phase Temperature Pressure Enthalpy Entropy 91
  • 21. 0 x3 phase3 -20 T4 p4 0.442 s4 x4 phase4 q23 q41 'SAT 133 C kPa kJ/(kg*K) 0.402 'SAT -152 -119 kJ/kg kJ/kg Quality Phase Temperature Pressure Entropy (transfer value to input) Quality at beginning of heat addition process Phase *THUNITS.tkw Units for thermo Amount of heat rejected Amount of heat gained from refrigerated space 5.72 Refer to the numbers in Problem 5.12: QH QL 40   40 60 80 000     which verifies the inequality of Clasius. 0 TH TL 509.4 283 5.73 wnet  . 350  (250.4  s T s 75.9).  2.006 kJ/kg  s K qH  H   T s (250.4  273)(2.006)  1050 kJ/kg qL  L   T s (75.9  273)(2.006)  700 kJ/kg qH qL 1050 700    0.0002 which is essentially zero. TH TL 523.4 348.9 qH qL 30 1.326     . 0 TH TL 473 20.9 5.74 Using values from Problem 5.21: 5.75 a) Using values from Problem 5.66, we have qH qL 613.5 313.5 300     using qH  0,  613.5 kJ/kg. TH TL 573 293 0.489 b) TK solution: Rule Sheet ;Problem 5.66 eta = (T1 - T4) /T1 q12 = wnet/ eta q12 = T1 * (s2 - s1) ; the sought value of s1 is shown on the Variable Sheet Problem 5.75: The cyclic integral of deltaq/T = q12/T1 + 0 + q34/T3 + 0 , but q12/T1 = - q34T3; therefore , the cyclic integral of delta q/T = 0, as called for by the Clausius inequality for a reversible cycle. ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and ; George S. Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw Input Name Output ` 300 T1 C Variable Sheet Unit Comment Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI Units P5-75.tkw Problem 5.75 Temperature 92
  • 22. p1 s1 x1 T2 p2 s2 x2 T3 p3 s3 x3 T4 p4 s4 300 1 20 20 614 300 5.76 8580 eta q12 wnet 4.63 kPa kJ/(kg*K) 0.489 0.563 8580 5.7 C kPa kJ/(kg*K) C kPa kJ/(kg*K) C kPa kJ/(kg*K) kJ/kg kJ/kg Pressure Entropy (transfer value to input) Quality Temperature Pressure Entropy Quality Temperature Pressure Entropy Quality Temperature Pressure Entropy *THUNITS.tkw Units for thermo Thermal efficiency Heat input to cycle Net work of cycle a) mc (c p )c  c mw (c p ) w  w . 5  T T 0.093(200  2 )   T2  T 10 1.0( 50). T2  56.7  F T2 516.7  5 0.093ln  0.1138 Btu/  R (T1 )c 660 T 516.7  w mw (c p ) w ln 2   ln S 10 1.0  0.1305 Btu/  R (T1 ) w 510  c mc (c p )c ln S  universe  c  S w  S S  0.1138  0.1305  0.0167 Btu/  R b) TK solution: Rule Sheet ;mc * cc * (Tc - T2) = mw * cw * (T2 - T1) ; This is the first law applied to system of copper and ; water, under the assumption that there is no heat transfer. delSuniv = delSc + delSw delSc = mc* cc * ln(T2/Tc) ; from delSc = INT (delQ/T) = INT(m * cc*dT/T) delSw = mw * (s2 -s1) ; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher, ; and Kell, Hemisphere Publishing Corp., 1984. Stm8e.tkw Variable Sheet Input Name ` 50 0 T1 h1 s1 x1 phase1 Output Unit Comment Thermal Sciences, Potter & Scott *Stm8e.tkw Steam, 1-8 States, English units P5-76.tkw Problem 5.76 F Initial temperature of water 18.1 B/lbm Enthalpy 0.0361 B/(lbm*R) Entropy Quality 'SAT Phase 93
  • 23. T2 h2 s2 x2 phase2 56.6 F Final temp of water and copper (starting guess needed) 24.7 B/lbm Enthalpy 0.0489 B/(lbm*R) Entropy 0 Quality 'SAT Phase *THUNITS.tkw Units for thermo 5 mc lbm Mass of copper 0.092 cc B/(lbm*R) Specific heat of copper 200 Tc F Initial temperature of copper 10 mw lbm Mass of water delSuniv 0.0159 B/R Entropy change of the universe delSc -0.113 B/R Entropy change of the copper delSw 0.129 B/R Entropy change of the water 1 cw B/(lbm*R) Specific heat of water 5.77 a)  universe 0.264  S 0.156 0.104 Btu/  R 0.2 v1   m 3 /kg and from Tables C.1 and C.2 we observe that p2  MPa 0.1 2 2 and T1 212.4 s1  C, 6.342 kJ/kg  and u1 2600 kJ/kg . Since for a rigid volume K, trial-and-error provides v2  1 v At p2  MPa: v2  0.4 0.0011  0.2(0.4625  0.0011)  0.0934 At p2  MPa: v2  0.3 0.0011  0.2(0.6058)  0.122 Obviously, at v2  state 2 lies between 0.3 and 0.4 MPa. Interpolate: 0.1 0.1   0.122  p2   0.3 0.377 MPa   0.1   0.122  0.0934   Interpolate to find s2 and u2 : s2  1.753   0.2 5.166 2.786 kJ/kg  u2    K, 594 0.2 (2551  594)  986 kJ/kg Then Q W  (u2  1 ) 2  m u (986  2600)  3230 kJ (heat flows to surr.) 3230  universe msystem  S surr 2  S s  (2.786  6.342)   3.55 kJ/K 30  273 b) TK solution: Rule Sheet v1 = V1 / m ; Definition of specific volume v2 = v1 ; Volume of steam is constant Q12 = m * (u2 - u1) ;heat added to steam Q12 = - Qsurr delS = m* (s2 - s1) ; Entropy change of steam delSsurr = Qsurr/Tsurr ; entropy change of surroundings ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and ; George S. Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw 94
  • 24. Input Name ` 0.1 1 0.1 0.2 0.2 2 30 5.78 5.79 T1 p1 s1 v1 x1 phase1 T2 p2 s2 v2 x2 phase2 u1 u2 V1 m Q12 delS delSsurr Qsurr Tsurr delSuniv Variable Sheet Output Unit Comment Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI Units P5-77.tkw Problem 5.77 212 C Initial temperature of steam 1990 kPa Pressure 6.34 kJ/(kg*K) Entropy m^3/kg Specific Volume (transfer value to input) Quality 'SAT Phase 141 C Temperature 371 kPa Pressure 2.78 kJ/(kg*K) Entropy m^3/kg Specific Volume (transfer value to input) Quality 'SAT Phase 2600 kJ/kg Initial internal energy 985 kJ/kg Final internal energy *THUNITS.tkw Units for thermo m^3 Volume of steam kg Mass of steam -3230 kJ Heat added to steam -7.11 kJ/K Entropy change of steam 10.7 kJ/K Entropy change of the surroundings 3230 kJ Heat added to surroundings C Temperature of the surroundings 3.54 kJ/K Entropy change of the universe 30   144 6 T1  486.3R, T2  1459R , Q   1 0.24(1459  486.3) 233 Btu 1 53.3 1459 a)  air   S 1 0.24 ln  0.264 Btu/  R 486.3  233 b)  surr  S  0.156 Btu/  R 1460 c)  universe 0.264  S 0.156 0.104 Btu/  R 2 0.287  573 120 p1   164.5 kPa, T2   573 418 K 2.0 164.5 418 a)  air 2  S 0.717 ln  0.452 kJ/K 573 222 b) Q 2  0.717(573  418) 222 kJ.  universe  S 0.452   0.289 kJ/K 300 95
  • 25. 5.80 a) Q m  h 3(2793  852)  5821 kJ.  steam  S 3(2.331  6.433)  12.31 kJ/K 5821  universe  S 12.31   7.56 kJ/K 293 b) TK solution: Rule Sheet Q12 = m * (h2 - h1) ; from the first law, Q12 = U2 - U1 + W = m* (u2 - u1 + p1 * (v2 - v1) ; for a quasiequilibrium constant pressure process of a closed system delSuniv = delSsys+ delSsurr Q12 = -Q12surr delSsurr = Q12surr/Tsurr delSsys = m * (s2 - s1) ; Steam tables based on NBS/NRC Steam Tables by Lester Haar, John S. Gallagher, and ; George S. Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw Input Name Output ` 200 1 200 0 3 T1 p1 h1 s1 v1 x1 phase1 T2 p2 h2 s2 v2 x2 phase2 m delSuniv delSsys 1554 2793 6.431 0.1273 'SAT 1554 852.4 2.331 0.001156 'SAT 7.553 -12.3 delSsurr 20 19.85 Q12 Q12surr Tsurr -5820 5820 Variable Sheet Unit Comment Thermal Sciences, Potter & Scott P5-80.tkw Problem 5.80 C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy m^3/kg Specific Volume Quality Phase C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy m^3/kg Specific Volume Quality Phase kg Mass of steam in system kJ/K Entropy change of the universe kJ/K Entropy change of the system Entropy change of the kJ/K surroundings kJ Heat added to the system kJ Heat added to the surroundings C Temperature of the surroundings 96
  • 26. 5.81 s1  1.53  0.8(5.598)  6.008. u1  504.5  0.8(2025) 2124 kJ/kg p2  MPa 0.8  650 C, u 2  3389, s2  8.391  T2  v2  1  v .0011  .8(.8846)  .709  400   10 6 Q (3389  2124)  0.714 kJ 0.709 400   10 6  0.714  universe  S (8.391  6.008)   6.11   kJ/K 10 4 0.709 973 5.82 The enthalpy leaving the heater equals the enthalpy entering the heater:  1283    1.678 lbm/sec 262.2(8 ) ms  ms 8 48.1. ms    S S S  out in (8  1.678)  0.4273   8 0.0933  1.678  1.768  0.432 Btu/sec- R 5.83   a) Qt m(h2  1 )   2  h WT (2609.7  3658.4)  2000  97.4 kJ/s  Qsurr   QT 97.4 kJ/s  Q 97.4   m( S prod Sc.v. s2  1 )  surr   s 0 2(7.909  7.168)   1.80 kW/K Tsurr 303 b) TK solution: Rule Sheet Wdot = mdot * (h1 - h2) +Qdot ; first law for steady flow turbine with zero change in ke and pe Qdot = - Qdotsurr delSuniv = delSsys + delSsurr = 0 + delSsurr delSsurr = mdot* (s2 - s1) + Qdotsurr/Tsurr Input Name Output ` 600 6000 20 T1 p1 h1 s1 v1 x1 phase1 T2 p2 h2 s2 3660 7.17 0.0652 'mngless 'SH 60.1 2610 7.91 Variable Sheet Unit Comment Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI Units P5-83.tkw Problem 5.83 C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy m^3/kg Specific Volume Quality Phase C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy 97
  • 27. v2 x2 phase2 1 2000 2 0 7.65 m^3/kg 'SAT Wdot mdot Qdot delSuniv delSsys -98.3 0.001 kW kg/s kJ/s kJ/(K*s) kJ/(K*s) delSsurr 30 1.8 kJ/(K*s) Qdotsurr Tsurr 98.3 kJ/s C Specific Volume Quality Phase *THUNITS.tkw Units for thermo Poer output Mass rate of flow Rate of heat transfer to the system Rate of entropy increase of the universe Rate of entropy increase of the system Rate of entropy increase of the surroundings Rate of heat transfer to the surroundings Temperature of the surroundings 0.4 /1.4 5.84 T 323 100  p2 p1 2   100  118.3 kPa. T2   323  T1 273 118.3    308 K 1000  (323  308)  173.8 m/s V3  2c p (T2  3 )  2  T Note: The factor of 1000 converts kJ to J, so the units will work out. 0.4 /1.4 5.85 V22 100   T2    300 272.5 K.  1.0(300  272.5). V2  234.5 m/s 140 2 1000   100  m  ( 0.01252 )  234.5  0.147 kg/s 0.287  272.5 Note: We assumed p2  kPa since the exiting pressure was not given. 100 0.4 / 1.4 5.86 85   T2 423   130   5.87 90  a) T2  1173   800    374.6 K. V22  2 40  1.0(423  374.6). V2  309 m/s 2 1000 0.4 /1.4 628.4 K. wT  1.0(628.4  1173)  545 kJ/kg 90 .  2.525 kJ/kg  h2  K. 682 kJ/kg 2 800 wT h2  1 )  ( h (682  1246)  564 kJ/kg b)   3.152  0.287 ln 2 5.88 a) s1 s2  1.636, h1  1180, p2  800 psia  1449 kJ/kg  h2  s2  1.636    WC m(h2  1 )  h 6(1449  1180)  / 550 2280 hp 778 Note: The factor 778 converts Btu to ft-lbf, and 550 converts ft-lbf/sec to hp. 98
  • 28. b) TK solution: Rule Sheet Wdotin = mdot * (h2 - h1) ; First law, assuming negligible change in ke and pe and no heat transfer s2 = s1 ; for a reversible adiabatic process ; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher, ; and Kell, Hemisphere Publishing Corp., 198 Variable Sheet Input Name Output Unit ` 300 1 800 1.64 6 5.89 T1 p1 h1 s1 x1 phase1 T2 p2 h2 s2 x2 phase2 Wdotin mdot 67 1180 1.64 'SAT 888 1450 F psi B/lbm B/(lbm*R) F psi B/lbm B/(lbm*R) 'mngless 'SH 2280 hp lbm/s Comment Thermal Sciences, Potter & Scott *Stm8e.tkw Steam, 1-8 States, English units P5-88.tkw Problem 5.88 Temperature Pressure Enthalpy Entropy Quality Phase Temperature Pressure Enthalpy Entropy (transfer value to input) Quality Phase *THUNITS.tkw Units for thermo Power input to compressor Mass flow rate s2 s1  7.168  0.649 x2 (7.502). x2  0.869  h h2   192 0.869(2393) 2271 kJ/kg. WT m 2(3658  2271)  2774 kW 5.90 a) s2 s1  1.681  0.175 x2 (1.745). x2  0.863 h2   94 0.863(1022)  976 Btu/lbm. wT   h 1512   976 536 Btu/lbm  3000  / 778 W 550 wactual  T   382 Btu/lbm  20, 000 / 3600 m w 382   actual   0.713 or 71.3% T ws 536 99
  • 29. b) TK solution: Rule Sheet ;State 1 = turbine throttle state. State 2 = Ideal (isentropic turbine exhaust state. State 3 = actual turbine exhaust state wi = h1 - h2 ; first law for ideal turbine with negligible changes in ke and pe s2 = s1 ; for isentropic turbine. Note that the rule below for a state identified by p2 and ;s2 in model Stm8e.tkw is modified so that it is unnecessary to transfer value of s2 from output to input manually.. if and (given('p2),known('s2)) then call pands(p2,s2;T2,h2,v2,x2,phase2) wa = Wdot/ mdot ; actual turbine work etat = wa / wi ; definition of turbine efficiency ; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher, ; and Kell, Hemisphere Publishing Corp., 1984. Stm8e.tkw Input Name Output ` 1000 800 2 2 T1 p1 h1 s1 x1 phase1 T2 p2 h2 s2 x2 phase2 T3 p3 h3 s3 x3 phase3 wi wa 3000 Wdot 20000 mdot etat 1510 1.68 'mngless 'SH 126 976 1.68 0.863 'SAT 536 382 0.712 Variable Sheet Unit Comment Thermal Sciences, Potter & Scott *Stm8e.tkw Steam, 1-8 States, English P5-90.tkw Problem 5.90 F Temperature psi Pressure B/lbm Enthalpy B/(lbm*R) Entropy Quality Phase F Temperature psi Pressure B/lbm Enthalpy B/(lbm*R) Entropy Quality Phase F Temperature psi Pressure B/lbm Enthalpy B/(lbm*R) Entropy Quality Phase *THUNITS.tkw Units for thermo B/lbm Work of ideal turbine B/lbm Work of actual turbine hp Power output of actual turbine lbm/h Mass rate of flow Turbine efficiency 100
  • 30. 5.91 s2 s1  7.839  0.832 x2 (7.077). x2  0.990. h1  3694 kJ/kg  3.5(3694  h2 251  0.990(2358) 2585 kJ/kg. WT  2585)  3880 kW 5.92 T1 600 C  3677,  h1  s2 s1 7.435      0.198 kg/s WT m(h1  2 ). 200 m(3678  h 2666). m  b) TK solution: a) h2 2666, x2  1.0, Rule Sheet Wdot = mdot * (h1 - h2) ; First law, assuming negligible change in ke and pe s1 = s2 ; for isentropic turbine. Note that the rule below for a state identified by T1 and s1 in ;model Stm8e.tkw is altered to make it unnecessary to transfer value of s1 from output to input. if and (given('T1),known('s1)) then call Tands(T1,s1;p1,h1,v1,x1,phase1) ; Steam tables based on NBS/NRC Steam Tables by Haar, Gallagher, ; and Kell, Hemisphere Publishing Corp., 1984. Stm8si.tkw Input Name Output ` 600 T1 p1 h1 s1 x1 phase1 T2 p2 h2 s2 x2 phase2 80 1 200 5.93 Wdot mdot 3530 3680 7.43 'mngless 'SH 93.5 2670 7.43 'SAT 0.197 Variable Sheet Unit Comment Thermal Sciences, Potter & Scott *Stm8si.tkw Steam, 1-8 States, SI uniits P5-92.tkw Problem 5.92 C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy Quality Phase C Temperature kPa Pressure kJ/kg Enthalpy kJ/(kg*K) Entropy Quality Phase *thunits.tkw Units for thermo kW Power output kg/s Mass rate of flow h1  1984 kJ/kg, s2 s1  6.710  0.261 x2 (8.464). x2  0.762. h2 a  2534 2923-2534 Then h2 s 73.5  .762(2460)  1948 kJ/kg.   .399 or 39.9% 2923  1948 5.94 a) h1  1474, s1 s2  1.759  0.2198 x2 (1.6426), x2  0.937 h2 s  120.9  0.937(1006)  1064. wT  0.85(1474  1064)  348 Btu/lbm    348. m   6.09 lbm/sec b) W mw . 3000  / 778 m  550 T T 101
  • 31. 5.95 The efficiency is the actual kinetic energy increase divided by the maximum possible increase:  a (V22  12 )a KE V   2  s (V2  12 ) s KE V 0.2857 T2 s   p 1 2  T p1  0.2857 100   293    115   281.5 K V22  12  p (T2  1 )  2   V c T 10 2 1000  (281.5  293). 1502  2 10  2 0.97 152  2 10 5.96 or V2  m/s 152 97% The 1st law: V22  12 2(h1  2 ) 2  V h (2874  2 )  h 1000 . To find h2 we use s2 = s1 = 7.759 kJ/kg K and p2 = 100 kPa. Therefore h2 = 2841 kJ/kg. (V 2  2 ) V V22  2 20  22 12 a . 0.85  . V2  238 m/s 2 (2874  2841)  1000 (V2  1 ) s V 102